
Event-based cryptography for automation

networks of cyber-physical systems using the

stream cipher ChaCha20

Públio M. Lima ∗ Carlos K. P. da Silva ∗ Claudio M. de Farias ∗∗

Lilian K. Carvalho ∗ Marcos V. Moreira ∗

∗ COPPE - Electrical Engineering Program, Universidade Federal do
Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro,

21.945-970, RJ, Brazil,
Emails: publio@poli.ufrj.br, carloskpereira.07@poli.ufrj.br ,

lilian.carvalho@poli.ufrj.br, moreira.mv@poli.ufrj.br
∗∗ COPPE - PESC, Universidade Federal do Rio de Janeiro, Cidade

Universitária, Ilha do Fundão, Rio de Janeiro, 21.945-970, RJ, Brazil,
Email: cmicelifarias@cos.ufrj.br

Abstract: One of the main concerns about implementing cyber-physical systems (CPS) is
ensuring its security against cyber attacks. In this paper, we consider CPS in a Discrete-
Event Systems (DES) framework, and consider cyber attacks in the automation network of
the CPS, where a malicious agent eavesdrops communication channels with the objective to
gather information about the system behavior. It is important to remark that network security
strategies used in Information Technology (IT) cannot be straightforwardly used in automation
networks, and adding a new layer for security may compromise the transmission time. In this
paper, we propose a cryptographic scheme to be applied in an automation network which
cipher events without altering the size or structure of the transmitted data. In addition, the
proposed cryptographic scheme leads to small communication delays, which makes it suitable
for application in automation networks. We call this scheme event-based cryptography, where
an event is defined as any change in the binary signals transmitted in the network. In order to
do so, we propose a method for the codification of events as event vectors, which is suitable for
encryption. We also propose the use of a stream cipher called ChaCha20, which is known to
have a high resistance to cryptanalysis. A simulated example is used to illustrate the application
of the proposed event-based cryptography, and a comparison with the RSA cipher, a public-key
cipher widely used in IT, is presented.

Keywords: Cyber-Security, Cryptography, Cyber-Physical Systems, Discrete-Event Systems.

1. INTRODUCTION

Modern engineering solutions consider the implementation
of cyber-physical systems (CPS), which consist of systems
that integrate computing and communication capabilities
to monitor and control physical processes (Tao et al., 2019;
Lima et al., 2019; Alwan et al., 2022). Since CPS use
communication networks, then one of the main concerns
about using this type of system is ensuring its security
against cyber attacks (Song et al., 2016; Yaacoub et al.,
2020; Lima et al., 2021). In this paper, we consider CPS in
a Discrete-Event Systems (DES) framework, and consider
cyber attacks where a malicious agent eavesdrops the
communication channels of the automation network of the
CPS, with the objective to gather information about the
system behavior.

? This work has been partially supported by the National Council
for Scientific and Technological Development - Brasil (CNPq) -
under grants 305267/2018-3, 431307/2018-0, and 436672/2018-9,
FAPERJ, and the Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior - Brasil (CAPES) - Finance Code 001.

In the context of DESs, the security against attacks whose
objective is to estimate a secret behavior executed by the
system is usually addressed by using obfuscation policies
(Lin, 2011; Yin and Lafortune, 2015; Jacob et al., 2016;
Tong et al., 2018; Lafortune et al., 2018; Ji et al., 2018;
Barcelos and Basilio, 2021; Li et al., 2021; Basilio et al.,
2021). Another way of protecting data in communica-
tion channels is the use of cryptography (Stallings, 2006;
Kurose and Ross, 2011; Fritz and Zhang, 2018; Fritz et al.,
2019; Lima et al., 2020). In Fritz et al. (2019), the authors
propose the use of cryptography based on a fully homo-
morphic encryption scheme (Gentry, 2009) in a networked
automation system composed of a plant and a controller,
modeled as DES. A controller encryption scheme is pro-
posed to secure the communication and the information
inside the controller. Since the encryption method pre-
sented in Fritz et al. (2019) is based on operations with
large prime numbers, then the size of the transmitted
data increases, which, in general, also increases the data
transmission delay.

More recently in Lima et al. (2020), the authors introduce
the idea of event-based encryption functions to ensure
confidentiality of DESs, i.e., only the sender and the in-
tended receiver must be able to understand the transmit-
ted data in the network. Language-based and transition-
based encryption functions are defined and a test to verify
the confidentiality of the DES is proposed for transition-
based encryption functions using automaton formalism.
However, in Lima et al. (2020), the asynchronous event-
based framework is used without establishing a connection
with the signals that are communicated to register the
event occurrences. It is important to remark that, in au-
tomation systems, the transmitted data are bits, which are,
in general, associated with sensor readings and commands
to actuators. Thus, in order to implement an event-based
cryptography it is necessary to introduce a codification of
the system events and to bridge the event-based framework
and the signal-based framework provided by the inputs
and outputs of programmable logic controllers (PLC).

In this paper, we propose an encryption scheme that
does not alter the transmission data size or structure in
an automation network, which transmits only vectors of
binary signals. In order to do so, we define events as
changes in the binary signals transmitted in the communi-
cation channel, and present a cryptographic scheme, called
event-based cryptography, that modifies the events in the
application layer of the network so that the transmitted
data structure remains the same. It is important to re-
mark that in order to not change the frequency of the
transmitted data it is necessary to use stream ciphers,
i.e., ciphers that process the input elements continuously,
producing outputs, one element at a time. We adapt the
ChaCha20 cipher presented in Bernstein (2008a), which
is a variant of the awarded Salsa20/20 cipher presented
in Bernstein (2008b). It is important to remark that the
ChaCha20 cipher is recently attracting attention due to
its deployment in several applications by Google (Mahdi
et al., 2021). We present the implementation of the event-
based cryptography using ChaCha20 cipher in an emulated
automation network system. We also use the example to
compare the size of the transmitted data and the time it
takes to cipher, transmit, and decipher using ChaCha20
in comparison with the RSA cipher, a public-key cipher
widely used in Information Technology (IT), implemented
in a similar setting.

2. PRELIMINARIES

2.1 Notation and definitions

Let N be the set of natural numbers and let Z1 = {0, 1}.
The exclusive disjunction (XOR) operator, denoted by ⊕,
is defined for two binary numbers a, b ∈ Z1 as a ⊕ b = 0,
if a = b, and a ⊕ b = 1, if a 6= b. The XOR operation can
be applied to two vectors of binary numbers x1 and x2 if
the number of entries of x1 and x2 is equal. In this case,
vector x = x1⊕x2 is defined such that xi = xi1⊕xi2, where
xij is the i-th element of xj , for j = 1, 2. The number of
elements of a vector x is denoted by |x|.

2.2 Stream ciphers

For any method of communication that may be accessible
by non authorized entities, some level of encryption must
be used to maintain data confidentiality (Stallings, 2006).
Thus, the objective of cryptography is to transform a
plain message m into a cipher message c such that only
the receiver is able to recover the plain message m. In
order to do so, it can be used asymmetric or symmetric
ciphers, where in the former different keys are used for the
sender and receiver to cipher and decipher the message,
and, in the latter, the same key is used for encryption and
decryption.

Some modern ciphers that are considered to be secure in
Information Technology (IT) are based on the factoriza-
tion of a number into prime numbers. The main drawback
of using this technique is that, for ensuring data security,
the prime numbers must be very large. As a consequence,
the size of the transmitted message also increases. Thus,
for transmitting one event in a communication channel,
the cipher would increase the size of the transmitted data,
causing large delays in the communication, which makes
it not suitable for application in the automation network
of cyber-physical systems.

The ciphers can also be partitioned into two groups: stream
ciphers and block ciphers. Block ciphers process blocks
of elements at a time, i.e., if we consider binary vectors
transmitted in a channel, a block cipher would gather
several vectors and, then, encrypts these vectors as a
block. After that, the ciphered block is transmitted to
the receiver that decrypts the transmitted information.
The problem with this approach is that, in general, in
automation systems, it is necessary to observe the system
events as soon as possible in order to do not add delays
to the system, which is undesirable to the system control.
Stream ciphers, on the other hand, process one element
at a time, and therefore, are more appropriate to be used
in automation networks. Thus, in this work, we propose
the use of a symmetric stream cipher for encryption and
decryption of the transmitted data in an automation
network.

It is important to remark that there are several symmetric
stream ciphers proposed in the literature that do not
change the size of the ciphered data with respect to the
plain data, such as ChaCha20. The ChaCha20 cipher is a
variation of Salsa20/20, which has been considered one of
the most secure and efficient ciphers in the eSTREAM
project (Robshaw and Billet, 2008). This project was
created with the objective to promote the design of stream
ciphers with a particular emphasis on algorithms that
would be either very fast in software or very resource-
efficient in hardware.

2.3 ChaCha20

The ChaCha20 cipher works by expanding a relatively
small secret key ks, known by the sender and receiver,
into a keystream KS . Keystream is the term used to refer
to a large binary number that can be divided into several
smaller binary numbers k, which are used in the encryption
and decryption process. These smaller values are called
encryption keys. Particularly, the ChaCha20 cipher uses

a secret key ks with 256 bits and 96 additional bits,
called nonce, denoted as η, where η cannot be repeated
after generating a keystream KS , i.e., the nonce must
be changed all the time a new keystream is generated.
Moreover, in general, η is a random or pseudo-random
number, differently from the secret key ks which is a chosen
number.

The ChaCha20 cipher is capable of generating, from the
secret key ks and the nonce η, a total of 232 different 4×4
matrices Mq, q = 0, . . . , 232 − 1, such that each entry
of Mq is a binary number with 32 bits that are used to
generate the keystream KS . In summary, both the sender
and receiver, using the same 256-bits secret key and 96-
bits nonce, are capable of generating the same keystream
composed of 241 bits, from which several encryption keys
k can be obtained as pieces of KS . Then, each k can
be used for the encryption and decryption process of
a single message. It is important to remark, that the
number of bits of an encryption key k is equal to the
number of bits of the plain message m. For example, let
us consider a system that transmits a message with 16
bits. Then, from the 241 bits of the keystream KS , 16
different bits of KS are chosen as k each time a message
is transmitted. Therefore, the sender and receiver are able
to securely transmit 237 messages, without changing the
size or structure of the transmitted data. Notice that,
in this example, if the system sends a message every 25
milliseconds, the communication channel would be able to
operate securely for more than 100 years with the same
secret key and nonce.

Notice that since KS has a large number of bits, in prac-
tice, only part of KS is generated initially, by computing
matrices Mq according to the size of the part of KS

that must be stored. In this case, new matrices Mq are
computed when the part of KS that has already been
computed is used in the encryption scheme. This avoids
the storage of the complete KS , which would require a
large memory space to store it. An algorithm to compute
the matrices Mq is presented in Appendix A.

The cipher message c is obtained using the ChaCha20
cipher by performing a XOR operation between the plain
message m and the current encryption key k, i.e., c =
m ⊕ k. Since the sender and receiver can generate the same
keystream KS , then the receiver is capable of recovering
the plain message by using the XOR operation between
c and k, i.e., m = c ⊕ k. The details of the ChaCha20
cipher are presented in Appendix A.

3. EVENT-BASED CRYPTOGRAPHIC SCHEME

In this paper, we address the problem of ensuring confi-
dentiality in the automation network of a cyber-physical
system. We consider that the communication is carried
out using a wired or wireless network. The sender and
receiver can represent different entities, e.g., the sender
may be an industrial plant and the receiver a controller or
supervisor, and vice-versa. Thus, the j-th data transmitted
from the sender to receiver is a vector of binary signal
values uj = [α1(j) α2(j) . . . αn(j)]T ∈ Zn1 , which, in
the case of automation systems, are, in general, formed
of binary signals of sensors and actuators. We call uj the
plain vector.

Fig. 1. Eavesdropping attack in the communication chan-
nel between sender and receiver.

We consider that the communication channel between
sender and receiver is vulnerable to attacks, as shown
in Figure 1, where the attacker can observe the data
transmitted in this channel. The attacker eavesdrops the
binary vector uj with the objective of estimating the
system state or its dynamic behavior. In this paper, we
do not consider that the attacker can modify the data
transmitted in the attacked channel, i.e., the attacker
performs only passive attacks (Stallings, 2006).

In order to ensure confidentiality of the transmitted data,
several methods of encryption are proposed in IT, where
the main objective is to keep the information secret,
regardless of the size of the transmitted data. However,
in automation networks, it is important to avoid the
increase in the data size to do not delay the transmission
of the information to the receiver. Thus, in this work, we
propose an event-based cryptographic method that keeps
the structure of the transmitted data, avoiding the increase
in the transmission delay, i.e., instead of transmitting the
plain vector uj ∈ Zn1 , we will transmit a cipher vector
vj ∈ Zn1 . In order to do so, we first define an event as any
change in at least one of the entries of the plain vector.
Let uj and uj−1 be the j-th and (j − 1)-th observed plain
vectors, respectively, and consider that uj 6= uj−1. Then,
an event σ is coded by vector

σ = uj ⊕ uj−1.

Notice that the i-th entry of the event vector σ, σi, is equal
to one if there is a change from αi(j − 1) to αi(j), and
it is zero otherwise, i.e., σ represents the changes in the
values of the entries of the observed plain vector. Thus,
the number of different events depends on the number
of different observed plain vectors uj . It is important to
remark that when uj = uj−1, no event is generated. In
this case, we consider that the empty sequence ε has been
generated, which is coded as uj ⊕ uj−1 = 0.

Remark 1. A similar representation of events has been
proposed in Moreira and Lesage (2019a,b) and de Souza
et al. (2020) for the identification of DESs with the aim
of fault detection. In the event representation proposed in
these works, the authors consider that the change in the
reading of an entry of vector uj can be negative, when its
value goes from 1 to 0, or positive, when its value goes
from 0 to 1, distinguishing the falling and rising edges of
the signal, respectively. In this paper, events are defined
as changes in the entries of vector uj , independently if
it is a rising or a falling edge of the binary signal, which
allows the occurrence of two equal consecutive events. This
facilitates the definition of the encryption and decryption
methods proposed in this work. 2

Example 1. Let us consider that the data transmitted
in the communication channel is composed of three bi-
nary signals, i.e., uj = [α1(j) α2(j) α3(j)]T , and that

the following four plain vectors have been observed:
u0 = [0 0 0]T ; u1 = [1 0 0]T ; u2 = [1 0 0]T ; and
u3 = [0 1 0]T . Then, when the plain vector changes from
vector u0 to u1, an event σ1, associated with the change
of the first entry of the observed vector, is generated. This
event is coded as σ1 = u1 ⊕ u0 = [1 0 0]T . In the sequel,
no event is generated since u2 = u1, which implies that
ε, coded as u2 ⊕ u1 = 0, has been generated. Then, when
we observe the change from vector u2 to u3, a new event
σ2 is generated. This event is coded as the event vector
σ2 = u3 ⊕ u2 = [1 1 0]T . It is important to remark
that since each event represents a change in at least one
binary value of uj , without distinguishing a rising edge
from a falling edge, then, if the value of u3 is modified
such that u3 = u0 = [0 0 0]T and the sequence of observed
vectors is u0u1u2u3, the associated sequence of events is
σ1εσ1 = σ1σ1. 2

Let us consider the cryptographic scheme depicted in
Figure 2, where uj = [α1(j) α2(j) . . . αn(j)]T is the plain

vector, vj = [γ1(j) γ2(j) . . . γn(j)]T is the transmitted
cipher vector, and σ is the event vector obtained when uj
and uj−1 are different. When an event σ is generated, it is
ciphered as σc = σ⊕ k, where k ∈ Zn1 is the vector formed
with the elements of encryption key k. After computing
σc, the transmitted vector is modified to vj = vj−1 ⊕ σc.
Notice that when uj and uj−1 are equal, then the empty
sequence ε, coded as 0, is generated. In this case, the same
cipher vector is transmitted, i.e., vj = vj−1. Since u0 is
the first observed plain vector, then we transmit the cipher
vector v0 = u0 ⊕ k.

Since the size of each event is |u| bits, the event-based
cipher needs to use |u| bits from KS to form a new vector
k each time an event is observed. Thus, the encryption
and decryption processes start using the first |u| bits from
KS for the encryption and decryption of the first plain
vector. Then, these bits are discarded in order to cipher
and decipher the next event with the next |u| bits of KS . If
the entire keystream KS is used in the encryption process,
then a new keystream with 241 bits can be generated with
a new secret ks and nonce η as shown in Appendix A.

Notice that, the transmitted vector vj can be observed
by the attacker through an eavesdrop attack. However,
without knowing k, the attacker is not able to recover
uj . On the other hand, the receiver knows k and is able
to recover event σ. After observing a variation between
the transmitted vectors vj and vj−1, the ciphered event
σc = vj ⊕ vj−1 is computed, and then σ is obtained as
σ = σc⊕k. Thus, the receiver, knowing the previous state
uj−1, is able to recover the current state of the sender by
making the XOR operation uj = σ⊕uj−1. It is important
to remark that when vj = vj−1, then uj = uj−1.

Since the keystream KS is a pseudo-random large binary
number, then it is possible that the observed event σ be
equal to k. In this case σc would be 0, which implies
that vj = vj−1, which is undesirable since it leads to
the same behavior as when ε is generated. In order to
circumvent this problem, we choose an event σµ that never
occurs in the system, and replace event σ with σµ for
the computation of the new cipher event σc = σµ ⊕
k. In this case, the receiver recovers event σµ by doing

Fig. 2. Cryptographic scheme.

σ = σc ⊕ k = σµ, and detects that the correct event
occurrence is σ = k, and use it to obtain uj .

Remark 2. Notice that it is almost impossible that all
events in Zn1 be generated in a large automation system.
Thus, it is not difficult to define a vector σµ to be used in
the cryptographic scheme. 2

The operation of the encryption procedure is presented in
Algorithm 1. In Line 1, the encryption key k is computed
from the keystream KS . Then, in Line 2, the plain vector
uj is read. If it is the first observed plain vector u0, then u0
is encrypted as v0 = u0⊕k and transmitted. Otherwise, if a
new plain vector uj is observed, and it is different from the
previous observed plain vector uj−1, σ is computed in Line
7 and ciphered, using key k, in Line 8. If the cipher event
vector σc is equal to 0, then the event that never occurs σµ
is ciphered in Line 10 to replace σc = 0 with σc = σµ ⊕ k.
Then, in Line 11 the cipher vector vj is computed and
transmitted to the receiver. It is important to remark that,
in Line 13, if uj = uj−1, then there is no need to actually
calculate a cipher event since, by definition, it is equal to
ε. Moreover, in this case, there is no need to update k,
since the key is not actually used, and also, the value of vj
is updated to vj = vj−1 in Line 14. Thus, the encryption
process can skip steps and only wait for the next reading
of the plain vector uj in Line 2.

The decryption procedure is presented in Algorithm 2. In
Line 1, a new encryption key k is computed. Then, in
Line 2, a new observation of vj is awaited. If it is the first
observed cipher vector, then u0 is computed as v0 ⊕ k.
Otherwise, if vj is different from the previous observed
vector vj−1, the cipher event σc is computed in Line 7,
and σ is computed in Line 8. If σ is equal to σµ, then in
Line 10, it is attributed k to σ. Then, in Line 11, the plain
vector uj is computed, and the algorithm returns to Line
1. Notice that, in Line 13, if vj = vj−1, there is no need
to decipher vj since no modification has occurred, i.e., uj
is equal to uj−1.

Example 2. In order to illustrate the encryption procedure
presented in Algorithm 1, let us consider that we want to
encrypt and transmit the three plain vectors of the system
given by:

Algorithm 1: Encryption procedure

1 Obtain a new encryption key k from KS

2 Read the plain vector uj
3 if j = 0 then
4 Transmit v0 ← u0 ⊕ k
5 Return to Line 1

6 else if uj 6= uj−1 then
7 σ ← uj ⊕ uj−1

8 σc ← σ ⊕ k
9 if σc = 0 then

10 σc ← σµ ⊕ k
11 vj ← vj−1 ⊕ σc and transmit vj
12 Return to Line 1

13 else
14 vj ← vj−1 and transmit vj
15 Return to Line 2

Algorithm 2: Decryption procedure

1 Obtain a new encryption key k from KS

2 Read the cipher vector vj
3 if j = 0 then
4 u0 ← v0 ⊕ k
5 Return to Line 1

6 else if vj 6= vj−1 then
7 σc ← vj ⊕ vj−1

8 σ ← σc ⊕ k
9 if σ = σµ then

10 σ ← k

11 uj ← uj−1 ⊕ σ
12 Return to Line 1

13 else
14 uj ← uj−1

15 Return to Line 2

u0 = [0 0 0 0 1 1 0 0 0 0]
T
,

u1 = [0 0 0 0 1 1 0 0 0 0]
T
,

u2 = [0 0 0 0 1 1 1 0 0 0]
T
.

In Line 1 of the encryption procedure, it is necessary to
obtain the first encryption key k from KS , which requires
the construction of part of the keystream KS using a 256-
bit key and 96-bit nonce, which were omitted here due to
lack of space. Since each matriz Mq, q = 0, 1, . . . , 232 −
1, provides 512 bits of KS , then, in this example, for
encrypting the message composed of the three vectors u0,
u1 and u2, it is sufficient to construct only the first matrix
M0. After computing M0, we can obtain, using the first 10
bits, the first encryption key k given by:

k = [1 1 1 1 0 0 1 1 1 1]
T
.

After observing the first plain vector u0, in Line 4 of
Algorithm 1, the first cipher vector v0, computed as v0 =

u0 ⊕ k = [1 1 1 1 1 1 1 1 1 1]
T

, is transmitted. Then,
Algorithm 1 returns to Line 1, where a new key vector k
is obtained from M0 by using the next 10 bits given by:

k = [1 0 0 1 0 1 0 0 0 0]
T
.

After waiting for a new observation of a plain vector, i.e.,
the sender reads the vector u1, it is checked whether this
vector is equal to the previous value u0. Notice that, in
this case u0 = u1, and therefore Algorithm 1 goes to Line
14, where the transmitted cipher vector is a copy of the
previous cipher vector, i.e., v1 = v0. It is important to
remark that in this case Algorithm 1 goes to Line 2, and
therefore, the value of the key vector k is not updated.
Finally, when the sender observes the plain vector u2, event

σ = u1⊕u2 = [0 0 0 0 0 0 1 0 0 0]
T

is obtained. In Line
8 of Algorithm 1 it is computed the cipher event σc = σ⊕
k = [1 0 0 1 0 1 1 0 0 0]

T
. Notice that, σc is different

from 0, thus there is no need to use vector σµ. In Line 11
of Algorithm 1, it is calculated the new cipher vector v2,

given by v2 = σc ⊕ v1 = [0 1 1 0 1 0 0 1 1 1]
T

. Finally,
v2 is transmitted to the receiver and the encryption process
returns to Line 1, where a new vector k is obtained and
the system waits for a new reading of a plain vector.

In summary, the cipher vectors transmitted in the channel
are:

v0 = [1 1 1 1 1 1 1 1 1 1]
T
,

v1 = [1 1 1 1 1 1 1 1 1 1]
T
,

v2 = [0 1 1 0 1 0 0 1 1 1]
T
.

It is important to remark that all cipher vectors v0, v1,
and v2 are completely different from the plain vectors
of the system, and therefore, an attacker would not be
able to properly recover any information by observing the
transmitted data.

On the other hand, the receiver can generate the same key
vectors k as the sender, and therefore, the receiver can
compute the plain vectors by observing the transmitted
cipher vectors using Algorithm 2. In Line 1 of Algorithm

2, the first encryption key k = [1 1 1 1 0 0 1 1 1 1]
T

is
computed. Then, after observing the first cipher vector v0,
in Line 4 of Algorithm 2, the receiver can compute u0 =

v0 ⊕ k = [0 0 0 0 1 1 0 0 0 0]
T

. Then, k is updated in

Line 1 to k = [1 0 0 1 0 1 0 0 0 0]
T

, and since v1 = v0,
after observing v1, in Line 14, u1 = u0. Since k was not
used, Algorithm 2 returns to Line 2 to wait for a new
observation. After observing v2 6= v1, in Line 7, the cipher
event σc = v1 ⊕ v2 is computed, and then, in Line 8,

σ = σc⊕k = [0 0 0 0 0 0 1 0 0 0]
T

is recovered. Finally,
the plain vector is computed in Line 11 as u2 = u1 ⊕
σ = [0 0 0 0 1 1 1 0 0 0]

T
. 2

In the next section, we present an analysis of the cryp-
tographic scheme in an automation network. In order to
do so, we emulate a Modbus TCP network in a computer
and compared the ChaCha20 cipher with the RSA cipher,
which is a public-key cipher widely used in IT.

4. ANALYSIS OF THE PROPOSED
CRYPTOGRAPHIC SCHEME

4.1 Analysis Set up

In order to analyze the proposed cryptographic scheme
using the ChaCha20 cipher in an automation network, in
this section we use plain vectors obtained from a simu-
lation of an industrial sorting unit system that separates
boxes according to their height, using the 3D simulation
software Factory I/O, controlled by a Siemens S7-1200
programmable logic controller (PLC). The system is com-
posed of six sensors and four actuators. Thus, we obtain
a 10-bits vector u to represent the status of the system.
The controlled system generated a total of 806,604 plain
vectors uj , j = 0; 1; . . . ; 806,603. After obtaining the plain
vectors, we have emulated a Modbus automation network
with the objective of analyzing the encryption, decryption
and transmission times of the proposed scheme, and to
compare it with the RSA cipher. In order to do so, we
emulated a Modbus communication in a computer running
with Windows 10 Home 64 bits edition, with a processor
Intel®Core(TM) i3-5th generation, 2.00 GHz, and 4GB of
RAM, using Python version 3.9.7. The Modbus network
was emulated using the Python library pyModbusTCP
(Lefebvre, 2022; Roomi et al., 2020; Kang and Lee, 2019).
In the Modbus set up, we have defined the server as the
sender and the client as the receiver to transmit the cipher
vectors in a Modbus channel.

After setting up the Modbus network, we have imple-
mented the encryption scheme, proposed in Algorithm 1,
in the server, and the decryption scheme, proposed in
Algorithm 2, in the client, using Python, in the application
layer of the automation network. Moreover, we set the
reading and encryption of a new plain vector uj by the
server every 2.3 seconds, and the reading and decryption
of the cipher vector by the client every 1 second.

4.2 Analysis

In order to evaluate the viability of implementing the
ChaCha20 cipher in an automation network, the 806,604
plain vectors were encrypted, transmitted, and deciphered
using the emulated Modbus network. In this regard, the
ChaCha20 cipher needs to compute keystream matrices
Mq to use, which can be carried out in the system idle
time. It was computed two different times for obtaining
part of the keystream. The first was the computation
of a large part of the keystream KS containing 196,608
bits, obtained by using 384 matrices Mq. This part of
KS was computed with average time 882.09 ms in both
sender and receiver. Notice that, this part of KS can be
computed off-line and stored to be used in the encryption
and decryption processes, 10 bits at a time, in a total
of 19,660 encryptions and decryptions. Since the storage
of 196,608 bits may not be viable for devices with low
memory, then we also computed the time required for the
computation of a single matrix Mq with 512 bits which
can be used for encrypting the first plain vector and the
next 50 events. This computation were carried out with
average time equal to 4.977 ms.

Considering that the keystream has already been obtained,
as shown in Table 1, the average time for encrypting a

Table 1. Average time of the cryptographic
schemes using ChaCha20 and RSA ciphers.

RSA ChaCha20

Encryption time 7.966 ms 2.547 ms
Transmission time 4.07 ms 1.031 ms
Decryption time 56.6 ms 2.271 ms

message using the ChaCha20 cipher was 2.547 ms. The
average time of transmitting the cipher vector from sender
to receiver was 1.031 ms, and the average time to decipher
the cipher vector in the receiver was 2.271 ms. Thus,
the total average time used for encryption, transmission
and decryption of a vector in the proposed cryptographic
scheme was 5.849 ms.

In order to compare the results with another encryption,
we also implemented a RSA cipher in the same setting
to transmit the system status. The plain vector uj was
directly encrypted using the RSA cipher in the sender
(server), and deciphered in the receiver (client). In order
to ensure security, the RSA cipher requires that the 10-
bits plain vector be transformed into a 2000-bits cipher
vector, which was performed with average time, according
to Table 1, 7.966 ms, i.e., 212% greater than the encryp-
tion time of the method using ChaCha20. The average
transmission time of the RSA cipher was 4.07 ms, which is
294 % greater than the transmission time of the ChaCha20
cipher. Finally, the average decryption time using the
RSA cipher was 56.6 ms, which is 2,392% greater than
using the ChaCha20 cipher. These results shows that the
cryptographic scheme using the ChaCha20 cipher is much
more efficient than using the RSA cipher.

5. CONCLUSIONS

In this paper, we propose an event-based cryptographic
scheme for ensuring data confidentiality, preventing a ma-
licious agent from recovering the plain information trans-
mitted between sender and receiver in an automation net-
work of a cyber-physical system. In order to do so, we
propose the use of the stream cipher ChaCha20, which
is known to have high resistance to cryptanalysis. The
encryption and decryption schemes do not alter the trans-
mission data size or structure, which leads to an efficient
cryptographic method to be used in automation networks,
since it inserts a relatively small delay in the communi-
cation with respect to other cryptographic schemes. In
order to show this fact, we present an example to illustrate
the proposed event-based cryptographic scheme, and we
compare it with a public-key cipher, called RSA, which is
commonly used in Information Technology.

REFERENCES

Alwan, A.A., Ciupala, M.A., Brimicombe, A.J., Ghorashi,
S.A., Baravalle, A., and Falcarin, P. (2022). Data
quality challenges in large-scale cyber-physical systems:
A systematic review. Information Systems, 105, 101951.

Barcelos, R.J. and Basilio, J.C. (2021). Enforcing current-
state opacity through shuffle and deletions of event
observations. Automatica, 133, 109836.

Basilio, J.C., Hadjicostis, C.N., and Su, R. (2021). Anal-
ysis and control for resilience of discrete event systems:

Fault diagnosis, opacity and cyber security. Foundations
and Trends in Systems and Control, 8(4), 285–443.

Bernstein, D.J. (2008a). ChaCha, a variant of Salsa20. In
Workshop Record of SASC, volume 8, 3–5.

Bernstein, D.J. (2008b). The Salsa20 family of stream
ciphers. In New stream cipher designs, 84–97. Springer.

de Souza, R.P., Moreira, M.V., and Lesage, J.J. (2020).
Fault detection of discrete-event systems based on an
identified timed model. Control Engineering Practice,
105, 104638.

Fritz, R., Fauser, M., and Zhang, P. (2019). Controller
encryption for discrete event systems. In 2019 American
Control Conference (ACC), 5633–5638. IEEE, Philadel-
phia, CA, USA.

Fritz, R. and Zhang, P. (2018). Modeling and detection
of cyber attacks on discrete event systems. IFAC-
PapersOnLine, 51(7), 285–290.

Gentry, C. (2009). A fully homomorphic encryption
scheme. Stanford university.

Jacob, R., Lesage, J.J., and Faure, J.M. (2016). Overview
of discrete event systems opacity: Models, validation,
and quantification. Annual Reviews in Control, 41, 135–
146.

Ji, Y., Wu, Y.C., and Lafortune, S. (2018). Enforcement
of opacity by public and private insertion functions.
Automatica, 93, 369–378.

Kang, S. and Lee, I. (2019). Implementation of PV mon-
itoring system using Python. In 2019 21st Interna-
tional Conference on Advanced Communication Tech-
nology (ICACT), 453–455. IEEE.

Kurose, J.F. and Ross, K.W. (2011). Computer network-
ing: a top-down approach. Addison Wesley.

Lafortune, S., Lin, F., and Hadjicostis, C.N. (2018). On the
history of diagnosability and opacity in discrete event
systems. Annual Reviews in Control, 45, 257–266.

Lefebvre, L. (2022). pyModbusTCP Documenta-
tion. https://pymodbustcp.readthedocs.io/en/
stable/. [Online; accessed 22-February-2022].

Li, X., Hadjicostis, C.N., and Li, Z. (2021). Extended inser-
tion functions for opacity enforcement in discrete event
systems. IEEE Transactions on Automatic Control. doi:
10.1109/TAC.2021.3121249.

Lima, P.M., Alves, M.V.S., Carvalho, L.K., and Moreira,
M.V. (2021). Security of cyber-physical systems: De-
sign of a security supervisor to thwart attacks. IEEE
Transactions on Automation Science and Engineering.
doi:10.1109/TASE.2021.3076697.

Lima, P.M., Alves, M.V.S., Carvalho, L.K., and Moreira,
M.V. (2019). Security Against Communication Network
Attacks of Cyber-Physical Systems. Journal of Control,
Automation and Electrical Systems, 30(1), 125–135.

Lima, P.M., Carvalho, L.K., and Moreira, M.V. (2020).
Confidentiality of cyber-physical systems using event-
based cryptography. In 21st IFAC World Congress 2020,
1761–1766. Berlin, Germany.

Lin, F. (2011). Opacity of discrete event systems and its
applications. Automatica, 47(3), 496–503.

Mahdi, M.S., Hassan, N.F., and Abdul-Majeed, G.H.
(2021). An improved ChaCha algorithm for securing
data on IoT devices. SN Applied Sciences, 3(4), 1–9.

Moreira, M.V. and Lesage, J.J. (2019a). Fault diagnosis
based on identified discrete-event models. Control En-
gineering Practice, 91, 104101.

Moreira, M. and Lesage, J.J. (2019b). Discrete event
system identification with the aim of fault detection.
Discrete Event Dynamic Systems, 29, 191–209.

Robshaw, M. and Billet, O. (2008). New stream cipher
designs: the eSTREAM finalists. Springer.

Roomi, M.M., Biswas, P.P., Mashima, D., Fan, Y., and
Chang, E.C. (2020). False data injection cyber range
of modernized substation system. In 2020 IEEE Inter-
national Conference on Communications, Control, and
Computing Technologies for Smart Grids (SmartGrid-
Comm), 1–7. IEEE.

Song, H., Rawat, D.B., Jeschke, S., and Brecher, C. (2016).
Cyber-physical systems: foundations, principles and ap-
plications. Morgan Kaufmann.

Stallings, W. (2006). Cryptography and network security,
4/E. Pearson Education India.

Tao, F., Qi, Q., Wang, L., and Nee, A. (2019). Digital
Twins and Cyber–Physical Systems toward Smart Man-
ufacturing and Industry 4.0: Correlation and Compari-
son. Engineering, 5(4), 653–661.

Tong, Y., Cai, K., and Giua, A. (2018). Decentralized
Opacity Enforcement in Discrete Event Systems Using
Supervisory Control. In 2018 57th Annual Conference
of the Society of Instrument and Control Engineers of
Japan (SICE), 1053–1058.

Yaacoub, J.P.A., Salman, O., Noura, H.N., Kaaniche, N.,
Chehab, A., and Malli, M. (2020). Cyber-physical
systems security: Limitations, issues and future trends.
Microprocessors and microsystems, 77, 103201.

Yin, X. and Lafortune, S. (2015). A new approach for
synthesizing opacity-enforcing supervisors for partially-
observed discrete-event systems. In 2015 American
Control Conference (ACC), 377–383.

Appendix A. CHACHA20 CIPHER

A.1 Notation and definitions

Given two positive numbers a and n, we have that a
modulo n, denoted as a mod(n), is the remainder of the
division of a by n. In this paper, we use the operator �,
to denote the addition modulo 232, i.e., a � b = (a +
b) mod(232). We also denote the left-rotation operation
for a 32-bits number as ≪, i.e, the operation of shifting
all bits of a 32-bits number, one bit to the left, and placing
the leftmost bit (most significant) as the rightmost bit
of the 32-bits number. We also define the left-rotation
operation for a given number ` ∈ N, such that given a
32-bits number a then a ≪ ` represents repeating the
left-rotation operation of a, ` times.

A.2 Keystream generation

We present in Algorithm 3 the function of a quarter-round
operation that is used during the ChaCha20 keystream
generation (Bernstein, 2008a).

Algorithm 3: [a, b, c, d] =Quarter-round(a, b, c, d)

Input: 32-bits numbers a, b, c, d
Output: modified 32-bits numbers a, b, c, d

1 a← a� b
2 d← d⊕ a
3 d← d≪ 16
4 c← c� d
5 b← b⊕ c
6 b← b≪ 12
7 a← a� b
8 d← d⊕ a
9 d← d≪ 8

10 c← c� d
11 b← b⊕ c
12 b← b≪ 7

a

b

c

d d

c

b

a

16

12 7

8

Fig. A.1. Quarter Round operation.

In order to illustrate the Quarter-round function, the
operation over the inputs a, b, c and d are represented in
Figure A.1. Notice that, the original values of a, b, c and
d are updated by function Quarter-round by making left-
rotation, XOR and addition modulo 232 operations.

Matrices Mq, q = 0, . . . , 232 − 1, used for generating the
keystream KS , are computed according to Algorithm 4. In
order to do so, in Line 1, S is constructed as:

S =

const0 const1 const2 const3ks0 ks1 ks2 ks3
ks4 ks5 ks6 ks7
count n0 n1 n2

,

where const0 , const1, const2, and const3 are the binary
numbers with 32 bits presented in Bernstein (2008a). The
values of ks0 , ks1 , ks2 , ks3 , ks4 , ks5 , ks6 , and ks7 are binary
numbers with 32 bits obtained after partitioning the secret
key ks, that has 256 bits, into 8 parts, and count is a 32-bits
counter. The values of n0, n1, and n2 are binary numbers
with 32 bits obtained after partitioning the nonce η, that
has 96 bits, into three parts.

In Line 2 of Algorithm 4, we make a copy of matrix S,
denoted by S0. In order to facilitate the notation we will
refer to each 32-bits long binary numbers of matrix S0 as
follows:

S0 =

s0,0 s0,1 s0,2 s0,3s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

.

After defining matrix S0 we will modify it, generating a
new matrix by following the operations from Lines 5 to
12. The operations:

[s0,0, s1,0, s2,0, s3,0] = Quarter-round(s0,0, s1,0, s2,0, s3,0)
[s0,1, s1,1, s2,1, s3,1] = Quarter-round(s0,1, s1,1, s2,1, s3,1)

[s0,2, s1,2, s2,2, s3,2] = Quarter-round(s0,2, s1,2, s2,2, s3,2)
[s0,3, s1,3, s2,3, s3,3] = Quarter-round(s0,3, s1,3, s2,3, s3,3)

constitute a column round, and the operations:

[s0,0, s1,1, s2,2, s3,3] = Quarter-round(s0,0, s1,1, s2,2, s3,3)
[s0,1, s1,2, s2,3, s3,0] = Quarter-round(s0,1, s1,2, s2,3, s3,0)
[s0,2, s1,3, s2,0, s3,1] = Quarter-round(s0,2, s1,3, s2,0, s3,1)
[s0,3, s1,0, s2,1, s3,2] = Quarter-round(s0,3, s1,0, s2,1, s3,2)

constitute a diagonal round.

Algorithm 4: Construction of Matrix Mq

Input: ks = ks0 . . . ks7 , η = n0n1n2, count, const0,
const1, const2, const3

Output: Mq, where q is the decimal representation of
count

1 S =

const0 const1 const2 const3ks0 ks1 ks2 ks3
ks4 ks5 ks6 ks7
count n0 n1 n2

2 S0 =

s0,0 s0,1 s0,2 s0,3s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

 ← S

3 h = 1
4 while h ≤ 10 do
5 [s0,0, s1,0, s2,0, s3,0] =

Quarter-round(s0,0, s1,0, s2,0, s3,0)
6 [s0,1, s1,1, s2,1, s3,1] =

Quarter-round(s0,1, s1,1, s2,1, s3,1)
7 [s0,2, s1,2, s2,2, s3,2] =

Quarter-round(s0,2, s1,2, s2,2, s3,2)
8 [s0,3, s1,3, s2,3, s3,3] =

Quarter-round(s0,3, s1,3, s2,3, s3,3)
9 [s0,0, s1,1, s2,2, s3,3] =

Quarter-round(s0,0, s1,1, s2,2, s3,3)
10 [s0,1, s1,2, s2,3, s3,0] =

Quarter-round(s0,1, s1,2, s2,3, s3,0)
11 [s0,2, s1,3, s2,0, s3,1] =

Quarter-round(s0,2, s1,3, s2,0, s3,1)
12 [s0,3, s1,0, s2,1, s3,2] =

Quarter-round(s0,3, s1,0, s2,1, s3,2)
13 h← h+ 1

14 Mq = S �

s0,0 s0,1 s0,2 s0,3s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

The process of performing a column round followed by a
diagonal round is repeated 10 times in the loop of Line 4,
i.e., there are a total of 10 alternating column rounds and
diagonal rounds to modify matrix S0. After that, matrix
Mq is formed in Line 14 by performing the addition modulo
232 of each 32-bits element of the original matrix S with
the corresponding element si,j , for i, j = 0, 1, 2, 3.

It is important to remark that Algorithm 4 produces a
512-bits matrix Mq as an output. This process can be
repeated with a different value for the counter count to
generate a new 512-bits matrix Mq that can be used with
the same secret key ks and nonce η. Thus, the number
of bits of the part of the keystream KS that we want
to compute, provides the number of times Algorithm 4

must be executed generating different matrices Mq. After
obtaining the matrix Mq, part of keystream KS is obtained
by converting the rows of Mq into a single binary number
with 512 bits concatenating the rows side by side.

