
Automatica 77 (2017) 93–102
Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Computation of minimal diagnosis bases of Discrete-Event Systems
using verifiers✩

Leonardo P.M. Santoro, Marcos V. Moreira, João C. Basilio
Universidade Federal do Rio de Janeiro, COPPE-Programa de Engenharia Elétrica, 21949-900, Rio de Janeiro, RJ, Brazil

a r t i c l e i n f o

Article history:
Received 7 March 2015
Received in revised form
9 September 2016
Accepted 18 October 2016
Available online 13 January 2017

Keywords:
Discrete-event systems
Fault diagnosis
Minimal diagnosis bases
Verifiers

a b s t r a c t

In order to diagnose the occurrence of a fault event in a Discrete-Event System (DES), it is first necessary
to verify if the language of the system is diagnosable with respect to an observable event set and a fault
event set. In some cases, the language of the system is also diagnosable even when a subset of the set
of observable events under consideration is used as the actual observable event set. Among the benefits
that such a reduction may bring we list the reduction in the number of sensors used in the diagnosis,
therefore reducing the cost of the system, and the possibility to deploy the sensor redundancy to obtain a
more reliable diagnosis decision. In this work, we propose two algorithms to find, in a systematic way, all
minimal subsets of the observable event set that ensure the diagnosability of the DES (minimal diagnosis
bases). The methods are based on the construction of verifiers and have lower computational complexity
than another method recently proposed in the literature.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The property of diagnosability of discrete-event systems (DESs)
is associated with the ability to detect and isolate the occurrence
of an unobservable fault event based on the observation of the
traces executed by the system. In Sampath, Sengupta, Lafortune,
Sinnamohideen, and Teneketzis (1995), a model-based approach
for verifying the diagnosability of DESs is proposed, and a
deterministic automaton, called diagnoser, is introduced. Since
then, the fault diagnosis problem has been the subject of several
works in the literature (Basilio & Lafortune, 2009; Cabral, Moreira,
Diene, & Basilio, 2015; Cassez & Tripakis, 2008; Contant, Lafortune,
& Teneketzis, 2006; Debouk, Lafortune, & Teneketzis, 2000;
Sampath, Lafortune, & Teneketzis, 1998; Zad, Kwong, & Wonham,
2003).

✩ The research work of Marcos Vicente Moreira has been supported by Carlos
Chagas Foundation (FAPERJ) (E-26/110.155/2014), by the Brazilian Research
Council (CNPq) (309084/2014-8), and by Petrobras (6000.0069294.11.4). The
research work of João Carlos Basilio has been supported by the Brazilian Research
Council (CNPq), grants 307939/2007-3 and 306592/2010-0. The material in this
paper was partially presented at the 12th IFAC-IEEE International Workshop on
Discrete Event Systems, May 14–16, 2014, Cachan. This paper was recommended
for publication in revised form by Associate Editor Jan Komenda under the direction
of Editor Christos G. Cassandras.

E-mail addresses: leosantoro@poli.ufrj.br (L.P.M. Santoro),
moreira.mv@poli.ufrj.br (M.V. Moreira), basilio@dee.ufrj.br (J.C. Basilio).

http://dx.doi.org/10.1016/j.automatica.2016.11.026
0005-1098/© 2016 Elsevier Ltd. All rights reserved.
The diagnosis of a fault event depends on the observation of the
events executed by the system, and, thus, the choice of sensors
to be used is a crucial task in the design of a diagnosis system.
In general, it is not necessary to have a complete set of sensors
to diagnose the occurrence of a fault event. Moreover, the cost of
the diagnosis system increases with the number of sensors used.
Therefore, it is important to identify which sensors are redundant
for diagnosability purposes, with a view to either removing them
or to exploit their redundancy to improve the robustness of the
diagnosis system (Carvalho, Moreira, Basilio, & Lafortune, 2013).
Although the verification of the diagnosability of the language
generated by a DES can be carried out in polynomial time by
using verifier automata (Jiang, Huang, Chandra, & Kumar, 2001;
Moreira, Basilio, & Cabral, 2016; Moreira, Jesus, & Basilio, 2011;
Qiu & Kumar, 2006; Yoo & Lafortune, 2002), the problem of finding
the set of observable events with minimum cardinality such that
diagnosability holds has been proved to be NP-complete (Yoo &
Lafortune, 2001).

The simplest way to find the set of observable events with min-
imum cardinality that ensures language diagnosability, named as
minimal diagnosis bases (MDB) in Basilio, Lima, Lafortune, and
Moreira (2012), is to perform an exhaustive search in the set 2Σo ,
where Σo is the set of potentially observable events of the system.
However, the complexity of this task is exponential in the cardinal-
ity of Σo. In order to mitigate computational efforts, approaches
that exploit the monotonicity property of diagnosability in static
sensor selection problems have been proposed (Debouk, Lafor-
tune, & Teneketzis, 2002; Jiang, Kumar, & Garcia, 2003), and, in

http://dx.doi.org/10.1016/j.automatica.2016.11.026
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2016.11.026&domain=pdf
mailto:leosantoro@poli.ufrj.br
mailto:moreira.mv@poli.ufrj.br
mailto:basilio@dee.ufrj.br
http://dx.doi.org/10.1016/j.automatica.2016.11.026

94 L.P.M. Santoro et al. / Automatica 77 (2017) 93–102
Basilio et al. (2012), an algorithm to compute all MDB is proposed.
Although the method presented in Basilio et al. (2012) can be,
in several cases, used to mitigate the computational effort of an
exhaustive search to find the MDB, the worst-case running time
of the algorithm is still high. More recently, Cabasino, Lafortune,
and Seatzu (2013) address the optimal sensor selection problem
to ensure the diagnosability of DESs modeled by labeled Petri nets
whose search is based on the construction of a particular Petri net,
called the Verifier Net (Cabasino, Giua, Lafortune, & Seatzu, 2012),
although without addressing the problem of finding all MDB. We
propose here two methods to find all MDB of DESs modeled by
finite state automata. The methods are based on the verifier pro-
posed inMoreira et al. (2011) and, therefore, has smaller computa-
tional complexity than the diagnoser approach presented in Basilio
et al. (2012).

This paper is organized as follows. In Section 2 we present the
necessary background on diagnosability of DESs. In Section 3 we
introduce the definition of F and NF-ambiguous cyclic paths, and
present an alternativemethod to obtain a verifier fromapreviously
computed one. In Section 4 (resp. 5) we present the first (resp.
second) method for the computation of all MDB of a DES, called
the method of the ambiguous cyclic paths (resp. the method of
the trees of event sets), and in Section 6, we consider the problem
of obtaining all MDB of a DES with multiple fault types. Finally,
in Section 7, conclusions are drawn. All proofs of the lemmas and
theorems presented here are in Appendix.

2. Theoretical background

2.1. Definitions and notation

Let G = (X, Σ, f , Γ , x0, Xm) denote the deterministic automa-
ton model of a DES, where X is the finite state space, Σ is the set
of events, f : X × Σ⋆

→ X is the transition function, where Σ⋆

is the Kleene-closure of Σ , Γ : X → 2Σ is the feasible event
function, x0 is the initial state of the system, and Xm is the set of
marked states. For the sake of simplicity, the feasible event func-
tion and the set of marked states will be omitted unless otherwise
stated. The accessible and coaccessible parts of G, denoted as Ac(G)
and CoAc(G), respectively, are defined as Ac(G) = (Xac, Σ, fac, x0),
where Xac = {x ∈ X : (∃s ∈ Σ⋆)[f (x0, s) = x]} and fac : Xac ×

Σ⋆
→ Xac , and CoAc(G) =

Xcoac, Σ, fcoac, x0,coac, Xm

, where

Xcoac = {x ∈ X : (∃s ∈ Σ⋆)[f (x, s) ∈ Xm]}, x0,coac = x0 if x0 ∈ Xcoac ,
or x0,coac is undefined if x0 ∉ Xcoac , and fcoac : Xcoac × Σ⋆

→ Xcoac .
The transition functions fac and fcoac are obtained by restricting the
domain of f to the accessible and coaccessible states, Xac and Xcoac ,
respectively.

The projection Ps : Σ⋆
→ Σ⋆

s , where Σs ⊂ Σ , is defined in
accordance with Cassandras and Lafortune (2008). It is extended
to a language L by applying Ps(s) to all traces s ∈ L. The
inverse projection P−1s : Σ⋆

s → 2Σ⋆
is defined as P−1s (t) =

{s ∈ Σ⋆
: Ps(s) = t}, and can also be applied to L to obtain P−1s (L).

Let K̄ denote the prefix-closure of a language K ⊆ Σ⋆. Then, K
is said to be prefix-closed if K = K̄ . Notice that, the language
generated by an automaton is always prefix-closed. A language
L ⊆ Σ⋆, generated by an automaton G, is said to be live if for all
s ∈ L, there exists an event e ∈ Σ such that se ∈ L, i.e., G has no
deadlock states.

Let us now suppose that the event set of G is partitioned as
Σ = Σo ∪̇ Σuo, where Σo and Σuo denote the sets of observable
and unobservable events, respectively, and let Σf ⊆ Σuo denote
the set of fault events. In this paper, we initially assume that there
is only one fault event, i.e.,Σf = {σf }, and, in Section 6, we remove
this assumption. A faulty trace is a sequence of events s such thatσf
is one of the events that form s. A normal trace, on the other hand,
does not contain the eventσf . The set of all normal traces generated
by the system is the prefix-closed language LN ⊂ L. Thus, the set of
all traces generated by the system that contain σf is L \ LN . We will
now review the following definitions (Basilio et al., 2012).

Definition 1 (Path, Cyclic Path, Faulty Path, Elementary Path and
Prime Path).

A. A path in G is a sequence (x1, σ1, x2, . . . , σn−1, xn), where xi ∈
X , σi ∈ Σ , and xi+1 = f (xi, σi), i = 1, 2, . . . , n−1, and the path
is said to be cyclic if x1 = xn.

B. A faulty path is a path such that at least one of its events is equal
to σf , i.e., σi = σf for some i ∈ {1, . . . , n− 1}.

C. A cyclic path (x1, σ1, x2, . . . , σn−1, x1) is an elementary cyclic
path if xi ≠ xj, i ≠ j, i, j ∈ {1, . . . , n− 1}.

D. A path P = (x1, σ1, x2, . . . , xl−1, σl−1, Pl) is a prime path if
xi ≠ xj, for i ≠ j, and i, j ∈ {1, . . . , l}, x1 is the initial state
of the system, and Pl is an elementary cyclic path whose initial
state is xl. �

Definition 2 (Union Product). The union product of sets Σi, i =
1, 2, . . . , n, is defined as follows:

Σ1×̇Σ2×̇ . . . ×̇Σn =

{Σe = Σe,1 ∪Σe,2 ∪ · · · ∪Σe,n :

Σe,i ∈ Σi, i = 1, 2, . . . , n},
if the elements of Σi are sets,
2Σ1
1 ×̇2

Σ2
1 ×̇ · · · ×̇2

Σn
1 , otherwise,

where 2Σ
1 = {Σ̃ ∈ 2Σ

: |Σ̃ | = 1}, and | · | denotes cardinality. �

2.2. Diagnosability of discrete event systems

Let GN denote the subautomaton of G that represents the
nonfaulty behavior of the system with respect to the fault event
set Σf . Then, language diagnosability can be defined as follows.

Definition 3. (Sampath et al., 1995) Let L and LN ⊂ L be the live
and prefix-closed languages generated by G and GN , respectively,
and define the projection operation Po : Σ⋆

→ Σ⋆
o . Then L is said

to be diagnosable with respect to projection Po and the set of fault
events Σf if

(∃n ∈ N)(∀s ∈ L \ LN)(∀st ∈ L \ LN , ∥t∥ ≥ n)⇒
(∀ω ∈ P−1o (Po(st)) ∩ L, ω ∈ L \ LN),

where ∥ · ∥ denotes the length of a trace. �

In order to verify the diagnosability of the language generated
by the system, several polynomial time methods have been pro-
posed in the literature. We adopt here the verifier structure pro-
posed by Moreira et al. (2011), whose computational complexity
is O(|X |2 × |Σ |). The verifier computed considering Σo as the ob-
servable event set is denoted in this paper as GV ,Σo . According to
the algorithm proposed in Moreira et al. (2011), the first and sec-
ond steps are the computation of automata GN and GF that model,
respectively, the normal and faulty behaviors of G. For the third
step, it is necessary to define the renaming function R : ΣN → ΣR,
as follows:

R(σ) =

σ , if σ ∈ Σo
σR, if σ ∈ Σuo \Σf ,

(1)

which is extended to domain Σ⋆ as follows: R(sσ) = R(s)R(σ),
for all s ∈ Σ⋆ and σ ∈ Σ , and R(ϵ) = ϵ. Then, by renaming
all unobservable events of GN , according to Eq. (1), we obtain
automaton GNR . Finally, the verifier is computed as GV ,Σo =

GNR ||GF = (XV , Σ ∪ ΣR, fV , x0,V). Notice that each state of GV ,Σo

L.P.M. Santoro et al. / Automatica 77 (2017) 93–102 95
is given by xV = (xN , xF), where xN = (x,N) with x ∈ X , and
xF = (x, xl,NY) with x ∈ X and xl,NY ∈ {N, Y }.

The following theorem provides a necessary and sufficient
condition for the diagnosability of the language generated by G
using the verifier automaton GV ,Σo .

Theorem 1 (Moreira et al., 2011). L is not diagnosable with respect
to Po and Σf if, and only if, there exists a cyclic path cl := (xkV ,

σk, xk+1V , . . . , xlV , σl, xkV), where l ≥ k > 0, in GV ,Σo satisfying the
following conditions:

∃j ∈ Ikl s.t. for some xjV , (xjl,NY = Y) ∧ (σj ∈ Σ), (2)

where Ikl = {k, k+ 1, . . . , l}.

A cyclic path cl that satisfies condition (2) will be referred to in
this paper as an ambiguous cyclic path (Santoro, Moreira, Basilio,
& Diene, 2014).

The idea behind the construction of GV ,Σo is that only the traces
of LN and L \ LN that have the same projection are searched. This
leads to the following result.

Theorem 2. A state (xN , xF) of GV ,Σo is reached if, and only if, there
exist a trace sN ∈ LN and a trace sY ∈ L \ LN such that Po(sY) =
Po(sN), where xN and xF are the states of GNR and GF , reached after
the occurrence of sNR = R(sN) and sY , respectively.

Proof. The proof is straightforward from the proof of Theorem 1
(Moreira et al., 2011). �

A consequence of Theorem 2, is that the traces sN and sY that
lead to the violation of diagnosability of theDES can be easily found
from the traces of GV ,Σo .

2.3. Minimal diagnosis bases

Let us assume that L is diagnosable with respect to projection
Po : Σ⋆

→ Σ⋆
o and Σf . Consider the following definitions (Basilio

et al., 2012).

Definition 4 (Diagnosis Basis). A set Σ̂o ⊆ Σo is a diagnosis basis
for L if L is diagnosable with respect to P̂o : Σ⋆

→ Σ̂⋆
o and Σf . �

Definition 5 (Minimal Diagnosis Basis). Σ̂o ⊆ Σo is a minimal
diagnosis basis, if Σ̂o is a diagnosis basis and there is no subset
Σ̃o ⊂ Σ̂o such that L is diagnosable with respect to P̃o : Σ⋆

→ Σ̃⋆
o

and Σf . �

From the definitions above we may conclude that every diag-
nosis basis Σ̂o ⊂ Σo is either a minimal diagnosis basis, or it can
be obtained from a minimal diagnosis basis by adding to it events
from Σo \ Σ̂o.

3. Preliminary results

Let Σ ′o ⊂ Σo be a subset of the set of observable events and
consider the problem of verifying if L is diagnosablewith respect to
P ′o : Σ

⋆
→ Σ ′⋆o andΣf . If GV ,Σ ′o

has an ambiguous cyclic path, then
L is not diagnosable. These ambiguous cyclic paths can be classified
as follows.

Definition 6 (F-Ambiguous Cyclic Path). An ambiguous cyclic path
(xkV , σk, xk+1V , σk+1, . . . , xk+nV , σk+n, xkV) in verifier GV ,Σ ′o

is an F-
ambiguous cyclic path if xk+jV = (xN , xk+jF) and σk+j ∉ ΓNR(xN),
∀j ∈ {0, . . . , n}. �
Fig. 1. Automaton model of the system G.

Fig. 2. Verifier GV ,Σ ′o
, computed considering Σ ′o = {a, c}.

Fig. 3. Verifier GV ,Σ ′′o
, computed considering Σ ′′o = {b, c}.

Definition 7 (NF-Ambiguous Cyclic Path). An ambiguous cyclic
path (xkV , σk, xk+1V , σk+1, . . . , xk+nV , σk+n, xkV) in verifier GV ,Σ ′o

is an
NF-ambiguous cyclic path if xk+jV = (xk+jN , xk+jF), ∀j ∈ {0, . . . , n},
and σk+j ∈ ΓNR(x

k+j
N), for some j ∈ {0, . . . , n}. �

Notice that, according to Theorem 1, if L is not diagnosable with
respect to P ′o and Σf , then there exists an ambiguous cyclic path cl
in GV ,Σ ′o

, which, in accordance with Theorem 2, is associated with
an arbitrarily long length faulty trace sY = st and a normal trace
sN , such that P ′o(sY) = P ′o(sN). If the normal trace sN associated
with cl does not have arbitrarily long length, then, according
to Definition 6, cl is an F-ambiguous cyclic path. On the other
hand, if the normal trace sN associated with cl has arbitrarily long
length, then, according to Definition 7, cl is anNF-ambiguous cyclic
path.

Example 1. Let G be the automaton whose state transition dia-
gram is shown in Fig. 1 with Σ = {a, b, c, σf }, and let Σo =

{a, b, c} be the set of potentially observable events. Verifier GV ,Σ ′o
,

computed according toMoreira et al. (2011), assumingΣ ′o = {a, c}
as the observable event set, is shown in Fig. 2. According to Defini-
tion 6, since b ∉ ΓNR(6N), the cyclic path ((6N, 4Y), b, (6N, 4Y))

is an F-ambiguous cyclic path. If we now assume that Σ̃ ′o = {b, c}
is the observable event set, then the resulting verifier is shown
in Fig. 3. In this case, since c ∈ ΓNR(6N), then, according to
Definition 7, the cyclic path ((6N, 5Y), c, (6N, 5Y)) forms an NF-
ambiguous cyclic path. �

According to Theorem 1, if L is not diagnosable with respect to
P ′o and Σf , then verifier GV ,Σ ′o

has ambiguous cyclic paths. Thus,
with a view to searching for a diagnosis basis for L, events must be
added to Σ ′o, in order to eliminate the ambiguous cyclic paths of
GV ,Σ ′o

. In order to avoid the need to construct a new verifier from
scratch, we will present an algorithm to compute a verifier GV ,Σ ′′o

,
whose observable event set is Σ ′′o = Σ ′o∪{σ }, where σ ∈ Σo \Σ

′
o,

from verifier GV ,Σ ′o
.

96 L.P.M. Santoro et al. / Automatica 77 (2017) 93–102
Algorithm 1 Computation of verifier GV ,Σ
′′

o
from verifier GV ,Σ

′

o
,

where Σ
′′

o =Σ
′

o ∪ {σ }.

Input: GV ,Σ
′

o
= (X

′

V , Σ
′

V , f
′

V , Γ
′

V , x
′

0,V)

Output: GV ,Σ
′′

o
= (X

′′

V , Σ
′

V \ {σR}, f
′′

V , Γ
′′

V , x
′

0,V)

• Step 1: Let Q be a first-in, first-out queue. Add x
′

0,V to the queue Q
and define X

′′

V = {x
′

0,V }.
• Step 2: While Q ≠ ∅, do:

. Step 2.1: u← Q1, where Q1 is the first entry of queue Q .

. Step 2.2: If σ ∈ Γ
′

V (u) then compute w = f
′

V (u, σ).
Step 2.2.1: If σR ∈ Γ

′

V (w) then:
� Create transition f

′′

V (u, σ) = f
′

V (w, σR).
� If f

′

V (w, σR) has not been added yet to Q , then add it to
the end of the queueQ anddefine X

′′

V = X
′′

V∪{f
′

V (w, σR)}.
. Step 2.3: Compute y = f

′

V (u, σ̂), ∀σ̂ ∈ Γ
′

V (u) \ {σR, σ }.
Step 2.3.1: Create transition f

′′

V (u, σ̂) = y.
Step 2.3.2: If y has not been added before to Q , then add it
to the end of the queue and define X

′′

V = X
′′

V ∪ {y}.
. Step 2.4: Remove the first element of queue Q .

Example 2. Let G be the automaton whose state transition
diagram is shown in Fig. 1 with Σ = {a, b, c, σf }, and let Σo =

{a, b, c} be the set of potentially observable events. Assume we
want to compute verifier GV ,Σ ′′o

for Σ ′′o = {a, b, c} from verifier
GV ,Σ ′o

, shown in Fig. 2, that has been computed assuming Σ ′o =

{a, c}. In the first step of Algorithm 1, state (1N, 1N) is inserted in
queue Q and also in the set of states of GV ,Σ ′′o

. The unique event in
Σ ′V \ {bR, b} that is feasible at state (1N, 1N) is σf . Then, according
to Step 2.3, state (1N, 2Y) is inserted in Q and added to X ′′V , and
a transition from (1N, 1N) to (1N, 2Y) is created in GV ,Σ ′′o

labeled
with σf . Notice that state (3N, 1N) is not inserted in Q and does
not belong to X ′′V since it has been reached from state (1N, 1N)
through a transition labeled with bR. According to Step 2.4, state
(1N, 1N) must be removed from Q . Since Q ≠ ∅, Step 2 must
be executed again for u = (1N, 2Y). Since event b is feasible in
(1N, 2Y), in accordance with Step 2.2.1, it is necessary to check if
the state reached from (1N, 2Y) with the transition labeled with
b has event bR in its feasible event set. From Fig. 2, it can be seen
that bR ∈ Γ ′V (1N, 5Y). Thus, a transition from (1N, 2Y) to (3N, 5Y)
labeled with b is created, and state (3N, 5Y) is added to the queue
and to the state set X ′′V . Since state (3N, 5Y) does not have feasible
events, then Algorithm 1 is stopped and the verifier GV ,Σ ′′o

, shown
in Fig. 4, is obtained. �

In order to prove the correctness of Algorithm 1, we need the
following result.

Lemma 1. Let GV ,Σ ′o
= (X ′V , Σ ′V , f ′V , Γ ′V , x′0,V) and GV ,Σ ′′o

= (X ′′V ,

Σ ′V \ {σR}, f ′′V , Γ ′′V , x′0,V) be the verifiers of G with observable event
sets Σ ′o and Σ ′′o = Σ ′o ∪ {σ }, where σ ∈ Σo \Σ ′o, respectively. Then
X ′′V ⊆ X ′V .

Lemma 1 shows that the states of GV ,Σ ′′o
are also states of GV ,Σ ′o

.
The next lemma shows that if an event e is feasible in a state xV of
GV ,Σ ′′o

, then it is also feasible in the same state xV of GV ,Σ ′o
.

Lemma 2. Let GV ,Σ ′o
= (X ′V , Σ ′V , f ′V , Γ ′V , x′0,V) and GV ,Σ ′′o

= (X ′′V ,

Σ ′V \ {σR}, f ′′V , Γ ′′V , x′0,V) be the verifiers of G with observable event
sets Σ ′o and Σ ′′o = Σ ′o ∪ {σ }, where σ ∈ Σo \ Σ ′o, respectively, and
let xV ∈ X ′′V . Then, Γ

′′

V (xV) ⊆ Γ ′V (xV).
Fig. 4. Verifier GV ,Σ ′′o
obtained following the steps of Algorithm 1.

We can now prove the correctness of Algorithm 1.

Theorem 3. Let GV ,Σ ′o
be the verifier of G with observable event set

Σ ′o ⊂ Σo and let GV ,Σ ′′o
and ḠV ,Σ ′′o

be the verifiers computed by
using the algorithmproposed inMoreira et al. (2011), and Algorithm1,
respectively, considering Σ ′′o = Σ ′o ∪ {σ }, where σ ∈ Σo \Σ

′
o, as the

observable event set. Then, GV ,Σ ′′o
= ḠV ,Σ ′′o

.

Remark 1 (Complexity Analysis of Algorithm 1). Algorithm 1 is
based on the breadth-first search algorithm (Cormen, Leiserson,
Rivest, & Stein, 2007) whose complexity is O(V + E), where E and
V are the number of edges and vertices of a directed graph, respec-
tively. The complexity of Algorithm 1 is the same as the breadth-
first search since each state of the verifier is added to queue Q only
once in Step 2, and the verification of Step 2.2.1 has computational
complexityO(|Σ |) for each state of the verifier. Thus, the complex-
ity of Algorithm 1 is O(|X |2 × |Σ |). �

4. Method of the ambiguous cyclic paths

As shown in Algorithm 1, the observation of some events elim-
inates transitions and, therefore, eliminates paths that may have
embedded ambiguous cyclic paths. Based on this idea, we present
in this section a method to obtain all MDB by eliminating appro-
priately ambiguous cyclic paths of verifiers computed considering
specific sets of observable events. Themethodwill be referred here
to as the method of the ambiguous cyclic paths. It has two parts:
(i) based on a necessary condition for the diagnosability of L, sets of
events that must be subsets of the MDB are found, and (ii) events
are appropriately added to those sets in order to find all MDB.

4.1. Elementary diagnosing event sets

Let xN ∈ XN and xF ∈ XF be the components of state xV =
(xN , xF) of verifier GV ,Σo . Form the following sets: XYN = {xV ∈
XV : xF = (x, Y)}, and XO = {xF ∈ XF : xV ∈ XYN}. Notice that
XYN is the set of states of verifier GV ,Σo that are reached by traces
that contain σf . According to Lemma 1, the states of XYN are also
reached with the observation of any set Σ ′o ⊂ Σo, and thus, XYN is
a subset of the set of states of verifier GV ,Σ ′o

.
Since the language generated by the system is live, each state of

XO is associatedwith at least one path PF = (xkF , σk, xk+1F , . . . , xk+nF)

inGF , where xkF ∈ XO, satisfying the following conditions: (i) xk+nF =

xk+jF , for some j ∈ {0, 1, . . . , n−1}, i.e., (xk+jF , σk+j, . . . , xk+nF) forms
a cyclic path; (ii) (xk+jF , σk+j, . . . , xk+nF) is the unique cyclic path
in PF . For this reason, set XO will be referred here to as the post-
fault path origin state set and path PF as the post-fault path. The
elements of XO are called post-fault path origin states.

Definition 8 (Post-Fault Path Event, Post-Fault Path Event Set).

A. An event σ ∈ Σ is a post-fault path event if it belongs to any
post-fault path defined for any state xF ∈ XO.

B. A post-fault path event set, denoted as Σfpes, is the set formed
with all events of a post-fault path PF . �

Let PF be a post-fault path such that Σfpes ⊆ (Σ \ Σ ′o),
with Σ ′o ⊂ Σo. The following lemma shows that there exists an
F-ambiguous cyclic path in GV ,Σ ′o

associated with post-fault path
PF .

L.P.M. Santoro et al. / Automatica 77 (2017) 93–102 97
Lemma 3. Let Σfpes be the post-fault path event set of PF = (xkF , σk,

xk+1F , . . . , σk+n−1, xk+nF), where xkF ∈ XO, and sF = σkσk+1 . . . σk+n−1
be the sequence of events associated with PF . Assume that Σfpes ⊆

(Σ \ Σ ′o). Then, there exists a faulty path with an embedded F-
ambiguous cyclic path in GV ,Σ ′o

whose associated trace is sF .

According to Lemma 3, in order to avoid the occurrence of
F-ambiguous cyclic paths in GV ,Σ ′o

associated with post-fault paths
PF , at least one event of all post-fault paths must belong to the
observable event set Σ ′o of GV ,Σ ′o

. The following theorem provides
a necessary condition for a set Σ ′o ⊂ Σo to be a diagnosis basis.

Theorem 4. Let Nfpes denote the number of post-fault paths PFi of GF .
Then, a necessary condition for Σ ′o ⊂ Σo to be a diagnosis basis for L
and Σf is that Σ ′o ∩ Σfpes,i ≠ ∅, i = 1, 2, . . . ,Nfpes, where Σfpes,i is
the post-fault path event set of PFi .

Consider, now, the following definition.

Definition 9 (Elementary Diagnosing Event Sets). Let Nfpes be num-
ber of post-fault path event sets of GF . The set of all elementary
diagnosing event sets is defined as:

Σedes =

2

Σfpes,1
1 , if Nfpes = 1,

Σfpes,1×̇Σfpes,2×̇ . . . ×̇Σfpes,Nfpes , otherwise.

Theorem 4 can be re-stated using Definition 9, as follows.

Theorem 5. Every diagnosis basis must contain an elementary
diagnosing event set.

The following algorithm provides a systematic way to find all
elementary diagnosing event sets fromverifierGV ,Σo and the faulty
automaton model GF .

Algorithm 2 Computation of the set Σedes composed of all elemen-
tary diagnosing event sets.

Input: G, Σo
Output: Σedes
• Step 1: Build verifier GV ,Σo and form sets XYN and XO. Set NYN =

|XYN |.
• Step 2: For each state xiF ∈ XO, associated with a state (xiN , xiF) ∈

XYN , i = 1, 2, . . . ,NYN , verify if ΓF (xiF) \ ΓV (xiN , xiF) ≠ ∅. If the
answer is no, create an empty tree Ti. If the answer is yes, build a
rooted tree Ti from GF with root xiF , as follows:
. Step 2.1: Set ηi = |ΓF (xiF)\ΓV (xiN , xiF)|. Create ηi descendants
of xiF and label them with xiFn , n = 1, . . . , ηi, where xiFn =
fF (xiF , σn), σn ∈ ΓF (xiF) \ ΓV (xiN , xiF). Label the edge (xiF , x

i
Fn)

with σn;
. Step 2.2: A node labeled with xiFn , defined in the tree, will
be a leaf if state xiFn has already labeled any ancestor of xiFn .
Otherwise, set ηn = |ΓF (xiFn)| and xiFnew = fF (xiFn , σn), σn ∈

Γ (xiFn). Create ηn descendants of xiFn and label them with xiFnew
and the corresponding edge with σn. Repeat this step until all
states xiFnew give rise only to leaves.

• Step 3: For each nonempty tree Ti, i = 1, 2, . . . ,NYN , identify the
leaves xiFl , l = 1, . . . , lTi , where lTi is the number of leaves in tree
Ti. Form paths P l

Fi
, l = 1, . . . , lTi , starting at xiF and ending at xiFl ,

l = 1, . . . , lTi (these paths are the post-fault paths starting at xiF).
• Step 4: Form the set of events Σedes,i from the post-fault paths

P l
Fi

obtained in the previous step as follows. If lTi = 1 then set

Σedes,i = 2
Σ1

fpes,i
1 , else, set Σedes,i = Σ1

fpes,i×̇Σ2
fpes,i×̇ . . . ×̇Σ

lTi
fpes,i,

where Σ l
fpes,i are the post-fault event sets associated with post-

fault paths P l
Fi
, l = 1, . . . , lTi .
• Step 5: Form the set Σedes as follows. If there exists only
one nonempty tree Ti, then set Σedes = 2Σedes,i

1 , else, if
there exists more than one nonempty tree, set Σedes =

Σedes,i1×̇Σedes,i2×̇ . . . ×̇Σedes,ik , where {i1, i2, . . . , ik} ⊆ {1, 2,
. . . ,NYN}. The indices i1, . . ., ik denote the indices of the nonempty
trees Ti.
• Step 6: Remove from Σedes all sets Σ̃edes ∈ Σedes for which there

exists another set Σ̂edes ∈Σedes such that Σ̂edes ⊂ Σ̃edes.

In Step 1 of Algorithm 2, sets XYN and XO are formed from GV ,Σo .
In Steps 2 and 3, the trees with roots in XO are formed, and all
post-fault paths are obtained. In Step 4, the set of events Σedes,i,
for each nonempty tree Ti, that must belong to Σ ′o ⊂ Σo to avoid
the existence of F-ambiguous cyclic paths in GV ,Σ ′o

associated with
a post-fault path P l

Fi
, l = 1, . . . , lTi , is computed. In Step 5, the

elementary diagnosing event sets are computed by applying the
union product to the sets of events Σedes,i, associated with the
nonempty trees Ti, with a view to guaranteeing that each set of
Σedes has at least one event of each post-fault path event set of
GF . Since these sets are to be used in the search for MDB, those
elementary diagnosing event sets that are supersets of another
elementary diagnosing event set must be removed from the set,
which is performed in Step 6.

Example 3. Let us consider automaton G depicted in Fig. 5 and
assume that Σo = {a, b, c, d, e} and Σuo = Σf = {σf }.
According to Algorithm 2, the first step in the computation of
the elementary diagnosing event sets is to compute GV ,Σo , which
is shown in Fig. 6, and, based on GV ,Σo , to form sets XYN =

{(1N, 2Y), (5N, 3Y), (5N, 4Y)}, and XO = {2Y , 3Y , 4Y }. In Step
2 of Algorithm 2, for each state of XO a tree must be built using
automaton GF (not shown in the paper) in order to obtain the post-
fault paths with origin at the states of XO. The trees are shown in
Fig. 7. Notice, from Fig. 6, that state (5N, 3Y) is reached from state
(1N, 2Y) by the transition labeled with event d, and thus, the tree
with root 2Y does not have such a transition from 2Y . For the same
reason, the tree with root 3Y does not have the transition from 3Y
labeled with event b.

Continue with Step 3, from the trees of Fig. 7 we find the fol-
lowing post-fault paths: P1

F1
= {2Y , e, 4Y , d, 4Y }, P2

F1
= {2Y , e,

4Y , c, 3Y , b, 4Y }, P3
F1
= {2Y , e, 4Y , c, 3Y , a, 6Y , b, 3Y }, P1

F2
= {3Y ,

a, 6Y , b, 3Y }, P1
F3
= {4Y , d, 4Y }, P2

F3
= {4Y , c, 3Y , b, 4Y } and P3

F3
= {4Y , c, 3Y , a, 6Y , b, 3Y }. From these paths, we obtain the fol-
lowing post-fault event sets: Σ1

fpes,1 = {d, e}, Σ
2
fpes,1 = {b, c, e},

Σ3
fpes,1 = {a, b, c, e}, Σ1

fpes,2 = {a, b}, Σ1
fpes,3 = {d}, Σ2

fpes,3 =

{b, c} e Σ3
fpes,3 = {a, b, c}. According to Steps 4 and 5, the fol-

lowing elementary diagnosing event sets are computed: Σedes =

{{a, b, d}, {a, b, c, d}, {b, d}, {b, c, d}, {a, b, d, e},
{a, b, c, d, e}, {b, d, e}, {a, c, d, e}, {a, c, d}, {a, c, d, e}}, which is
reduced, according to Step 6, to Σedes = {{b, d}, {a, c, d}}. �

4.2. Computation of minimal diagnosis bases

Theorem 5 establishes only a necessary condition for Σ ′o ⊂

Σo to be a diagnosis basis, and, thus, it is possible that some
set Σ ′o ∈ Σedes is not a diagnosis basis for language L. This is
so because, the elementary diagnosing event sets computed in
Algorithm 2 provide the events that must be observed to avoid the
existence of some F-ambiguous cyclic paths in automaton GV ,Σ ′o

.
However, it is possible that NF-ambiguous cyclic paths and new
F-ambiguous cyclic paths may appear. It is, therefore, necessary to
identify the remaining ambiguous cyclic paths inGV ,Σ ′o

with a view
to eliminating these paths by adding, in an appropriate way, new
events to Σ ′o.

98 L.P.M. Santoro et al. / Automatica 77 (2017) 93–102
Fig. 5. Automaton G of Example 3.

Fig. 6. Verifier GV ,Σo .

Fig. 7. Trees whose roots are the states of XO .

As shown in Johnson (1975), all cyclic paths can be decomposed
in elementary cyclic paths, and in order to find the elementary
ambiguous cyclic paths and identify the events that must be
observed to remove such paths, it is first necessary to find the
prime paths of GV ,Σ ′o

such that the embedded elementary cyclic
path is an ambiguous cyclic path. An algorithm for the computation
of all prime paths of an automaton is presented in Basilio et al.
(2012). Once the faulty prime paths of GV ,Σ ′o

have been found, it
is possible to identify which events must be added to Σ ′o in order
to remove the ambiguous cyclic paths. This is the idea behind
Algorithm 3 for the computation of all MDB for L.

Algorithm 3 Computation of the set Σmin of all MDB.

Input: G, Σo
Output: Σmin
• Step 1: Apply Algorithm 2 to obtain the elementary diagnosing

event sets Σedes.
• Step 2: For each elementary diagnosing event set Σ i

edes ∈ Σedes,
do:
. Step 2.1: Σ ′o = Σ i

edes.
. Step 2.2: Build verifier GV ,Σ ′o

considering Σ ′o as the observable
event set.

. Step 2.3: Verify if L is diagnosable with respect to P ′o and Σf
by using verifier GV ,Σ ′o

. If the answer is yes, Σ ′o is a minimal
diagnosis basis. Otherwise, events from Σo \Σ

′
o must be added

to Σ ′o to form a minimal diagnosis basis.
. Step 2.4: Compute all prime paths of GV ,Σ ′o

.
. Step 2.5: Find the sequences vj of GV ,Σ ′o

, j = 1, . . . , n,
associated with the faulty prime paths obtained in Step 2.4 that
contain an ambiguous cyclic path, where n denotes the number
of faulty prime paths with an embedded ambiguous cyclic path.
For each one of the sequences vj:

Step 2.5.1: Find the normal and faulty traces, sN ∈ LN and
sF ∈ L \ LN from vj, respectively.
Step 2.5.2: Find the events σ ∈ Σo \ Σ ′o such that P
′′

o (sN)

≠ P
′′

o (sF), where P
′′

o :Σ
∗
→Σ

′′
∗

o and Σ
′′

o =Σ ′o ∪ {σ }, and
form the set Σ

j
new with these events.

. Step 2.6: Compute Σnew as follows. If n = 1 then Σnew =

2Σ1
new

1 , else Σnew = Σ1
new×̇Σ2

new×̇ . . . ×̇Σn
new.

. Step 2.7: Remove from Σnew all sets Σ̃new ∈ Σnew for which
there exists a set Σ̂new ∈ Σnew such that Σ̃new ⊃ Σ̂new .

. Step 2.8: Let Σ i
min denote a set whose entries are the sets

formed by the union of Σ i
edes with each one of the sets of Σnew .

• Step 3: Compute Σmin = Σ1
min ∪ Σ2

min ∪ . . . ∪ Σk
min, where k is

the number of sets of Σedes.
• Step 4: Remove from Σmin all sets Σ̃min ∈ Σmin for which there

exists a set Σ̂min ∈ Σmin such that Σ̃min ⊃ Σ̂min.

The correctness of Algorithm 3 can be proved, as follows.

Theorem 6. Let G be the automaton model of the system. Then, set
Σmin, computed by using Algorithm 3, is composed of all minimal
diagnosis bases of G.

Example 4. Let G be the plant automaton shown in Fig. 5, and as-
sume that Σo = {a, b, c, d, e} and Σuo = Σf = {σf }. The first step
of Algorithm 3 is the computation of the elementary diagnosing
event sets Σedes = {{a, c, d}, {b, d}}. In Step 2, a verifier is com-
puted by considering each set of Σedes as the observable event set.
Let Σ ′o = {a, c, d}. Fig. 8 shows the verifier GV ,Σ ′o

, and since GV ,Σ ′o
has an NF-ambiguous cyclic path, then L is not diagnosable with
respect to P ′o and Σf . From Fig. 9, the following faulty prime path
with an embedded NF-ambiguous cyclic path is obtained: PFP =
({1N, 1N}, σf , {1N, 2Y }, e, {1N, 4Y }, c, {1N, 3Y }, b, {1N, 4Y }). Se-
quence v1 = σf ecb associated with faulty prime path PFP can be
obtained, and applying to v1 themethod proposed inMoreira et al.
(2011), we obtain the normal and the faulty traces sN = c and
sF = σf ecb, respectively, such that P ′o(sN) = P ′o(sF). Notice that
by adding event b or e to the observable event set, i.e., by making
Σ ′′o = Σ ′o ∪ {b} or Σ ′′o = Σ ′o ∪ {e}, we have that P ′′o (sN) ≠ P ′′o (sF),
where P ′′o : Σ⋆

→ Σ
′′⋆
o . Thus, Σnew = {{b}, {e}}, that results in

Σ1
min = {{a, b, c, d}, {a, c, d, e}}, whose elements are MDB.
Proceeding the same way for Σ ′o = {b, d}, we obtain Σ2

min =

{{a, b, c, d}}, and thus, the MDB for L are Σmin = Σ1
min ∪ Σ2

min =

{{a, b, c, d}, {a, c, d, e}}. �

4.3. Computational complexity

We will first analyze the computational complexity of Algo-
rithm 2. The first step of Algorithm 2 requires the construction of
the verifier automaton GV ,Σo , according to Moreira et al. (2011),
which has complexity O(|X |2 × |Σ |). After that, for each state
(xN , xF) ∈ XYN , a tree with root xF ∈ XO must be built. In the worst
case, |X | trees are constructed, one for each x ∈ X , associated with
a state xF = (x, Y). Notice that all trees start at a state xF and so,
for each tree, only one node is formed. Since there are |Σ | events
in G, and G is by assumption deterministic, at most |Σ | nodes can
be obtained after state xF . After that, at most |Σ | nodes can be ob-
tained for each node in the previous step, resulting in at most |Σ |2
nodes. Since there exist |X | states, the maximum number of states
in any prime path is |X |, which implies that the number of nodes in
the tree is upper bounded by

|X |
i=0 |Σ |

i. Therefore, the complexity
of finding all elementary diagnosing event sets by building trees as
described in Algorithm 2 is O(|X | × |Σ ||X |).

The second step of Algorithm3 is also based on the construction
of trees, then its computational complexity analysis is similar
to that carried out in the first step. Notice that a tree is
now computed from each verifier automaton obtained for an

L.P.M. Santoro et al. / Automatica 77 (2017) 93–102 99
Fig. 8. GV ,Σ ′o
for Σ ′o = {a, c, d}.

Fig. 9. Tree of GV ,Σ ′o
for Σ ′o = {a, c, d}.

elementary diagnosing event set. Since the verifier can have at
most 2|X |2 states and atmost 2|Σ |−1 events, then the complexity
of constructing a tree in Step 2 is O(4|X |

2
×|Σ |2|X |

2
). Therefore, the

overall complexity of Algorithm 3 is O(|Σedes| × 4|X |
2
× |Σ |2|X |

2
).

The computational complexity of the method presented in
Basilio et al. (2012) for the computation ofMDB isO(2|Σo\Σedes,min|×

|Σo|
|Xd|2), where Σedes,min is the set with smallest cardinality of

Σedes and Xd is the state-space of the diagnoser which is upper
bounded by 2|X |. This shows that the complexity of Algorithm 3 is
smaller than that of the method proposed in Basilio et al. (2012).

It is important to remark that, although the worst-case com-
putational complexity analysis leads to the conclusion that the al-
gorithm proposed in this section is worse than exponential, this
is rarely the case, since it will occur only when every state of G
and/or the verifier has all events in its feasible event set, and each
prime path contains all the states of the graph. For instance, in Ex-
ample 4, if the exhaustive searchmethodwere used to find allMDB,
then it would be necessary to compute 2|Σo|−2 = 30 verifiers. On
the other hand, following the steps of Algorithm 3, only three ver-
ifiers and five trees that do not grow exponentially are needed to
compute all MDB. Finally, it is also important to remark that the
problem of finding the minimal diagnosis basis with smallest car-
dinality is NP-complete, and all previous solutions presented in the
literature to this problem (Basilio et al., 2012; Cabasino et al., 2013)
are also, in the worst-case, worse than exponential.

5. Method of the trees of event sets

We present in this section an algorithm to find all MDB of a
DES that avoids the identification of all ambiguous cyclic paths
of a verifier. The idea behind the proposed method is as follows.
Assume that |Σo| = ℓ and let Σo = {σo1, σo2, . . . , σoℓ}. First, a
tree with root {σo1} is constructed to find all MDB that contain
event σo1. After that, a second tree is constructed with root {σo2}

in order to find all MDB that contain event σo2 but do not contain
event σo1 since, in the first tree, all MDB that contain event σo1
have already been computed. The procedure continues until the
last tree, composed only of root {σoℓ}, is constructed to verify if
{σoℓ} is a minimal diagnosis basis.

In the construction of each tree, a verifier is computed
associated with each node already found of the tree, and only one
ambiguous cyclic path of each verifier must be found in order
to obtain the descendants of the nodes in the tree; avoiding,
therefore, the computation of all elementary ambiguous cyclic
paths of verifiers. For this reason, each tree will be referred to as
tree of events.

The proposed method uses recursively the procedure called
CREATE-DESCENDANT, presented in Algorithm 5, to create the
descendants of a node in a tree of event sets. The main idea of
this procedure is to obtain a trace v of the verifier that violates the
diagnosability condition, and find all unobservable events in this
trace that, if observed, eliminates the ambiguity associated with
v. Since the diagnosis bases contain the events that if observed
eliminate all ambiguities of the system, then one of the events
obtained from v must belong to a diagnosis basis. Variable N and
sets Σt and Σ

j
db used in Algorithms 4 and 5 are global variables.

Algorithm 4 Computation of Σmin

Input: G, Σo
Output: Σmin
• Step 1: Set N = 0, Σdb = ∅ and Σt = ∅.
• Step 2: For each event σo ∈Σo, build a tree as follows:

. Step 2.1: Create the root of the tree labeled with {σo}.

. Step 2.2: CREATE-DESCENDANT({σo}) (Algorithm 5).

. Step 2.3: Σt ← Σt ∪ {σo}.
• Step 3: If N = 0, then Σdb = {Σo}. Otherwise, form the set Σdb =

{Σ1
db} ∪ {Σ

2
db} ∪ . . . ∪ {ΣN

db}.
• Step 4: Remove from Σdb all sets Σdb ∈ Σdb if there exists Σdb ∈

Σdb such that Σdb ⊇ Σdb. Form the set of MDB Σmin with the
remaining sets of Σdb.

Algorithm 5 CREATE-DESCENDANT(Σ)

• Step 1: Σo← Σ .
• Step 2: If |Σo| = 1 compute the verifier GV ,Σo by using the

algorithm proposed in Moreira et al. (2011), else use Algorithm 1.
• Step 3: Verify if there is an ambiguous cyclic path in GV ,Σo . If the

answer is no:
. Step 3.1: N ← N + 1.
. Step 3.2: Form the set ΣN

db =
Σo.

Else:
. Step 3.3: Select a sequence v associated with a faulty path with
an embedded ambiguous cyclic path.

. Step 3.4: Obtain the normal sequence sN and the faulty
sequence st associated with v by using the method proposed
in Moreira et al. (2011).

. Step 3.5: For each event σ i
o ∈ Σo \ Σo, such that Po(sN) ≠Po(st), where Po : Σ∗ → (Σo ∪ {σ

i
o})
∗ denotes a projection

operation:
Step 3.5.1: Check if the verifier GV ,Σo∪{σ

i
o}

has been
previously constructed.
Step 3.5.2: If N > 0, check if, for any j ∈ {1, . . . ,N}, Σo ∪

{σ i
o} ⊃Σ

j
db.

Step 3.5.3: Check if Σo ∪ {σ
i
o} =Σo.

Step 3.5.4: Check if (Σo ∪ {σ
i
o}) ∩Σt ≠ ∅.

. Step 3.6: If the answers to Steps 3.5.1 to 3.5.4 are all negative:

100 L.P.M. Santoro et al. / Automatica 77 (2017) 93–102
Step 3.6.1: Create a descendant of the node Σo in the tree
of event sets.
Step 3.6.2: Label the node created in Step 3.6.1 with (Σo ∪

{σ i
o}).

Step 3.6.3: For each node created in Step 3.6.1, execute
CREATE-DESCENDANT(Σo ∪ {σ

i
o}).

Remark 2. It is important to notice that not all leaves of the
trees are diagnosis bases. According to the verifications carried
out in Steps 3.5.1 and 3.5.2 of Algorithm 5, a set Σo that is not
a diagnosis basis will be a leaf of the tree if each set Σo ∪ {σ

i
o},

obtained in accordance with Step 3.5 of Algorithm 5, contains a
diagnosis basis that already labeled one leaf of the tree—this avoids
the search from sets that cannot lead to MDB. According to Step
3.5.3 of Algorithm 5, set Σo can also be a leaf of a tree, without
being a diagnosis basis, when its cardinality is equal to |Σo| − 1
since, by hypothesis, L is diagnosable with respect to Σo. Thus, the
verification of the diagnosability of L with respect to Σo and the
creation of a node to represent Σo in the tree are unnecessary. It is
also important to remark that after the construction of a tree with
root {σo}, then all the nodes of the other trees cannot have event
σo, since all diagnosis bases that contain σo are necessarily leaves
of the tree with root {σo}. �

The following theorem proves the correctness of Algorithm 4.

Theorem 7. The set Σmin, computed by using Algorithm 4, is
composed of all minimal diagnosis bases of G.

Example 5. Let G, shown in Fig. 5, be the automaton model of the
system. Suppose that the set of potentially observable events is
givenbyΣo = {a, b, c, d, e} and the set of fault events isΣf = {σf }.
We will use now Algorithm 4 to compute the MDB for G.

In accordance with Step 2 of Algorithm 4, we must construct
five trees of event sets, each one with the root labeled with an
event from Σo. Let us consider first the tree with root labeled
as {a}. According to Step 2.2 of Algorithm 4, procedure CREATE-
DESCENDANT({a}) is executed and verifier GV ,{a}, shown in Fig. 10,
is computed. SinceGV ,{a} has ambiguous cyclic paths, then {a} is not
a diagnosis basis. In Step 3.3, a sequence associated with a faulty
path with an embedded ambiguous cyclic path must be chosen.
Let us choose sequence v = σf dRdbc. Then, in accordance with
Step 3.4, we obtain the normal trace sN = d and the faulty trace
st = σf dbc associated with v. Since the observation of events b or
c makes the projections of sN and st distinct, then the nodes {a, b}
and {a, c} must be added as descendants of root {a}. Choosing,
now, node {a, b}, the verifier GV ,{a,b} is constructed. Since GV ,{a,b}
has ambiguous cyclic paths, then a new sequence associated with
a faulty path with an embedded ambiguous cyclic path is chosen
and the events that eliminate the ambiguity are used to create
new descendants of the node labeled as {a, b}. This procedure
is repeated until either all leaves of the tree are labeled with
diagnosis bases or satisfies at least one of the conditions of Step 3.5
of Algorithm 5. The tree with root {a}, constructed in accordance
with Algorithm 4, is shown in Fig. 11. Notice that although the
tree has four leaves, namely {a, b, c, d}, {a, b, c, e}, {a, b, c} and
{a, c, d, e}, only leaves {a, b, c, d} and {a, c, d, e} are diagnosis
bases for L. The sets {a, b, c, e} and {a, b, c} are not diagnosis bases
since, according to Steps 3.5.3 and 3.5.1, respectively, {a, b, c, e}
has cardinality |Σo|−1 and the descendant of {a, b, c} is a diagnosis
bases that has already been discovered.

In accordance with Algorithm 4, the trees with roots labeled
with the other four events of Σo must also be computed. However,
all other trees will be composed only of their roots. Thus, the MDB
for L are Σmin = {{a, b, c, d}, {a, c, d, e}}.

It is important to remark that, in this example, only 14 verifiers
were needed to find all MDB, as opposed to 30 if the exhaustive
search method had been used. �
Fig. 10. Verifier GV ,{a} .

Fig. 11. Tree with root {a}.

5.1. Complexity analysis

Algorithm 4 requires the computation of |Σo| trees of event
sets, each one with a root labeled with a distinct event of Σo.
The procedure CREATE-DESCENDANT is executed recursively for
each tree until all nodes of the tree are found. In the worst-case,
all possible combinations of events of Σo will be nodes of the
trees. Thus, since the complexity to compute a verifier by using
Algorithm 1 is O(|X |2|Σ |), the worst-case complexity of Algorithm
4 is O(2|Σo|(|X |2|Σ |)).

Although the worst-case analysis shows that the complexity
of the exhaustive search method is equal to the complexity of
Algorithm4, in general, the computational costs are different, since
tests to avoid the creation of unnecessary nodes (Steps 3.5.1–3.5.4),
and thus the construction of verifiers, are executed in Algorithm 5.

In comparison with the method of the ambiguous cyclic paths,
in the method of the trees of event sets, it is not necessary to
compute all elementary ambiguous cyclic paths of a previously
computed verifier, being necessary to find only one ambiguous
cyclic path for each verifier associated with a node of a tree of
event sets, avoiding, therefore, the high computational cost that
may exist associated with the search for all elementary ambiguous
cyclic paths.

6. Minimal diagnosis bases of DES with multiple fault types

Let Σf = Σf1 ∪̇Σf2 ∪̇ . . . ∪̇Σfr be a partition of the set of fault
events, where r denotes the number of fault types, and let Πf
denote this partition. The diagnosability of L with respect to Πf is
equivalent to the diagnosability of Lwith respect to each fault type
separately, as ensured by the following result (Yoo & Lafortune,
2002).

Theorem 8. The language L of the system is diagnosable with respect
to projection Po : Σ⋆

→ Σ⋆
o and partition Πf on Σf if, and only if, L

is diagnosable with respect to Po and Σfi , for each i ∈ {1, 2, . . . , r}.

Thus, a diagnosis basis for a DESwithmultiple fault types is a set of
observable events for which the occurrence of a fault event of any
type Σfi can be diagnosed by its corresponding diagnoser Gdi . Let
Σmin,i be the set of allMDB for the ith fault event type, computed by
using Algorithm 3 or Algorithm 4. Since each set of Σmin,i contains
the events that must be observable to ensure the diagnosability of

L.P.M. Santoro et al. / Automatica 77 (2017) 93–102 101
the ith fault type, a minimal diagnosis basis for all fault types will
be the union ofMDB inΣmin,i, for i = 1, . . . , r , and can be obtained
in accordance with the following algorithm.

Algorithm 6 Computation of Σmin,t

Input: G, Σo, Σf = Σf1 ∪̇Σf2 ∪̇ . . . ∪̇Σfr
Output: Σmin,t : set of all MDB of a DES with multiple fault types
• Step 1: Compute the set of all MDB Σmin,i, for i = 1, . . . , r, by

using Algorithm 3 or Algorithm 4.
• Step 2: Compute Σmin,t = Σmin,1×̇Σmin,2×̇ . . . ×̇Σmin,r .

• Step 3: Remove fromΣmin,t all sets Σ̃min,t ∈Σmin,t for which there
exists another set Σ̂min,t ∈Σmin,t such that Σ̂min,t ⊂ Σ̃min,t .

7. Conclusions

We propose in this paper two algorithms to find all minimal
diagnosis bases of a discrete-event system, which exploit the
structure of verifier automata and are based on the elimination of
ambiguous cyclic paths. The methods have smaller computational
complexity than another method recently proposed in the
literature.

Appendix. Proofs

Proof of Lemma 1. Notice, according to the algorithm proposed
in Moreira et al. (2011), that GV ,Σ ′′o

= G′′NR
∥ GF , where G′′NR

models the non-faulty behavior of the system considering Σ ′′o as
the observable event set. Let R′′ be the renaming function used to
obtain G′′NR

from GN . According to Theorem 2, a state (xN , xF) of
GV ,Σ ′′o

is reached if, and only if, there exist a trace sN ∈ LN and a
trace sY ∈ L \ LN such that P ′′o (sY) = P ′′o (sN), and xN and xF are,
respectively, the states of G′′NR

and GF reached after the occurrence
of sNR = R′′(sN) and sY . SinceΣ ′′o = Σ ′o∪{σ }, then P ′o(sY) = P ′o(sN),
which implies, in accordance with Theorem 2, that the same state
(xN , xF) is reached in GV ,Σ ′o

. Thus, X ′′V ⊆ X ′V .

Proof of Lemma 2. Let GV ,Σ ′o
= G′NR

∥ GF (resp. GV ,Σ ′′o
= G′′NR

∥

GF), where G′NR
(resp. G′′NR

) is obtained from GN by renaming the
unobservable events in ΣN \ Σ ′o (resp. ΣN \ Σ ′′o), and let R′ (resp.
R′′) be the renaming function whose unobservable event set is
ΣN \ Σ ′o (resp. ΣN \ Σ ′′o). Let xV = (xN , xF) ∈ X ′′V . Then, according
to Lemma 1, xV ∈ X ′V . Notice that, the feasible events in Γ ′′V (xV)
(resp. Γ ′V (xV)) can be: (i) renamed events of Σ ′′R = R′′(ΣN) (resp.
Σ ′R = R′(ΣN)) that are feasible in xN ; (ii) unobservable events in
Σ \ Σ ′′o (resp. Σ \ Σ ′o) that are feasible in xF ; and (iii) events of
Σ ′′o (resp. Σ ′o) that are feasible in both xN and xF . Let e ∈ Γ ′′V (xV).
Since Σ ′′o = Σ ′o ∪ {σ }, then if e ∈ Γ ′′V (xV) \ {σ }, it can be seen
that e ∈ Γ ′V (xV). Furthermore, if e = σ , e is feasible in both xN and
xF , which implies that {σ , σR} ⊆ Γ ′V (xV), therefore concluding the
proof.

Proof of Theorem 3. Since GV ,Σ ′′o
and ḠV ,Σ ′′o

are deterministic
automata, it is enough to show that both automata have the same
paths.

Let xV = (xN , xF) be a state of GV ,Σ ′′o
, and suppose that xV is also

a state of ḠV ,Σ ′′o
. In order to show that GV ,Σ ′′o

and ḠV ,Σ ′′o
have the

same paths, let us consider the problem of obtaining all states of
GV ,Σ ′′o

and ḠV ,Σ ′′o
, reached from xV , after the occurrence of an event.

If all reachable states of GV ,Σ ′′o
and ḠV ,Σ ′′o

are equal, then, since both
automata have the same initial state, GV ,Σ ′′o

= ḠV ,Σ ′′o
. According to

Algorithm 1, ḠV ,Σ ′′o
is computed from GV ,Σ ′o

. Thus, in order to prove
that the states reached from xV in GV ,Σ ′′o

and ḠV ,Σ ′′o
are equal, we

must show that the paths of GV ,Σ ′′o
can be obtained from the paths
of GV ,Σ ′o
in the same way as ḠV ,Σ ′′o

is computed. In order to do so,
notice, according to Lemma 1, that if xV belongs to the state space
of GV ,Σ ′′o

, then xV is also a state of GV ,Σ ′o
, which implies, according

to Theorem 2, that there exist traces sN ∈ LN and sY ∈ L \ LN such
that P ′′o (sN) = P ′′o (sY), where traces sN and sY lead to states xN ∈ XN
and xF ∈ XF , respectively. Moreover, since Σ ′′o = Σ ′o ∪ {σ }, then
P ′o(sN) = P ′o(sY).

Let e ∈ Γ ′V (xV), and consider the following cases: (i) e ∈
(Σ ∪ Σ ′R) \ {σ , σR}; (ii) e ∈ {σ , σR}. We will show in the sequel
that all states of GV ,Σ ′′o

and ḠV ,Σ ′′o
, reached from xV , are equal for

the two cases presented above. Let us first consider case (i), and let
(xV , e, xVf)be a path ofGV ,Σ ′o

. Since e ∉ {σ , σR}, then P ′′o (ẽ) = P ′o(ẽ),
where ẽ = e, if e ∈ Σ , or ẽ = R′−1(e), if e ∈ Σ ′R \ Σ . Thus,
according to Theorem 2, path (xV , e, xVf) also belongs to GV ,Σ ′′o

.
Notice, according to Step 2.3 of Algorithm 1, that path (xV , e, xVf)
is also added to ḠV ,Σ ′′o

. Thus, path (xV , e, xVf) belongs to both
automata ḠV ,Σ ′′o

and GV ,Σ ′′o
. Let us now consider case (ii), and let

(xV , e1, xV1 , e2, xVf) be a path of GV ,Σ ′o
. Let us consider four cases:

(a) e1 = σ and e2 = σR; (b) e1 = σR and e2 = σ ; (c) e1 = σ
and e2 ≠ σR; (d) e1 = σR and e2 ≠ σ . For cases (a) and (b), it
can be seen that P ′R(ve1e2) = sNRσR and P ′(ve1e2) = sYσ , where
P ′R : (Σ ∪ Σ ′R)

⋆
→ Σ ′⋆R and P ′ : (Σ ∪ Σ ′R)

⋆
→ Σ⋆. Thus, since

σ ∈ Σ ′′o , P
′′
o (R′−1(sNRσR)) = P ′′o (sYσ), which implies, according

to Theorem 2, that path (xV , σ , xVf) belongs to verifier GV ,Σ ′′o
, and,

according to Step 2.2 of Algorithm 1, the same path also belongs to
verifier ḠV ,Σ ′′o

. Finally, let us consider cases (c) and (d) and define
s̃NR = P ′R(ve1e2) and s̃Y = P ′(ve1e2). In these cases, it can be
seen that P ′′o (R′−1(s̃NR)) ≠ P ′′o (s̃Y), which implies that event σ is
not feasible in state xV of GV ,Σ ′′o

. The same occurs in automaton
ḠV ,Σ ′′o

as it can be seen in Step 2.2 of Algorithm 1. Since, according
to Lemma 2 and Algorithm 1, no other transition from state xV
in GV ,Σ ′′o

and ḠV ,Σ ′′o
, respectively, may exist, we can conclude that

GV ,Σ ′′o
= ḠV ,Σ ′′o

.

Proof of Lemma 3. Let Σ ′R be the event set of automaton G′NR
obtained considering Σ ′o as the observable event set. Since, by
assumption, Σfpes ⊆ (Σ \Σ ′o), then Σfpes ∩Σ ′R = ∅. Therefore, the
events of Σfpes are private events of automaton GF . Since GV ,Σ ′o

=

G′NR
∥ GF and xkF ∈ XO, there exists a faulty path with an embedded

cyclic path in verifier GV ,Σ ′o
whose associated trace is sF , which,

according to Definition 6, is an F-ambiguous cyclic path.

Proof of Theorem 4. Suppose that there exists i ∈ {1, 2, . . . ,Nfpes}

such that Σ ′o ∩ Σfpes,i = ∅. Then, there exists a post-fault path
PFi = (xkF , σk, xk+1F , . . . , xk+mF) such that Σfpes,i ⊆ (Σ \ Σ ′o). Thus,
in accordance with Lemma 3, there exists an F-ambiguous cyclic
path in the verifier automaton GV ,Σ ′o

.

Proof of Theorem 6. In Step 1 all elementary diagnosing event
sets Σ i

edes ∈ Σedes, i = 1, . . . , k, are computed, since, according
to Theorem 5, every diagnosis basis must contain an elementary
diagnosing event set. In Steps 2.4 and 2.5, all prime paths with an
embedded ambiguous cyclic path, vj, of GV ,Σ i

edes
, for j = 1, . . . , n,

are obtained, and the events that solve the ambiguity between the
normal and the faulty trace associated with vj are stored in the
event set Σ

j
new. In Step 2.6, the set Σnew, whose elements are sets

of events whose observations eliminate all ambiguous cyclic paths
of GV ,Σ i

edes
, is computed, and in Step 2.7, the elements of Σnew that

contain redundant events are removed from Σnew, since only MDB
are being searched. In Step 2.8, diagnosis bases that contain Σ i

edes
are obtained, forming the set Σ i

min. Notice that all diagnosis bases
that contain Σ i

edes are obtained from the diagnosis bases of Σ i
min

by adding new events to them. Moreover, the elements ofΣ i
min are

the diagnosis bases with smallest cardinality that contain Σ i
edes. In

102 L.P.M. Santoro et al. / Automatica 77 (2017) 93–102
Step 3, the set Σmin is formed by the union of all sets of diagnosis
bases obtained in Step 2. Thus, all diagnosis bases can be obtained
from the diagnosis bases ofΣmin. Finally, in Step 4, to ensure that all
elements of Σmin are MDB, the sets that contain redundant events
are eliminated from Σmin.

Proof of Theorem 7. We will prove Theorem 7 in three steps. We
first prove that the sets of Σdb are diagnosis bases for G, then we
prove that aminimal diagnosis basis labels at least one leaf of a tree
of event sets constructed in Algorithm 4, and finally, we show that
all sets of Σmin, computed by using Algorithm 4, are MDB.

Part 1: The sets in Σdb are diagnosis bases. Notice that Algorithm
4 is based on the construction of verifier automata and that, in
accordancewith Step 3.2 of Algorithm5, an event setΣ j

db is formed
only when the verifier GV ,Σ

j
db

does not have ambiguous cyclic
paths. Thus, all sets that belong to Σdb are diagnosis bases.

Part 2: Σdb contains all MDB. Then, according to Algorithm 4,
|Σo| trees of event sets will be constructed, each one with a root
labeled with a distinct event of Σo. Let Σ

j
db = {σ1, σ2, . . . , σk} ⊂

Σo be a minimal diagnosis basis for L, and consider, without loss
of generality, the tree with root labeled with σ1. Since Σ

j
db is a

minimal diagnosis basis, then there exists at least one sequence v
in the language generated by GV ,{σ1} associated with an ambiguous
cyclic path. According to Step 3.3 of Algorithm 5, a sequence v
associated with an ambiguous cyclic path in GV ,{σ1} is chosen to
obtain the descendants of node {σ1} in its respective tree. Since
Σ

j
db is a minimal diagnosis basis, the simultaneous observation of

the events σ1, σ2, . . . , σk delete all the ambiguous cyclic paths in
GV ,{σ1}, including the one that is associated with v and, therefore,
at least one of the events in Σ

j
db \ {σ1}, together with σ1, is

a descendant of {σ1} in the tree with root {σ1}. The algorithm
continues until all ambiguous cyclic paths have been removed.
From the definition of minimal diagnosis basis, any subset of Σ

j
db

is not a diagnosis basis, and, thus, at least one leaf of the tree of
events with root {σ1} must be labeled with Σ

j
db, and according to

Step 3 of Algorithm 4, Σ j
db will be added to Σdb.

Part 3: The sets of Σmin are MDB. Notice that, in Step 4 of
Algorithm 4, all leaves created with events that are not essential
to the diagnosis of the fault event are deleted, ensuring that only
MDB remain in Σmin.

References

Basilio, J.C., & Lafortune, S. (2009). Robust codiagnosability of discrete
event systems. In Proc 2009 American control conference. St. Louis, MO,
(pp. 2202–2209).

Basilio, J. C., Lima, S. T. S., Lafortune, S., & Moreira, M. V. (2012). Computation
of minimal event bases that ensure diagnosability. Discrete Event Dynamic
Systems: Theory and Applications, 22(3), 249–292.

Cabasino, M. P., Giua, A., Lafortune, S., & Seatzu, C. (2012). A new approach
for diagnosability analysis of Petri nets using verifiers. IEEE Transactions on
Automatic Control, 57(12), 3104–3117.

Cabasino, M. P., Lafortune, S., & Seatzu, C. (2013). Optimal sensor selection for
ensuring diagnosability in labeled Petri nets. Automatica, 49(8), 2373–2383.

Cabral, F. G., Moreira, M. V., Diene, O., & Basilio, J. C. (2015). A Petri net diagnoser
for discrete-event systems modeled by finite state automata. IEEE Transactions
on Automatic Control, 60(1), 59–71.

Carvalho, L. K., Moreira, M. V., Basilio, J. C., & Lafortune, S. (2013). Robust diagnosis
of discrete event systems against permanent loss of observations. Automatica,
49(1), 223–231.

Cassandras, C., & Lafortune, S. (2008). Introduction to discrete event system. Secaucus,
NJ: Springer-Verlag New York, Inc..

Cassez, F., & Tripakis, S. (2008). Fault diagnosis with static and dynamic observers.
Fundamenta Informaticae, 88, 497–540.

Contant, O., Lafortune, S., & Teneketzis, D. (2006). Diagnosability of discrete event
systems with modular structure. Discrete Event Dynamic Systems: Theory and
Applications, 16(1), 9–37.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2007). Introduction to
algorithms. Massachusetts: MIT Press.

Debouk, R., Lafortune, S., & Teneketzis, D. (2000). Coordinated decentralized
protocols for failure diagnosis of discrete event systems.Discrete Event Dynamic
Systems: Theory and Applications, 10(1), 33–86.
Debouk, R., Lafortune, S., & Teneketzis, D. (2002). On an optimization problem in
sensor selection.Discrete Event Dynamic Systems: Theory and Applications, 12(4),
417–445.

Jiang, S., Huang, Z., Chandra, V., & Kumar, R. (2001). A polynomial algorithm for
testing diagnosability of discrete-event systems. IEEE Transactions on Automatic
Control, 46(8), 1318–1321.

Jiang, S., Kumar, R., & Garcia, H. (2003). Optimal sensor selection for discrete-event
systems with partial observation. IEEE Transactions on Automatic Control, 48(3),
369–381.

Johnson, D. B. (1975). Finding all the elementary circuits of a directed graph. SIAM
Journal on Computing , 77–84.

Moreira, M. V., Basilio, J. C., & Cabral, F. G. (2016). ‘‘Polynomial time verification
of decentralized diagnosability of discrete event systems’’ vs. ‘‘Decentralized
failure diagnosis of discrete event systems’’: A critical appraisal. IEEE
Transactions on Automatic Control, 61(1), 178–181.

Moreira, M. V., Jesus, T. C., & Basilio, J. C. (2011). Polynomial time verification of
decentralized diagnosability of discrete event systems. IEEE Transactions on
Automatic Control, 56(7), 1679–1684.

Qiu, W., & Kumar, R. (2006). Decentralized failure diagnosis of discrete event
systems. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and
Humans, 36(2), 384–395.

Sampath, M., Lafortune, S., & Teneketzis, D. (1998). Active diagnosis of discrete-
event systems. IEEE Transactions on Automatic Control, 43(7), 908–929.

Sampath,M., Sengupta, R., Lafortune, S., Sinnamohideen, K., & Teneketzis, D. (1995).
Diagnosability of discrete-event systems. IEEE Transactions on Automatic
Control, 40(9), 1555–1575.

Santoro, L.P.M., Moreira, M.V., Basilio, J.C., & Diene, O. (2014). Computation of
minimal diagnosis bases of discrete-event systems using verifiers: Method of
the ambiguous cyclic paths. In 12th IFAC - IEEE international workshop on discrete
event systems. Paris, France, (pp. 440–445).

Yoo, T.-S., & Lafortune, S. (2001). On the computational complexity of some
problems arising in partially-observed discrete-event systems. In Proc 2001
American control conference. Arlington, VA, (pp. 307–312).

Yoo, T.-S., & Lafortune, S. (2002). Polynomial-time verification of diagnosability
of partially observed discrete-event systems. IEEE Transactions on Automatic
Control, 47(9), 1491–1495.

Zad, S. H., Kwong, R. H., &Wonham,W. M. (2003). Fault diagnosis in discrete-event
systems: Framework and model reduction. IEEE Transactions on Automatic
Control, 48(7), 1199–1212.

Leonardo P. M. Santorowas born in Rio de Janeiro, Brazil,
in 1986. He received the Electrical Engineering degree
and the M.Sc. degree in Automation and Control from the
Federal University of Rio de Janeiro, in 2009 and 2013,
respectively. Since 2009, he has been working as a Control
Instrumentation Team Leader at the Brazilian company
Radix Engenharia e Software.

Marcos V. Moreira was born on May 11, 1976 in Rio de
Janeiro, Brazil. He received the Electrical Engineer degree,
the M.Sc. degree and the D.Sc. degree in Control from
the Federal University of Rio de Janeiro, Rio de Janeiro,
Brazil, in 2000, 2002 and 2006, respectively. Since 2007,
he has been an Associate Professor at the Department of
Electrical Engineering at the Federal University of Rio de
Janeiro. His main interests are robust failure diagnosis of
discrete-event systems, cyber-attacks, smart grids, and the
development of control laboratory techniques.

João C. Basilio was born on March 15, 1962 in Juiz de
Fora, Brazil. He received the Electrical Engineering degree
in 1986 from the Federal University of Juiz de Fora, Juiz de
Fora, Brazil, the M.Sc. degree in Control from the Military
Institute of Engineering, Rio de Janeiro, Brazil, in 1989, and
the Ph.D. degree in Control fromOxfordUniversity, Oxford,
UK, in 1995. He began his career in 1990 as an Assistant
Lecturer at the Department of Electrical Engineering of the
Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,
where he is currently a Full Professor in Control. Since
February 2014, he has been the Dean of Polytechnic School

of UFRJ. From September 2007, to December 2008, he spent a sabbatical leave at the
University of Michigan, Ann Arbor, and was an Invited Professor of École Centrale
of Lille, University of Lille, France, during September 2016. His current interests are
fault diagnosis and supervisory control of discrete-event systems. Prof. Basilio is the
recipient of the Correia Lima Medal.

http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref2
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref3
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref4
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref5
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref6
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref7
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref8
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref9
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref10
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref11
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref12
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref13
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref14
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref15
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref16
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref17
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref18
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref19
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref20
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref23
http://refhub.elsevier.com/S0005-1098(16)30461-7/sbref24

	Computation of minimal diagnosis bases of Discrete-Event Systems using verifiers
	Introduction
	Theoretical background
	Definitions and notation
	Diagnosability of discrete event systems
	Minimal diagnosis bases

	Preliminary results
	Method of the ambiguous cyclic paths
	Elementary diagnosing event sets
	Computation of minimal diagnosis bases
	Computational complexity

	Method of the trees of event sets
	Complexity analysis

	Minimal diagnosis bases of DES with multiple fault types
	Conclusions
	Proofs
	References

