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Abstract Diagnosability is an intrinsic property of the language generated by discrete event
systems (DES) and the computational procedure to determine whether a language possesses
or not this property is called diagnosability verification. For regular languages, diagnosabil-
ity verification is carried out by building either diagnoser or verifier automata; the former is
known to have worst-case exponential complexity whereas the latter has polynomial com-
plexity in the size of state space of the automaton that generates the language. A question
that has been asked for some time now is whether, in average, the state size of diagnosers
is no longer exponential. This claim has been supported by the size of diagnoser automata
usually obtained in practical and classroom examples, having, in some cases, state space
size much smaller than that of verifiers. In an effort to clarify this matter, in this paper we
carry out an experimental study on the average state size of diagnosers and verifiers by
means of two experiments: (i) an exhaustive experiment, in which ten sets of automata with
moderate cardinality were generated and for these sets of automata, diagnosers and veri-
fiers were built, being the exact average state size for these specific instances calculated;
(ii) an experiment with sampling, which considers 1660 sets of different instance sizes and,
for each one, sample sets of 10,000 automata are randomly generated with uniform distri-
bution and we compute sets of diagnosers and verifiers for each set of randomly generated

This work was carried out while L. B. Clavijo was a D.Sc. student at the Electrical Engineering
Post-graduation Program of the Federal University of Rio de Janeiro.

� João C. Basilio
basilio@dee.ufrj.br

Leonardo Bermeo Clavijo
lbermeoc@unal.edu.co
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automata, which have been used to estimate an asymptotic model for the average state sizes
of diagnosers and verifiers.

Keywords Discrete-event systems · Automaton · Language diagnosability verification ·
Scientific computation

1 Introduction

Diagnosability is an intrinsic property of the language generated by DES and the com-
putational procedure to determine whether a DES possesses or not this property is called
diagnosability verification. For regular languages, diagnosability verification is carried out
by building either diagnoser or verifier automata. The use of diagnosers in diagnosability
verification has been proposed by Sampath et al. (1995), and has been widely used since
then. Diagnosers are known to have worst-case exponential state space complexity in the
number of states of the automaton that generates the language, i.e, O(22n). On the other
hand, there are several diagnosability verification methods using verifiers (Jiang et al. 2001;
Yoo and Lafortune 2002; Qiu and Kumar 2006; Moreira et al. 2011), which can have com-
putational complexity as low as quadratic (Yoo and Lafortune 2002; Qiu and Kumar 2006;
Moreira et al. 2011) in the number of the states of the automaton that generates the language,
i.e, O(n2)).

A question that has been asked for some time now is whether, in average, state size of
diagnosers is no longer exponential; this claim has been supported by the size of diagnoser
automata usually obtained in practical and classroom examples, having, in some cases, state
space size much smaller than that of the verifiers calculated in accordance with Jiang et al.
(2001), Yoo and Lafortune (2002), Qiu and Kumar (2006), and Moreira et al. (2011). In this
paper, we intend to partially answer this question by carrying out empirical experiments to
estimate the average state size of these devices. We will study the average state size of the
diagnoser proposed by Sampath et al. (1995). In the case of verifiers, there exist several
algorithms reported in the literature for their construction: the algorithm presented by Jiang
et al. (2001) has a worst-case computational complexity of fourth order in the number of
states of the system to be diagnosed (i.e., of order O(n4)), whereas the algorithms reported
by Moreira et al. (2011), Qiu and Kumar (2006), and Yoo and Lafortune (2002), all share
the same worst-case computational complexity of quadratic order (i.e., of order O(n2)). In
this experimental study, we will select the algorithm proposed by Moreira et al. (2011), for
the following reasons (Moreira et al. 2016): (i) it is deterministic and is defined using only
basic operations over deterministic finite automata; (ii) there is some evidence that its state
size is usually smaller than other verifiers computed with algorithms that lead to verifiers
with the same worst-case computational complexity.

In summary, in this paper we carry out an empirical study on the average state size
of the diagnoser proposed by Sampath et al. (1995) and the verifier proposed by Moreira
et al. (2011). For this matter, we carry out two experiments: (i) an exhaustive experiment,
in which ten sets of automata with moderate cardinality were generated by using an algo-
rithm proposed here that extends the results by Reis et al. (2005) and Bassino et al. (2009),
and for these sets of automata, diagnosers and verifiers were computed, being the exact
average state size for these specific instances calculated; (ii) an experiment with sampling,
which considers 1,660 sets of different instance sizes and, for each one, sample sets of
10,000 automata are randomly generated with uniform distribution according to the method
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proposed in Bassino et al. (2009) and Bassino and Nicaud (2007), and then, we compute
sets of diagnosers and verifiers for each set of randomly generated automata (33,200,000
diagnosers and verifiers altogether), which have been used to estimate an asymptotic model
for the average state size of diagnosers and verifiers. It is worth remarking that the results
in enumeration and random generation of automata used in this paper have been previously
obtained by the computer science community and, to the best of our knowledge, they have
never been deployed by the DES community, despite its practical relevance in the complete
evaluation of the real performance of algorithms.

The remainder of this paper is structured as follows. In Section 2, we present a brief
review on the construction of diagnosers and verifers. In Section 3, we review the method
of exhaustive generation of complete finite deterministic accessible automata and extend
this method to exhaustive generation of accessible (but not necessarily complete) automata.
We also present the results of an exhaustive experiment for the analysis of the average state
size of diagnosers and verifiers. In Section 4, we first review the uniform random genera-
tion of accessible automata, and in the sequel, we propose an experiment for determining
the average state size of diagnosers and verifiers; based on the experiments, we present
empirical models for their average state sizes. Finally, in Section 5, we highlight the main
contributions of the paper.

2 Failure diagnosability of DES modelled by automata using diagnosers
and verifiers

2.1 Preliminaries

The theoretical foundations of fault diagnosis and diagnosability analysis of DES, as pro-
posed by Sampath et al. (1995), are based on regular languages and automaton theory
as formal modeling tools. In that approach, the DES is modeled using a deterministic
automaton, which will be denoted here as

G = (X, Σ, f, Γ, Xm, x0), (1)

where X is the finite state space, Σ is the set of events, f is the transition function, assumed
to be partially defined over the event set, Γ is the active event set, i.e., Γ (x) = {σ ∈ Σ :
(∃y ∈ X)[f (x, σ ) = y]}, Xm is the set of marked states, and x0 is the initial state. In addi-
tion, event set Σ is partitioned as Σ = Σo∪̇Σuo, where Σo and Σuo denote, respectively,
the sets of observable and unobservable events. The unobservable events are those whose
occurrence cannot be detected (including possible fault events) by sensors attached to the
system.

The accessible part of G, denoted as Ac(G), is obtained by eliminating all states of G

(and their transitions) that are not reachable from the initial state x0. Formally, Ac(G) =
(Xac, Σ, fac, x0), where Xac = {x ∈ X : (∃s ∈ Σ∗)[f (x0, s) = x]} and fac : Xac × Σ →
Xac is the new transition function obtained by restricting the domain of f to the reduced
domain of the accessible states Xac. The coaccessible part of G, denoted as CoAc(G), is
obtained by deleting all states of G from which it is not possible to reach a marked state.
Formally, CoAc(G) = (Xcoac, Σ, fcoac, Xm, x0coac ), where Xcoac = {x ∈ X : (∃s ∈
Σ∗)[f (x, s) ∈ Xm]}, x0coac = x0 if x0 ∈ Xcoac, or x0coac is undefined if x0 /∈ Xcoac, and
fcoac : Xcoac × Σ → Xcoac is the new transition function obtained when the domain of f

is restricted to the set of coaccessible states Xcoac.
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An important binary operation between automata is the parallel composition. Let G1 =
(X1,Σ1, f1, Γ1, x01) and G2 = (X2, Σ2, f2, Γ2, x02) denote two automata. The parallel
composition between G1 and G2, denoted by G1 ‖ G2, is defined as the automaton:

G1 ‖ G2 = Ac(X1 × X2, Σ1 ∪ Σ2, f1‖2, Γ1‖2, (x01 , x02)),

where the transition function f1‖2 is defined as follows:

f1‖2 =

⎧
⎪⎪⎨

⎪⎪⎩

(f1(x1, σ ), f2(x2, σ )), if σ ∈ Γ1(x1) ∩ Γ2(x2),

(f1(x1, σ ), x2), if σ ∈ Γ1(x1) \ Σ2,

(x1, f2(x2, σ )), if σ ∈ Γ2(x1) \ Σ1,

undefined, otherwise.

(2)

Let us now assume that a deterministic automaton G has unobservable events. Then,
we can represent its observable dynamic behavior through a deterministic automaton called
observer which will be denoted here as

Obs(G) = (Xobs,Σo, fobs, Γobs, x0obs
). (3)

Every state xobs ∈ Xobs is a set containing all the possible states of automaton G where
it can be after a recorded sequence of observable events and, therefore, Xobs ∈ 2X , where
2X denotes the power set of X. In order to construct Obs(G), we need to define the
unobservable reach of each state x ∈ X, denoted by UR(x), as follows:

UR(x) = {y ∈ X : (∃t ∈ Σ∗
uo)[f (x, t) = y]}. (4)

This definition is extended to sets of states Q ⊆ X, as follows:

UR(Q) = ∪x∈QUR(x). (5)

Algorithm 1 presents the procedure for building observer automata.

Algorithm 1 Construction of an observer automaton for automaton
Inputs: Automaton and its set of observable events
Output: Deterministic automaton

STEP 1: Compute
Set and

STEP 2: Set  and
STEP 3: For each and each , compute

STEP 4: If
Set
Set

STEP 5: Repeat steps 2 and 3 until the entire accessible part of has been
generated.
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Remark 1 Denoting by n the state space cardinality of automaton G, then, the worst case
computational complexity in the construction of automaton Obs(G) is 2n (i.e., of order
O(2n)) (see Moore (1971); Wong (1998)).

2.2 Fault diagnosis of DES

Let us denote by L the language generated by automaton G. Let Σf = {σf } ⊆ Σuo denote
the singleton containing the failure event σf whose occurrence must be diagnosed, i.e., we
want to infer without ambiguity the occurrence of σf , within a finite delay, by observing
only events in Σo. This is indeed a property of language L called diagnosability.

The following assumptions are usually made (Sampath et al. 1995):

A1. Language L is live, i.e., Γ (xi) 
= ∅ for all xi ∈ X.
A2. There is no cycles of unobservable events in G.

Notice that, there is no loss of generality in assuming that Σf = {σf }, since if it is
assumed that there exist more than one failure event, the approach considered here is still
valid. In this regard, let Σf = {σf,1, σf,2, . . . , σf,n}, where σf,i , i = 1, 2, . . . , n are distinct
failure events. Then, language diagnosability can be analyzed separately for each event σf,i ,
i = 1, 2, . . . , n, by considering events σf,j , j 
= i, as ordinary unobservable events (see
Yoo and Lafortune (2002)).

Let us assume that Ψ (Σf ) denote the set of all traces of L that ends with failure event
σf . By a somewhat minor abuse of notation, we use Σf ∈ s to denote that s ∩ Ψ (Σf ) 
= ∅,
where s = {u ∈ Σ∗ : (∃v ∈ Σ∗)[uv = s]}. Therefore, s ∈ L is a trace containing the
failure event σf if Σf ∈ s. We also denote L/s = {t ∈ Σ : st ∈ L} as the language
continuation of L after s. Thus, language diagnosability can be formally stated as follows.

Definition 1 (Sampath et al. 1995) A live and prefix-closed language L is diagnosable with
respect to Po : Σ∗ → Σ∗

o and Σf if

(∃n ∈ N)(∀s ∈ Ψ (Σf ))(∀t ∈ L/s, |t | ≥ n) ⇒ (∀ω ∈ P −1
o [Po(st)] ∩ L)[Σf ∈ ω], (6)

where Po denotes the usual language projection operation (Ramadge and Wonham 1989)
which is defined as follows: (i) Po(σ ) = σ , if σ ∈ Σo; (ii) Po(σ ) = ε, if σ /∈ Σo; (iii)
Po(sσ ) = Po(s)Po(σ ), for s ∈ Σ∗ and σ ∈ Σ , with ε denoting the empty trace.

The first test for diagnosability verification of regular language was proposed by Sam-
path et al. (1996) and uses the so-called diagnoser automaton which is obtained as
follows:

GD = (Xd,Σo, fd, Γd, x0d
) = Obs(G ‖ Al) (7)

where Al = (Xl,Σf , fl, xo,l) is the two state label automaton depicted in Fig. 1. A state
xd ∈ Xd is called certain (or faulty), if � = Y for all (x, �) ∈ xd , and normal (or non-
faulty) if � = N for all (x, �) ∈ xd . If there exist (x, �), (y, �̃) ∈ xd , x not necessarily
distinct from y such that � = Y and �̃ = N , then xd is an uncertain state of Gd . When the
diagnoser is in a certain (normal) state, it is certain that a fault has (resp. has not) occurred.
However, if the diagnoser is in an uncertain state, it is not sure if the fault event has occurred
or not. As a consequence, if there exists a cycle formed with uncertain states, only, where
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Fig. 1 Label automaton Al

the diagnoser can remain forever, then it will never be able to diagnose the fault occurrence;
on the other hand if somehow it always leaves this cycle of uncertain states, then this cycle
is not indeterminate. The following definition presents the conditions a cycle of uncertain
states must satisfy in order to be an indeterminate cycle.

Definition 2 (Indeterminate cycles of Gd ) A set of uncertain states {xd1 , xd2 , . . . , xdp } ⊂
Xd forms an indeterminate cycle if the following conditions hold true:

(i) xd1 , xd2 , . . . , xdp form a cycle in Gd ;

(ii) ∃(x
kl

l , Y ), (x̃
rl
l , N) ∈ xdl

, x
kl

l not necessarily distinct from x̃
rl
l , l = 1, 2, . . . , p, kl =

1, 2, . . . , ml , and rl = 1, 2, . . . , m̃l in such a way that the sequence of states {xkl

l },
l = 1, 2, . . . , p, kl = 1, 2, . . . , ml and {x̃rl

l }, l = 1, 2, . . . , p, rl = 1, 2, . . . , m̃l form
cycles in G;

(iii) there exist s = s1s2 . . . sp ∈ Σ∗ and s̃ = s̃1s̃2 . . . s̃p ∈ Σ∗ such that Po(s) =
Po(s̃) 
= ε, where sl = σl,1σl,2 . . . σl,ml−1, f (x

j
l , σl,j ) = x

j+1
l , j = 1, 2, . . . , ml −1,

f (x
ml

l , σl+1,0) = x1
l+1, and f (x

mp
p , σ1,0) = x1

1 , and similarly for s̃l .

Using Definition 2, a necessary and sufficient condition for language diagnosability
based on the diagnoser automaton GD , constructed in accordance with Eq. 7, was presented
in Sampath et al. (1995), as follows.

Theorem 1 The language L generated by automaton G is diagnosable with respect to
projection Po and Σf = {σf } if, and only if, its diagnoser Gd has no indeterminate cycles.

Notice that the worst-case computational complexity in computing GD is 22n (i.e., of
order O(22n)) due to the computation of the observer (7) for automaton G ‖ Al , which has
2n states in the worst case.

Diagnosability verification of regular languages can also be carried out in polynomial
time by using the verifier automaton proposed by Moreira et al. (2011), which has worst-
case computational complexity ofO(n2) and is built in accordance with Algorithm 2. Notice
that the verifier state xV has two components, i.e., xV = (xN , xY ), where xN (resp. xY )
comes from automaton GN (resp. GY ), and is always equal to xN (resp. either equal to
xN or xY ), with N and Y being labels that indicate that the failure event has occurred or
not. Thus, based on the verifier constructed in accordance with Algorithm 2, the following
necessary and sufficient condition for language diagnosability can be stated.

Theorem 2 The language L, generated by G, is not diagnosable with respect to Po and
Σf = {σf } if and only if there exists a cycle cl := (xk

V , σk, x
k+1
V , . . . , xl

V , σl, x
k
V ), where

l ≥ k ≥ 0, in GV satisfying the following conditions:

∃j ∈ {k, k + 1, . . . , l}, s.t. for some x
j
V = (x

j
N , x

j
Y ) ⇒ (x

j
Y = xY ) ∧ (σj ∈ Σ).
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Algorithm 2 Construction of verifier automaton (Moreira et al. 2011)
Inputs: Automaton whose diagnosability must be verified and its set of unobservable
events
Output: Verifier automaton

STEP 1: Starting from automaton , compute automaton that models the normal
behavior of , as follows::

– Step 1.1: Obtain automaton 1 by deleting the event and the
transitions in labeled with this event.

– Step 1.2: Compute
where

STEP 2: Compute automaton that models the failure behavior of the system, as
follows:

– Step 2.1: Compute , where is the label automaton of
Fig. 1, and mark all states whose second component is .

– Step 2.2: Compute

STEP 3: Compute automaton by renaming all unobservable events of automa-
ton according to mapping which is defined by

STEP 4: Compute the verifier automaton

3 Exhaustive experimental analysis on the state sizes of diagnosers
and verifiers

In this section we will present preliminary results on the average state sizes of diagnosers
and verifiers. To this end, we will analyze automaton classes for which it is feasible (as far
as the number of all different automata in the class) to generate the whole class. Therefore,
we will start by presenting a systematic way of generating all automata with prespecified
number of states and events.

3.1 Exhaustive generation of complete finite deterministic accessible automata

We start by reviewing the method of exhaustive generation of automata proposed by Reis
et al. (2005). This method has, as its main feature, the possibility of representing an automa-
ton with a string of digits, therefore using a minimal amount of memory to represent
deterministic automata.

Definition 3 (Isomorphism between automata) Let G = (X, Σ, f, Γ, x0) and G′ =
(X′, Σ, f ′, Γ ′, x′

0) be two automata defined over the same input alphabet Σ . An isomor-
phism ϕ from G to G′, denoted by ϕ : G → G′, is a mapping ϕ : X → X′ satisfying the
following three conditions:

i. ϕ is a bijection;
ii. ϕ(x0) = x′

0;
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a b c

Fig. 2 Automaton G (a); Automaton G′ isomorphic with automaton G (b); Representative sequence of
automaton G′ (c)

iii. ϕ(f (x, σ )) = f ′(ϕ(x), σ ).

Let G = (X, Σ, f, Γ, x0) denote a complete finite deterministic accessible automaton
(CFDAA) such that |X| = n and |Σ | = k and assume that alphabet Σ possesses a total
order relation �.1

Therefore, the depth–first search traversal of automaton G induces an order over the
set of states X if, at each visited state, we select the transition labeled with the minimal
event according to the order of alphabet Σ . In this regard, we define an isomorphism ϕ :
G → G′ (G′ = (X′, Σ, f ′, Γ ′, 0)) where X′ = {0, 1, . . . , n − 1}. For instance, consider
the automaton depicted Fig. 2a where the set Σ = {a, b, c} is ordered alphabetically. The
depth–first search induces the bijection ϕ = {(A, 0), (C, 1), (B, 2)} between the sets of
states X and X′ = {0, 1, 2} whose elements represent the order in which the states of
automaton G were visited. Note that the initial state is numbered as 0.

Figure 2b shows automaton G′ which is isomorphic to automaton G through the bijection
ϕ. As depicted in Fig. 2c, we can represent automaton G′ by the word 001012102 defined
in base n and composed of nk symbols. Each group of k symbols determines the states that
will be reached by automaton G′ when the transition labeled by the event that has the same
position in Σ , according to order relation �, is triggered. For example, digit 1 in the third
position indicates that state 0 is connected to state 1 by event c, whereas the same digit in
the fith position indicates that there is a self-loop in state 1 labeled by event b.

Definition 4 (Representative sequence) Let G = (X, Σ, f, Γ, x0) be a CFDAA such that
|X| = n and let Σ = {σ1 ≺ · · · ≺ σk} be a completely ordered alphabet. Denote by
Im:n = {m, m + 1, . . . n} ⊆ Z. Let ϕ : X → {0, 1, . . . , n − 1} be an isomorphism from
X to X′ induced by performing a depth–first search traversal of automaton G following, at
each state, the transition labeled with the smallest event, according to the order of Σ . Let
G′ = (X′, Σ, f ′, Γ ′, 0) be the automaton isomorphic to G that is obtained by using ϕ. The
representative sequence of G′ has the form2 (si)i∈I0:kn−1 = s0s1 . . . skn−1 with si ∈ I0:n−1,
and si = f ′(�i/k�, σ(i mod k)+1), where k = |Σ | and i ∈ I0:kn−1.

1A set A possesses a total order relation, denoted as �, if for any a, b, c ∈ A the following conditions are
satisfied: (i) a � a for any a (reflexivity); (ii) if a � b and b � a, then a = b (antisymmetry); (iii) if a � b

and b � c, then a � c (transitivity); (iv) either a � b or b � a (totality).
2The notation �x� denotes the integer part of x, which is defined as �x� = max{m ∈ N : m ≤ x}.
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Theorem 3 (Reis et al. 2005) Let (si) be a representative sequence satisfying the following
conditions:

R1. (∀m ∈ I2:n−1)(∀i ∈ I0:kn−1)(si = m ⇒ (∃j ∈ I0:i−1)[sj = m − 1]),
R2. (∀m ∈ I1:n−1)(∃j ∈ I0:km−1)[sj = m].
Then there exists a bijection between the set of sequences that satisfy R1 and R2 and the
set of CFDAA C(n,k).

Rule R1 restricts a state x′ ∈ X′, labeled by a number greater than zero, to appear in the
sequence (si) only after the occurrence of its predecessors. This is a direct consequence of
the order of the states induced by isomorphism ϕ. For example, in the sequence 001012102
of Fig. 2c, s5 = 2 (m = 2 and i = 5 in rule R1), which implies that at least one of the
symbols in the subsequence s0 · · · s4 = 00101 must be 1. Rule R2 establishes a condition
for the accessibility of the automaton whose representative sequence is (si). In words, R2
implies that a state labeled by m must appear at least once in the first km−1 positions of the
representative sequence. For instance, rule R2 applied to the sequence of Fig. 2c with m = 1
and k = 3, determines that at least one of the symbols in the subsequence s0s1s2 = 001
must be 1.

In order to generate all CDFAA of C(n,k), rules R1 and R2 must be reformulated in a
more suitable form using flags. Let (fj ), j ∈ I1:n−1, fj ∈ I0:kn−1 be a sequence of flags
where the symbol fj represents the position of the first occurrence of the state labelled by
j in the representative sequence (si)i∈I0:kn−1 . For instance, in the sequence 001012102 of
Fig. 2c, fj ∈ I0:8, j ∈ I1:2, f1 = 2 and f2 = 5.

In terms of the sequence of flags (fj )j∈I1:n−1 , R1 and R2 correspond, respectively, to the
following rules:

G1. fj−1 < fj ,∀j ∈ I2:n−1,

G2. fm ≤ km − 1, ∀m ∈ I1:n−1.

Rules G1 and G2 imply that f1 ∈ I0:k−1 and fj−1 < fj < kj for j ∈ I2:n. Notice that
if we consider sequence 001012102, then rule G1 with j = 2 determines the existence of a
flag f1 < f2 = 5, which in turn is equivalent to state that if s5 = 2, then at least one of the
symbols in the subsequence s0 · · · s4 must be equal to 1 (rule R1). To use the same example
as above, rule G2 with m = 1 establishes that f1 ∈ I0:2 which implies that at least one of
the symbols of the subsequence s0s1s2 must be equal to 1 (rule R2).

In order to generate all CDFAA corresponding to a fixed sequence of flags (fj )j∈I0:n ,
the symbols si , where i /∈ {fj : j ∈ I1:n−1} ∪ I0:f1 (i.e., all symbols that were not defined
by the sequence of flags (fj )j∈I1:n), must be set according to the following rules:

G3. si = 0, for i < f1;
G4. ∀j ∈ I1:n−2, si ∈ I0:j , for fj < i < fj+1;
G5. si ∈ I0:n−1, for i > fn−1.

Rules G3–G5 are constructive rules for obtaining a well-formed sequence, i.e., a
sequence representing an automaton, starting from a given sequence of flags. Taking again
sequence 001012102 as an example, we can see that rule G3 constrains subsequence
s0s1 = 00, to the left of sf1 = s2 to be formed with zeros. Rule G4 restricts the symbols of
subsequence s3s4 = 01, that appear between the symbols sf1 = s2 and sf2 = s5, to be digits
in base 2.
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The theory outlined above provides all of necessary technical details for introducing
Algorithm 3, which exhaustively generates every finite deterministic accessible automaton
of the set of complete automata C(n,k). As it can be noted, Algorithm 3 is composed of two
main procedures: recursive generation of sequences and recursive generation of flags, as
follows:3

Algorithm 3 Exhaustive generation of set
Input: and , the cardinalities of the sets of states and events of automata

Output: The set of complete automata.
1 (initial sequence of flags)
2 (initial representative sequence)
3 automaton associated to initial representative sequence
4 (final representative sequence)
5 while do
6 GENERATE SEQUENCE

7 if then
8 GENERATEFLAGS

9 for do
10 (initial sequence of flags)

11 automaton associated to sequence

1. Recursive generation of sequences (Algorithm 4) Let (fj )j∈I1:n−1 be the sequence
of flags of a given representative sequence (si)i∈I0:kn−1 . Starting from representative
sequence (si)i∈I0:kn−1 , we can generate a new one by modifying, in a consistent manner,
the symbols of (si)i∈I0:kn−1 (according to rules G3–G5) that are not fixed by the flags.
In the following, we describe how to obtain a new representative sequence. Define set
NI = If1+1:kn−1 \ {fj : j ∈ I1:n−1} of subindexes of the symbols of (si)i∈I0:kn−1 that were
not set by the sequence of flags. According to rules G4 and G5, each symbol si such that
i ∈ NI is a number expressed in base j + 1, where j is the subindex of the first right-
most symbol sj set by flag fj in the representative sequence (si)i∈I0:kn−1 . Specifically, to
determine the base of digit si , compute the set

Bi = {i − fj : (fj ∈ {f1, . . . , fn−1}) ∧ (i − fj > 0)}
and represent by bi the unique value of l such that fl = i − min(Bi), with fl ∈
{f1, . . . , fn−1}. The following rule establishes how to modify a symbol in the subsequence
(si)i∈NI in order to obtain a new representative sequence:

s′
i =

{
si + 1, if si + 1 ≤ bi

0, otherwise.
(8)

The procedure begins by applying rule (8) to symbol skn−1. If the condition skn−1 + 1 ≤
bkn−1 = fn−1 is satisfied, then the next representative sequence will be s0 · · · snk−2(skn−1 +
1). Otherwise, rule (8) must be propagated to the other symbols of (si)i∈NI in descending
order of NI until the condition si + 1 ≤ bi of rule (8) is satisfied. Notice that if there exists
a symbol si satisfying si + 1 ≤ bi , the algorithm returns a new representative sequence

3The reader may find useful to follow the explanation with the help of Example 1.
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(s′
i )i∈I0:kn−1 (see line l1), Otherwise, it returns the sequence 0nk (see line l2) which does

not correspond to any CFDAA, therefore indicating that a complete series of representative
sequences, corresponding to a given sequence of flags, has been generated.

Algorithm 4 Function for recursive generation of representative sequences
function GENERATESEQUENCE(
Input: a sequence of flags and a representative sequence
Output: the next representative sequence

for traversing in descending order of do

the value of such that min , with
if then

return

else
0

return 0

2. Recursive generation of flags (Algorithm 5) Let (fj )j∈I1:n−1 be a given sequence
of flags. It is possible to generate a new sequence of flags, (f ′

j )j∈I1:n−1 , by modifying the
current sequence of flags (fj )j∈I1:n−1 according to rules G1–G2, as follows:

f ′
j =

⎧
⎨

⎩

fj − 1, if j > 1 and fj − 1 > fj−1
fj − 1, if j = 1
kj − 1, otherwise.

(9)

Algorithm 5 begins by using rule (9) in symbol fn−1. If the condition fn−1 − 1 > fn−2
is satisfied, the next sequence of flags will be f1f2 · · · fn−2(fn−1 − 1). Otherwise, rule (9)
must be propagated in descending order of I1:n−1, for each fi in sequence (fi)i∈I1:n−2 until
either condition fj − 1 > fj−1 is verified, or when symbol f1 is reached. Algorithm 5 is
the pseudo-code implementation of the procedure for recursive generation of flags.

Algorithm 5 Function for recursive generation of flags
function GENERATEFLAGS

Input: the sequence of flags.
Output: the next generated sequence of flags
for traversing in descending order of do

if 1 then

return

if then

return

else
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Table 1 Series of representative of all automata in C(3,2) generated by using Algorithm 3

f1f2 = 13 f1f2 = 12 f1f2 = 03 f1f2 = 02 f1f2 = 01

(010200,1) (012000,19) (100200,46) (102000,82) (120000,136)

(010201,2) (012001,20) (100201,47) (102001,83) (120001,137)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

(010222,9) (012022,27) (100222,54) (102222,108) (120222,162)

(011200,10) (012100,28) (101200,55) (112000,109) (121000,163)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

(011221,17) (012221,44) (111221,80) (112221,134) (122221,215)

(011222,18) (012222,45) (111222,81) (112222,135) (122222,216)

The following example shows how to generate a set C(n,k) of complete automata in
accordance with Algorithm 3.

Example 1 Let us consider the exhaustive generation of set C(3,2) (i.e., the set of complete
automata with n = 3 states and k = 2 events). Notice that, for this case, each sequence
of flags is of the form (fj )j∈I1:n−1 = f1f2 and each representative sequence has the form
(si)i∈I0:kn−1 = s0 · · · s5. The evolution of Algorithm 3 is summarized in Table 1, whose
column are formed with the series of representative sequences associated with a particular
sequence of flags, and each element of the column is a representative sequence; the numbers
on the right of the comma correspond to the order the sequence was generated.

The algorithm starts with the flag sequence f1f2 = (kj − 1)j∈I1:n−1 = 13 and with the
seed representative sequence 0k−110k−1 . . . (n − 2)0k−1(n − 1)0k = 010200 (element (1,1)
of the Table 1). Then, by calling function GENERATESEQUENCE(s0 · · · s5, f1f2) (line 6 of
Algorithm 3), the series of representative sequences of the first column of the Table 1 is
generated. Notice that the last representative sequence of column 1 is 011222, since, after
its generation, function GENERATESEQUENCE creates the invalid sequence 000000 that is
detected in line 7 of Algorithm 3.

At this stage, function GENERATEFLAGS(f1f2) (line 8 of Algorithm 3) is used to gen-
erate the next sequence of flags, which, in this case, will be f1f2 = 12 (label of the second
column of Table 1); therefore determining a new seed representative sequence 012000 of
Algorithm 3. The process of representative sequence generation is repeated until all columns
of Table 1 have been generated.

The following result gives the value for the cardinality of set C(n,k).

Theorem 4 (Almeida et al. 2007) The cardinality of set C(n,k), with k ≥ 1 and n > 1 is
given by:

∣
∣
∣C(n,k)

∣
∣
∣ =

k−1∑

h1=0

2k−1∑

h2=h1+1

3k−1∑

h3=h2+1

· · ·
k(n−1)−1∑

hn−1=hn−2+1

n∏

i=1

ihi−hi−1−1, (10)

where h0 = −1 and hn = kn.
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Notice that, in applying Theorem 4 to set C(3,2) of CFDAA, then n = 3 and k = 2. Thus,
By using Eq. 10, we obtain the value of |C(3,2)|, as follows:

∣
∣
∣C(3,2)

∣
∣
∣ =

1∑

h1=0

3∑

h2=h1+1

3∏

i=1

ihj −hj−1−1
∣
∣
∣
h0=−1,h3=6

= 216,

which is equal to the number of sequences obtained with the exhaustive generation using
Algorithm 3.

3.2 Exhaustive generation of accessible (but not necessarily complete) automata

The method described in the previous subsection allows to generate C(n,k), the set of com-
plete deterministic and accessible automata, where |X| = n and |Σ | = k. However, what is
really necessary here is to generate sets of accessible, not necessarily complete, automata.
Let us denote by A(n,k) the set of deterministic and accessible automata. In this subsection,
we will propose an algorithm for the generation A(n,k) based on a result that establishes
a bijection between accessible automata and a subset of complete automata presented by
Bassino et al. (2009). We start with the following definition.

Definition 5 (Representative automaton) Let G = (X, Σ, f, Γ, x0) denote an accesible
automaton such that |X| = n and |Σ | = k, where the alphabet Σ = {σ1 ≺ · · · ≺ σk}
is completely ordered. Consider the mapping ψ : X → Σ∗, defined for each x ∈ X, as
follows:

ψ(x) = min≺lex

{
s ∈ Σ∗ : (f (x0, s) = x) ∧ (s is a simple path of G)

}
, (11)

where the minimum is defined in accordance with the lexicographical order ≺lex .4 A rep-
resentative automaton G′ = (X′, Σ, f ′, Γ ′, ε) is an automaton isomorphic to G through
ψ ′ : X → X′ where ψ ′ : X → X′ is the mapping X′ = {ψ(x) : x ∈ X}, where ψ(x) is
defined in Eq. 11.

Notice that, since G is accessible, ψ(x) is defined for all x ∈ X. In addition, since G is a
deterministic automaton, ψ(x1) 
= ψ(x2) for all x1, x2 ∈ X, x1 
= x2, which implies that the
mapping ψ ′ : X → X′ is a bijection; therefore allowing the definition of isomorphism ψ ′ :
G → G′. As a consequence, G′, being isomorphic to G, is also accessible and deterministic.

Example 2 Let us consider automaton G whose state transition diagram is shown in Fig. 3a.
The application of ψ over each state x ∈ X leads to:

ψ ′ = {(x0, ε), (x1, aabc), (x2, aab), (x3, a), (x4, aa)},
from which, it is possible to define the representative automaton G′ shown in Fig. 3b. The
red transitions in automaton G show the minimal simple paths to reach each state of G; for
instance, the shortest path to reach state x4, according to the lexicographical order ≺lex , is
aa.

4The lexicographical order is the order used in a dictionary. Formally, let Σ = {σ1 ≺ · · · ≺ σk} be an ordered
set. The lexicographical order, denoted as ≺lex is the order defined as follows: s ≺lex t , if either s is a prefix
of t , or s = pσ1u

′ and t = pσ2t
′ for some p, u′, t ′ ∈ Σ∗ and σ1, σ2 ∈ Σ with σ1 ≺ σ2.
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a b

Fig. 3 Automaton G = (X,Σ, f, Γ, x0) (a); representative automaton G′ = (X′,Σ, f ′, Γ ′, ε), isomorphic
to G

We will now use the bijection relation proposed in Bassino et al. (2009) to propose an
algorithm for the generation of accessible (but not necessarily complete) automata. In order
to do so, let A = (XA, Σ, fA, ΓA, ε) ∈ A(n,k) denote a representative automaton. Define
φ : A(n,k) → C(n+1,k) as the function that associates automaton A with automaton φ(A) =
(Xφ, Σ, fφ, Γφ, ε) ∈ C(n+1,k), where Xφ = {σkxa : xa ∈ XA} ∪ {ε}, σk = max(Σ), and
with state transition function fφ defined as follows:

• fφ(ε, σ ) =
{

ε, σ 
= σk,

σk, σ = σk.
(12a)

• fφ(xφ, σ ) =
{

σkfA(xA, σ ), if (∃xA ∈ Σ∗)[(xφ = σkxA) ∧ (fA(xA, σ ) 
= ∅)],
ε, if (∃xA ∈ Σ∗)[(xφ = σkxA) ∧ (fA(xA, σ ) = ∅)]. (12b)

Example 3 Let us consider the representative automaton A shown in Fig. 4a, where alphabet
Σ = {a, b} is ordered as a ≺ b. For this automaton, we can obtain automaton φ(A) follow-
ing a two step procedure: (i) we relabel the states of automaton A according to the function
{(xa, σkxa) : xa ∈ XA} = {(ε, b), (a, ba)}, add a new state labeled by ε (which will be
the initial state of φ(A)), therefore obtaining the set Xφ = {ε, b, ba}, and add the transition
(ε, σk, σk) = (ε, b, b) as depicted in Fig. 4b; (ii) we obtain φ(A) by adding all the neces-
sary transitions of the form (xφ, σ, ε) until we have a complete automaton, as represented
in Fig. 4c.

a b c

Fig. 4 Automaton A ∈ A(n,k) (a); first step of the transformation of A into a complete automaton (b);
complete automaton φ(A)
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The following lemma provides the foundation for the generation of the set A(n,k) of
accessible automata using the set C(n+1,k) of complete automata.

Lemma 1 (Bassino et al. 2009) Let E (n+1,k) be the subset of C(n+1,k) formed with all the
complete representative automata E = (XE, Σ, fE, ΓE, ε) such that fE(ε, σ ) = ε for
σ ∈ Σ \ {σk}. Then, function φ is a bijection fromA(n,k) to E (n+1,k).

Remark 2 Notice that if E ∈ E (n+1,k), then φ−1(E) is obtained by deleting the initial state
of E and its transitions, and turning the second state to the initial state in accordance with
the lexicographical order.

It is important to stress that Lemma 1 transforms the problem of generating accessible
automata with n states into the equivalent problem of generating complete automata with
n + 1 states. This is the basis for the formulation of Algorithm 6, which generates the set
A(n,k) of accessible, but not necessarily complete, automata. The correctness of Algorithm 6
is then ensured by the the fact that the representative automaton E = (XE, Σ, fE, ΓE, ε) ∈
E (n+1,k) has the following representative sequence:

sf,E = s1s2 . . . sk(n+1) = 0k−11sk . . . s(n+1)k−1. (13)

Algorithm 6 Exhaustive generation of set of accessible automata

STEP 1. Use Algorithm 3 to generate all the representative sequences corresponding
to the of complete automata and replace the final sequence of
Algorithm 3 (in line 4) with the sequence

STEP 2. Transform each generated sequence into a complete automaton
and, for this automaton, delete the initial state (labeled by

0) and its transitions and define the state labeled by 1 as a new initial state. The
resulting automaton, denoted by , belongs to the set

Due to the structure imposed by Eq. 13 to all representative sequences corresponding to
automata in the set E (n+1,k), the last sequence of flags that can be generated is (fj )j∈I1:n =
(k + j − 2)j∈I1:n . This fact determines that the final sequence in Step 1 of Algorithm 6 must
be s′

f = 0k−112 . . . n n(k−1)n+1.

Example 4 Let us now illustrate the use of Algorithm 6 to generate set A(2,2) of accessible
automata with n = 2 states and k = 2 events.

The first step is to generate the sequences of set C(n+1,k) = C(3,2) (see Example 1) until
the final sequence s′

f = 0k−112 . . . n n(k−1)n+1 = 012222 is reached; this corresponds to
the first 45 sequences listed in columns 1 and 2 of Table 1.

In order to illustrate the second step of Algorithm 1, consider sequence 012000 shown
in Fig. 5a. This representative sequence corresponds to the complete automaton Gc ∈
E (3,2) ⊂ C(3,2) depicted in Fig. 5b. Deleting the state labeled as 0 (together with all of its
transitions) and defining the state labeled by 1 as the new initial state, we obtain the cor-
responding accessible automaton G ∈ A(2,2) shown in Fig. 5c. We perform this step for
all the 45 representative sequences obtained in Step 1, therefore obtaining the entire set
A(2,2).
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a b c

Fig. 5 Representative sequence of an automaton in C(3,2) (a); corresponding complete automaton Gc ∈
C(3,2) (b); accessible automaton G ∈ A(2,2) obtained from Gc (c)

As established in Lemma 1, the sets A(n,k) and E (n,k) have the same cardinality. This
fact allow us to derive the following expression to compute the cardinality of A(n,k):

∣
∣
∣A(n,k)

∣
∣
∣ =

2k−1∑

h1=k

3k−1∑

h2=h1+1

4k−1∑

h3=h2+1

· · ·
kn−1∑

hn−1=hn−2+1

n∏

i=1

(i + 1)hi−hi−1−1, (14)

where f0 = k − 1 and fn = k(n + 1). This equation was obtained by using the formula
provided by Eq. 10 in Theorem 4. We observe that the leftmost summation in Eq. 10, which
corresponds to the positional variation of the first flag f1, must be removed since the struc-
ture of representative sequences imposed by Eq. 13 fixes f1 to k − 1. Then, the second
leftmost summation of Eq. 10, which corresponds to the positional variation of flag f2, must
begin in k since the first k − 1 positions of the representative sequence in Eq. 13 are fixed
to s0 . . . sk−1 = 0k−11. The upper bound of the rightmost summation in Eq. 10 must be
changed from k(n − 1) − 1 to kn − 1 since we apply this formula for the set E (n+1,k). Once
again, since the first flag is held to k − 1, we only need to count the combinatorics of num-
bers determined by the flags f2, f3 . . . , fn, which implies that the summation index must
be changed from ihi−hi−1−1 to (i + 1)hi−hi−1−1.

Let us now illustrate the use of Eq. 14 to compute the cardinality of A(2,2). In this case,

∣
∣
∣A(2,2)

∣
∣
∣ =

3∑

f1=2

2∏

i=1

(i + 1)fi−fi−1−1
∣
∣
∣
f0=1,f2=6

= 20 × 33 + 2 × 32 = 45,

which is equal to the number of sequences obtained in Example 4, according to Algorithm 6.

3.3 Exhaustive experiment for the analysis of average state sizes of diagnosers
and verifiers

Let Σk denote an event set with cardinality k formed with an ordered alphabet and assume
that Σk is partitioned as Σk = Σk,o∪̇Σk,u, where Σk,o = {σ1, σ2, . . . , σk−u} and Σk,u =
{σk−u+1, σk−u+2, . . . , σk}, are the sets of observable and unobservable events, respectively.
Note that |Σk,u| = u, i.e., the last u events of Σk are, by assumption, unobservable. Finally,
assume that σk is the unique failure event.

Let

G
(n,k,u)
i = (Xn,Σk, f

(n,k)
i , Γ

(n,k)
i , 1) ∈ A(n,k),

where Xn = {1, . . . , n}, denote an automaton whose event set Σk is partitioned as above;
therefore having the last u (1 ≤ u < k) events unobservable. The diagnoser (built in
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accordance with Eq. 7) and the verifier (constructed by following the steps of Algorithm 2)
will be denoted, respectively, as:

G
(n,k,u)
D,i = (X

(n,k,u)
D,i ,Σk,o, f

(n,k,u)
D,i , Γ

(n,k,u)
D,i , x

(n,k,u)
0D,i )

and

G
(n,k,u)
V,i = (X

(n,k,u)
V,i , ΣV,k, f

(n,k,u)
V,i , Γ

(n,k,u)
V,i , (0N, 0N)).

Definition 6 (Set of valid automata) An automaton G
(n,k,u)
i ∈ A(n,k) is a valid automaton

for the experimental analysis of average state sizes of diagnosers and verifiers, if it satisfies
the following conditions:

C1. The language generated by G
(n,k,u)
i is live, i.e., Γ

(n,k)
i (x) 
= ∅ for all x ∈ Xn.

C2. For any σ ∈ Σk , there exists x ∈ Xn such that σ ∈ Γ
(n,k)
i (x), i.e., all events in Σk

appear in G
(n,k,u)
i .

C3. G
(n,k,u)
i does not have cyclic paths whose transitions are all labeled with unobservable

events with, at least, one of these transitions, labeled with the failure event σk .

A set A(n,k,u)
v ⊂ A(n,k) formed with those automata that satisfy conditions C1–C3 is called

a valid set of automata.

Although Condition C1 is not necessary, it is usually made, without loss of generality,
in the studies of failure diagnosability of DES. In our case, since all automata are generated
automatically, property C2 ensures that all automata have exactly k events, being exactly u

unobservable; therefore including the failure event. Condition C3 relaxes Assumption A2
(Sampath et al. 1995), which precludes the existence of cycles of states connected with
unobservable events only. According to Condition C3, one of the events in the cycle is
the failure event, and, therefore, only those automata whose structure is known to be non-
diagnosable a priori are being rejected. It is important to remark that, as far as diagnosability
verification using the verifier automaton considered in this paper, not only Condition C3 but
also Assumption A2 can be removed. In such case, Algorithm 2 does not fail to ascertain
the language diagnosability.

We will consider the following class of valid automata:

AE = {A(n,k,u)
v : (n, k, u) ∈ IE},

where,

IE = {(3, 3, 1), (3, 3, 2), (3, 4, 1), (3, 4, 2), (3, 4, 3),

(3, 5, 1), (4, 2, 1), (4, 3, 1), (4, 3, 2), (5, 2, 1)}
These sets have been chosen because, although the corresponding sets of valid automata
have “moderate” cardinality, they are large enough to allow us to obtain significant statistic
conclusions. The variables that will be used to compare the state sizes of automata G

(n,k,u)
D,i

and G
(n,k,u)
V,i for the sets of valid automata A(n,k,u)

v , (n, k, u) ∈ IE are as follows:

1. D(n,k,u) = (D
(n,k,u)
1 ,D

(n,k,u)
2 , . . . ) = (|X(n,k,u)

D,1 |, |X(n,k,u)
D,2 |, . . . ): variable that contains

the number of states of diagnoser D
(n,k,u)
i for each automaton G

(n,k,u)
i of the set of

valid automata A(n,k,u)
v .
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2. V(n,k,u) = (V
(n,k,u)
1 , V

(n,k,u)
2 , . . . ) = (|X(n,k,u)

V,1 |, |X(n,k,u)
V,2 |, . . .): variable that contains

the number of states of verifier V
(n,k,u)
i for each automaton G

(n,k,u)
i of the set of valid

automata A(n,k,u)
v .

The exhaustive experiment for the comparison of the state sizes of diagnosers and
verifiers has been carried out according to the following steps:

Step 1: Generations of setA(n,k,u)
v of valid automata.

This step is performed by combining the algorithm for exhaustive generation of accessi-
ble automata (Algorithm 6) with a rejection algorithm that excludes the automata that do
not satisfy conditions C1–C3.

Step 2: State size determination.
In this step, for each set A(n,k,u)

v of valid automata, taken from the database generated in
Step 1, diagnosers and verifiers are constructed and the corresponding variables D(n,k,u)

and V(n,k,u) with the values of their state space size stored for future statistical analysis.

Table 2 shows the results of the exhaustive experiment for the instances indexed by
(n, k, u) ∈ IE . Columns 2 and 3 show, respectively, the cardinality of sets A(n,k) and
A(n,k,u)

v of accessible and valid automata. Columns 4–6 (resp. 9–10) show the maximum,
the average, and the standard deviation values of variables D(n,k,u) (V(n,k,u)), and col-
umn 7 (resp. 11) shows the upper bound in the number of states given by the worst
case computational complexity, for diagnosers (resp. verifiers) construct for each automata
G

(n,k,u)
i ∈ A(n,k,u)

v . For example, 23,846,125 accessible automata have been generated in
order to form set A(4,3) but, among these automata, 4,577,395 valid automata have been
selected to form A(4,3,1)

v . Notice that, for this set, the maximum and the average variable
D(4,3,1) (V(n,k,u)) are equal to 53 (resp. 20) and 8.7 (resp. 12.8), which means that, for this
case, the average number of states of diagnosers is smaller than that of verifiers.

Comparing the worst case computational complexity, we can see from Table 2 that bound
22n has not been reached by any of the diagnosers and bound 2n2 was reached only once

Table 2 Results of the computational computation complexity analysis of diagnosers and verifiers for
A(n,k,u)

v ∈ AE

Number of automata Diagnoser Verifier

(n, k, u) |A(n,k)| |A(n,k,u)
v | max mD sD 22n max mV sV 2 × n2

(3, 3, 1) 81856 18387 20 5.9 2.9 64 12 7.6 3.1 18

(3, 3, 2) 81856 7231 9 2.7 1.0 64 18 10.3 5.3 18

(3, 4, 1) 6516480 1472867 21 8.4 3.8 64 12 8.9 2.8 18

(3, 4, 2) 6516480 674727 20 4.8 2.4 64 18 12.4 5.0 18

(3, 4, 3) 6516480 280043 9 2.4 0.8 64 18 12.5 5.2 18

(3, 5, 1) 467590144 10830975 21 7.7 3.8 64 12 7.4 3.3 18

(4, 2, 1) 20225 3384 16 3.6 1.5 256 20 8.8 4.5 32

(4, 3, 1) 23846125 4577395 53 8.7 4.7 256 20 12.8 5.0 32

(4, 3, 2) 23846125 1201023 16 3.0 1.1 256 32 19.0 9.2 32

(5, 2, 1) 632700 90533 25 4.0 1.6 1024 30 12.2 6.4 50
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(for A(4,3,2)
v ) by the verifiers. In addition, notice that for all sets A(n,k,u)

v , (n, k, u) ∈ IE , the
average state size of diagnosers is lower than the worst case computational complexity; for
some cases is even lower by several orders of magnitude. On the other hand, the average
state size of verifiers has the same order of magnitude as its worst case complexity.

It is interesting to remark that the average state size of diagnosers (resp. verifiers)
decreases (resp. increases) monotonically with an increase in the number of unobservable
events. For instance, in the sets A(3,4,1)

v , A(3,4,2)
v and A(3,4,3)

v of valid automata, whose
numbers of unobservable events increases from 1 to 3, the average state size of diagnosers
(verifiers) decreases (increases) from 8.4 (resp. 8.9) to 2.4 (resp. 12.5). Another interest-
ing fact is that variables V(3,3,2), V(3,4,2) and V(3,4,3) achieve the worst case complexity of
2 × n2 = 2 × 32 = 18, and, also, V(4,3,2), which has worst case complexity of 2 × 42 = 32.

In summary, the more relevant results of this preliminary study on the average state
sizes of diagnosers and verifiers carried out through exhaustive experimentation on the set
A(n,k,u), for (n, k, u) ∈ IE are as follows: (i) the worst case bound 22n in the state size of
diagnosers is unlike to be reached; (ii) the average state size of verifiers is of the same order
of magnitude as its worst case bound, i.e., 2n2 is also an appropriate bound for the average
state size of verifiers.

Notice that these conclusions are restricted to the small classes of sets of automata
described by A(n,k,u)

v , (n, k, u) ∈ IE . In order to further extend this study and to obtain
significant practical results, it is necessary to consider larger sets of accessible automata
A(n,k) and to formulate quantitative hypothesis regarding the expected values of the size of
diagnosers and verifiers. However, such expansions on the sizes of automata is seriously
hampered by the number of automata in sets A(n,k) when n increases, as shown in Eq. 14.
Exhaustive experiments could be extended further for larger values of n by using super-
computers together with fine tuned programs in a compiled language. However, the scope
of such an approach would still be limited; for example, a computational improvement of
order 106 (a program 1000 times faster running in parallel in 1000 computers) is still a tiny
improvement in the task of testing set A(10,5), whose cardinality is approximately 2.6×1047.

In the next section, we will propose a new approach for the problem of performing the
computation of the number of states of diagnosers and verifiers for instances larger than
those in IE which consists of replacing the whole set of automata in A(n,k) with a uniform
sample of automata in A(n,k).

4 Experimental analysis of average computational complexity of failure
diagnosis of DES using sampling

4.1 Uniform random generation of accessible automata

In this section we will present the method proposed by Bassino and Nicaud (2007) and
Bassino et al. (2009) for the uniform random generation of accessible automata. We start
with the following definition.

Definition 7 (k-Dick partition) Let Q(p,n) denote the class of partitions of set I1:p in n

blocks and assume that Q = {Q0, . . . , Qn−1} is an element of Q(p,n), where the elements of
Q are ordered according to their smallest element. For a given k ≥ 2, a partition Q ∈ Q(p,n)

is a k-Dick if min Qj ≤ kj + 1, j = 0, 1, 2, . . . , n − 1.
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For example, consider partitions Q′ = {Q′
0,Q

′
1} and Q′′ = {Q′′

0,Q
′′
1} of set I1:5, where

Q′
0 = {1, 4, 5}, Q′

1 = {2, 3}, Q′′
0 = {1, 2, 3}, and Q′′

1 = {4, 5}. Notice that Q′ is a 2-Dick
partition since min Q′

0 = 1 ≤ 2 × 0 + 1 = 1 and min Q′
1 = 2 ≤ 2 × 1 + 1 = 3. However,

Q′′ is not a 2-Dick partition since min Q′′
1 = 4 > 2 × 1 + 1 = 3.

Let us now consider a complete accessible representative automaton G′
ca = (X′,Σ ,

f ′, Γ ′, ε) ∈ C(n,k) and let T = {
(x′, σ, f (x′, σ )) : x′ ∈ X′, σ ∈ Σ

} ∪ {(∅, ε, ε)} the set of
all transitions of G′

ca , including the additional transition (∅, ε, ε) (which can be interpreted
as the arrow that points to the initial state in the state diagram of G′

ca). Notice that |T | =
kn + 1 since G′

ca is complete. It is then possible to establish bijection ν : T → I1:kn+1,
defined as follows:

B1. ν((∅, ε, ε)) = 1,
B2. ν((ε, σ1, σ1)) = 2,
B3. For each pair of transitions (r, σa, s) and (t, σb, u) in T \ {(∅, ε, ε)}, then

ν((r, σa, s)) < ν((t, σb, u)) if and only if rσa <lex tσb.

The above defined bijection can be illustrated with the help of the representative automa-
ton shown in Fig. 6a. Automaton G′

ca with transitions numbered according to bijection ν is
depicted in Fig. 6b. Notice that the arrow that points to the initial state has been labeled as 1
(rule B1), ν((ε, a, a)) = 2 (rule B2) and that, according to rule B3, ν((aab, a, aa)) = 6 <

ν((aab, b, aab)) = 7, since aaba <lex aabb. It is worth remarking that the order of the
transitions defined by ν is unique and corresponds to the order in which the transitions of
G′

ca are traversed in a depth-first search algorithm according to a lexicographical order.
After obtaining a bijection that maps the transitions of G′

ca into integers in I1:kn+1, we
will show how G′

ca can be expressed in terms of a k-Dick partition of I1:kn+1 formed with
n sets. In order to do so, let QD = {Q0, . . . , Qn−1} denote a partition built from G′

ca

according to the following rules:

E1. 1 ∈ Q0
E2. If i and j are, respectively, the mapping of transitions

ν((r, σa, s)), ν((t, σb, u)) ∈ T \ {(∅, ε, ε)},
then i, j are in the same element of QD if, and only if, s = u.

The following theorem establishes the bijection between the set of complete accessible
automata and k-Dick partitions.

a b

Fig. 6 Representative automaton G′
ca = (X,Σ, f, Γ, x0) (a); G′

ca with transitions numbered in accordance
with bijection ν (b)
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Theorem 5 Bassino et al. (2009) Let C(n,k) denote the set of complete accessible automata
with n states and k events and Q(kn+1,n) the class of partitions of I1:kn+1 in n blocks. Let
� : C(n,k) → Q(kn+1,n) denote a mapping where QD = �(G′

ca) is a partition built in
accordance with rules E1 and E2. For each n ≥ 1 and k ≥ 2, � is a bijection between
C(n,k) and the set of k-Dick partitions inQ(kn+1,n).

Let us illustrate the construction of the partition associated with a complete accessible
automaton with the help of automaton G′

ca depicted in Fig. 6. Rule E1 imposes that QD =
{{1, . . . },Q1, . . . , Q4}, since n = 5. Rule E2 implies that all transition numbers that arrive
to the same state must belong to the same element of QD . Therefore, the following partition
corresponds to G′

ca :

QD = {{1, 13, 16}, {2, 4, 11, 14}, {3, 6, 9, 12}, {5, 7, 10}, {8, 15}}.

Notice that, the objective here is to generate uniformly distributed accessible automata
within the set A(n,k). In order to do so, we must consider the following relevant facts:
(i) Lemma 1 changes the problem of generating accessible automata with n states in a
problem of generating complete automata within the set C(n+1,k); (ii) Theorem 5 converts
the problem of generating complete automata in C(n+1,k) to a problem of generating k-Dick
partitions of the set I1:kn+1 with n + 1 non-empty blocks.

The problem of generating uniformly distributed accessible automata in the set A(n,k)

has been addressed by Bassino and Nicaud (2007) and Bassino et al. (2009). We will present
in the sequel the three algorithms necessary for the generation of a k-Dick partition QD ∈
Q(k(n+1)+1,n+1) such that �−1(QD) ∈ E (n+1,k) and its transformation into and equiva-
lent accessible automaton. The first algorithm (Algorithm 7) deploys Boltzmann sampler
method to generate the structure of a partition Q ∈ Q(p,n). The second algorithm uniformly
generates a k-Dick partition QD ∈ Q(k(n+1)+1,n+1) such that �−1(QD) ∈ E (n+1,k). Finally,
Algorithm 9 converts the partition generated in Algorithm 7 to an automaton A ∈ A(n,k).
The interested reader is referred to the works by Bassino and Nicaud (2007) and Bassino
et al. (2009) for the theoretical justification of the algorithms. The example that follows
illustrates the application of Algorithms 7, 8 and 9 to the uniform generation of a 2-Dick
partition.

Algorithm 7 Generation of the structure of a partition
Inputs: Integers and
Output: Structure of a partition in the set

STEP 1: Compute by solving the following equation

(15)

STEP 2: Generate a vector of integers r using the shifted Poisson
distribution Poisson

STEP 3: If go back to Step 2. Otherwise form set as follows:
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Algorithm 8 Uniform generation of a -Dick partition of such that

Inputs: number of states and events, and , respectively, and a structure of a partition
in the set
Output: a -Dick partition such that

STEP 1: Use Algorithm 7 to obtain a structure of a partition in

STEP 2: Generate a uniformly distributed bijection

STEP 3: Form set

STEP 4: Define in such a way that sets are
ordered in accordance with the smallest element and

STEP 5: Choose uniformly an integer and set

STEP 6: If , obtained in Step 5, is not a -Dick, go back to Step 1. Otherwise terminate
the algorithm.

Algorithm 9 Transformation of a -Dick partition into an accessible automaton

Input: A -Dick partition of such that , and an
ordered alphabet , where
Output: An accessible automaton STACK

2

3 2 (second state of the automaton according to a lexicographical order, being 1
the initial state)

4 for traversed in inverse order do
5 PUSH

6 for do
7

8 , where is the label associated with set for which
9 if then
10

11 for traversed in inverse order do
12 PUSH

13 if 0 then
14

End Set , where and and are
obtained from the transitions defined in

Example 5 Assume that we want to generate an automaton in A(2,2) with uniform distribu-
tion. In this case, n = k = 2, and, thus, according to Algorithm 9, it is necessary to generate
a 2-Dick partition of Q(7,3) with uniform distribution. Such a partition can be obtained by
following the steps of Algorithm 8, whose first step is to use Algorithm 7 to generate a
structure of a partition in Q(5,3), as follows:

1. Solving equation λ − 5
3 (1 − e−λ) = 0, we obtain λ = 1.1262.

2. We use the shifted Poisson distribution Poisson>1(1.1262) to generate a partition
structure r = (r1, r2, r3).
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3. Assume that a first run returns r = (1, 2, 1). Since
∑3

i=1 ri = 4 
= p = 5, another
vector must be generated.

4. Assume that after a few runs, vector r = (1, 2, 2) is generated. Since
∑3

i=1 ri = 5, the
following partition structure can be returned from Algorithm 7:

R = {{1}, {2, 3}, {4, 5}}.
Once a partition structure has been generated, the next steps of Algorithm 8 must be
executed, as follows:

1. Step 2: assume that the following uniformly distributed random bijection δ : I1:5 →
{1, 3, 4, 5, 6} has been generated:

δ = {(1, 5), (2, 3), (3, 4), (4, 6), (5, 1)}.
2. Step 3: using the bijection obtained in the previous step, we replace the elements of

Rj ∈ R, j = 1, 2, 3 with δ(i), and obtain QD = {{5}, {3, 4}, {6, 1}}.
3. Step 4: we must order QD according to the smallest elements and, in the sequel,

redefine QD,0 ← QD,0 ∪ {2}. Proceeding in this way, we obtain QD =
{QD,0,QD,1, QD,2} = {{1, 2, 6}, {3, 4}, {5}}.

4. Step 5: a random number j ∈ {0, 1, 2} must be uniformly chosen. Assume that j = 1
has been drawn. Therefore, QD,1 ← QD,1 ∪ {k(n + 1) + 1} = QD,1 ∪ {7}, and so,
QD = {{1, 2, 6}, {3, 4, 7}, {5}}.

5. Step 6: It can be easily checked the QD is a 2-Dick partition, and, thus, Algorithm 8
comes to an end.

We will now perform the steps of Algorithm 9 to transform partition QD = {{1, 2, 6},
{3, 4, 7}, {5}} in an automaton A = (I1:2, {a, b}, fA, ΓA, 1) ∈ A(2,2). Notice that the
algorithm variables are as follows:

– S: stack (initially empty);
– T : set of the transitions of automaton A (initially empty);
– qlex : index of the next state to be visited according to the used lexicographical order

(initialized in 2, since 1 is the initial state);
– (p, σ, q): candidate transition to be added.

The loop defined in lines 4 and 5 of the algorithm initializes the stack with ordered pairs of
form (1, σ ′), where the first entry is the initial state and the second one is an event of the
alphabet, as follows:

Note that the pairs are placed in the stack in reverse lexicographical order. The main
loop (lines 6–14) iterates on the elements of set k + 2 : k(n + 1) + 1 = {4, 5, 6, 7}, which
enumerates all possible transitions of the accessible automaton that is being constructed.
Table 3 shows the values of all variables for each value of i ∈ {4, 5, 6, 7} at the end of
each iteration; for example, the first row of Table 3 shows the values the variables for i =
4 that have been obtained as follows: (i) pair (p, σ ) = (1, a) is removed from S (line
7); (ii) since i = 4 ∈ QD,1, the output state of the first transition is q = 1 (line 8);
(iii) since q 
= qlex , lines 10–12 are not executed; (iv) since q 
= 0 (checked in line 13),
transition (1, a, 1) is added to T (line 14). Finally, when i = 7, the transition set T =
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Table 3 Execution of Algorithm 9 to convert partition QD = {{1, 2, 6}, {3, 4, 7}, {5}} into an accessible
automaton

qlex (p, σ, q) S T

i = 4 2 (1, a, 1) {(1, a, 1)}

i = 5 3 (1, b, 2) {(1, a, 1), (1, b, 2)}

i = 6 3 (2, a, 0) {(1, a, 1), (1, b, 2)}

i = 7 3 (2, b, 1) {(1, a, 1), (1, b, 2), (2, b, 1)}

{(1, a, 1), (1, b, 2), (2, b, 1)} is obtained, leading to the automaton whose state transition
diagram is depicted in Fig. 7.

4.2 Evaluating the sample size of the experiment

In this subsection, we will determine the sample size necessary to draw significant statistical
conclusions regarding the average state sizes of diagnosers and verifiers within a specified
confidence interval based on two fundamental results of probability theory: the strong law
of large numbers and the central limit theorem.

Let us consider the sample Y = (Y1, Y2, . . . , YN) of size N such that E[Yi] = m and
var[Yi] = s2 , where E[ · ] and var[ · ] denote, respectively, expected value and variance.
The strong law of the large numbers ensures that the sample mean

MN = 1

N

N∑

i=1

Yi

is a consistent estimator for the value of m. If EN = MN − m is defined as the random
variable that represents the error in the estimation of m, then the central limit theorem estab-
lishes that EN ≈ N(0, s2/N), i.e., the variable that represents the error in the estimation
of m has an approximately normal distribution (Gubner 2006). Based on these facts, the
confidence interval for m will be given as:

[

MN − sz1−α/2√
N

,MN + sz1−α/2√
N

]

, (16)

Fig. 7 Accessible automaton
A ∈ A(2,2) corresponding to
partition
QD = {{1, 2, 6}, {3, 4, 7}, {5}},
obtained according to
Algorithm 9
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Table 4 Maximum percent error
in the estimation of mean ρ of
variables D(n,k,u) and V(n,k,u) for
a sample size N = 10, 000

(n, k, u) ρmax,V ρmax,D

(3, 3, 1) 0.0080 0.0097

(3, 4, 1) 0.0063 0.0088

(3, 4, 2) 0.0080 0.0096

(3, 4, 3) 0.0082 0.0068

(3, 5, 1) 0.0089 0.0098

(4, 3, 1) 0.0076 0.0108

(4, 3, 2) 0.0096 0.0071

(5, 2, 1) 0.0104 0.0078

where z1−α/2 is the value of z for which φ(z) = 1 − α/2, being φ(z) the standard normal

continuous density function, i.e., φ(z) = 1
2π

∫ z

−∞ e
−t2

2 dt . Based on that, we can define the
percent error in the estimation of m as follows:

ρ = sz1−α/2

MN

√
N

. (17)

We can now evaluate the sample size to be used in the experiments for the estimation of
the average state sizes of diagnosers and verifiers. Consider the following specifications: (i)
confidence level of 95%, (ii) percent error ρ = 1%. Specification (i) implies that 1 − α =
0.95 and thus α = 0.05 and z1−α/2 = 1.96. The exact values of the mean and of the standard
deviation, m and s, respectively, were determined exactly for state sizes of verifiers and
diagnosers in the exhaustive experiments carried out in Section 3.3 (see Table 2). Based on
those values, we will now check if the sample size N = 10, 000 guarantees a confidence
interval that also satisfies specifications (i) and (ii).

Columns 2 and 3 of Table 4 show the maximum percent error (calculated using Eq. 17
with the exact value for the mean of each variable,, i.e., with MN = m) in the estimation of
the mean for the variables D(n,k,u) and V(n,k,u), respectively, that represent the average state
sizes of diagnosers and verifiers for the valid sets of automata with n states, k events, and u

unobservable events. Notice that for all variables, the maximum error in the estimation of m

is close to 1%. Therefore, N = 10, 000 represents a reliable sample size for an experiment
with uniform sample based on the partial knowledge provided by the exhaustive experiment.

4.2.1 Experimental procedure

Let us denote Â(n,k,u)
v the set formed with N = 10, 000 valid automata uniformly generated

according to Algorithms 8 and 9. For the experimental analysis carried out here, the sets of
uniformly generated valid automata belonging to the following class have been considered:

AU = {Â(n,k,u)
v : (n, k, u) ∈ IU },

where

IU = I1 ∪ I2,∪I3,

I1 = {(n, k, u) : n ∈ I3:20, k ∈ I2:10, u ∈ I1:k−1},
I2 = {(n, k, u) : n ∈ I3:20, k ∈ {16, 24}, u ∈ I1:k−1},
I3 = {(n, k, u) : n ∈ {32, 64}, k ∈ I2:10 ∪ {16, 24}, u ∈ I1:k−1}.
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It can be easily checked that 16,600,000 automata have been used in the experiments, since
|AU | = 1660, i.e., 1660 sets of uniformly generated valid automata have been created.

For each set Â(n,k,u)
v , (n, k, u) ∈ IU , the following variables have been considered in the

experiments:

1. D̂(n,k,u) = (D
(n,k,u)
1 ,D

(n,k,u)
2 , . . . , D

(n,k,u)
10000 ): variable with 10,000 components, where

each component represents the cardinality of the set of states of the diagnoser associated
with automaton G

(n,k,u)
i ∈ Â(n,k,u)

v , i.e., D
(n,k,u)
i = |X(n,k,u)

D,i |.
2. V̂(n,k,u) = (V

(n,k,u)
1 , V

(n,k,u)
2 , . . . , V

(n,k,u)
10000 ): variable with 10,000 components, where

each component represents the cardinality of the set of states of the verifier associated
with automaton G

(n,k,u)
i ∈ Â(n,k,u)

v , i.e., V
(n,k,u)
i = |X(n,k,u)

V,i |.
The experiments have been performed in two steps,

Step 1: Generation of set Â(n,k,u)
v of uniformly generated valid automata:

This step is performed by combining the uniform generator of automata described in Sec-
tion 4.1 with a rejection algorithm. For each automaton generated, the set of observable
events Σk,o and the set of failure event Σf = {σk} are defined, leading to a candi-

date automaton G
(n,k,u)
i . In the sequel, the rejection algorithm checks if G

(n,k,u)
i satisfies

Properties C1–C3, and if it does so, G
(n,k,u)
i will be incorporated to set Â(n,k,u)

v . Other-
wise another automaton is generated. The process continues until 10,000 valid automata
are generated.

Step 2: Computation of state sizes
In this step, a diagnoser and a verifier are constructed for each automaton G

(n,k,u)
i ∈

Â(n,k,u)
v , forming variables D̂(n,k,u) and V̂(n,k,u).

4.3 Data exploratory analysis

We will now present the statistical analysis based on the experimental results of variables
D̂(n,k,u) and V̂(n,k,u), (n, k, u) ∈ I1. Notice that, since |I1| = 810 and 10,000 is the sample
size, 8,100,000 diagnosers and 8,100,000 verifiers have been computed.

4.3.1 Diagnoser average state size analysis

Figure 8a and b show in logarithmic scale (base 2),5 the average state size and the standard
deviation of the state sizes of the diagnosers computed in the experiment for class I1. The
abscissa and ordinate represent, respectively, the number of states and events of G and the
colormap, the number of unobservable events. The most relevant observations that can be
made from the plots are as follows:

– The average state size of diagnosers has a monotonic sub-exponential behavior. Such
information can be extracted directly from Fig. 8a, since the plot has logarithmic scale.

– For a class formed with sets of automata Â(n0,k0,u)
v , where n0 and k0 are fixed, and differ

only in the number u ∈ I0:k−1 of unobservable events, the largest average state size is
obtained for Â(n0,k0,1)

v , i.e, for the set of automata with only one unobservable event.

5Base two has been chosen since the worst case computational complexity for diagnoser is O(2n).
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a

b

c

Fig. 8 Average of observed variables D̂(n,k,u), (n, k, u) ∈ I1 (a); Standard deviations of variables D̂(n,k,u),
(n, k, u) ∈ I1 (b); Histograms of variables D̂(n,k,u), n ∈ I15:18, k ∈ I6:9, u ∈ {1, 2, 3} (c)
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Such a conclusion is consistent with Jirásková and Masopust (2012), which shows that
the worst case computational complexity of natural projections of language occurs for
automata with least transitions labeled with unobservable events. On the other hand,
the smallest average state size is obtained for Â(n0,k0,k−1)

v , i.e., when there is only one
observable event. Notice that the average state size decreases monotonically with the
increase of unobservable events.

As we can observe in Fig. 8b, the standard deviations of variables D̂(n,k,u), (n, k, u) ∈ I1
have a similar behavior as that of the averages discussed above.

Figure 8c shows the histograms for variables D̂(n,k,u), n ∈ I15:18, k ∈ I6:9, u = 1, 2, 3,
where all plots in the same row (resp. column) have the same number of events (resp. states),
and the colors identify different numbers of unobservable events. It can be seen from the
plots that it is possible to establish a lognormal pattern for the distribution of state size of
diagnosers, similar to that obtained when exhaustive experiments were carried out (Clavijo
2014).

4.3.2 Verifier average state size analysis

Figure 9a shows, in squared scale in the number of states,6 the average state size of the veri-
fiers computed in the experiment for class I1. From the plot, the most important observations
that can be made are as follows:

O1. Due to vertical axis square scale, the average state size of verifiers is quadratic. In
order to further highlight this conclusion the plane 2n2 has been represented over the
points corresponding to the sample means.

O2. For a class formed with sets of valid automata Â(n0,k0,u), where n0 ∈ I3:20 and
k0 ∈ I2:10 are fixed, differing only in the number of unobservable events, the small-
est average state size of verifiers appears in the set Â(n0,k0,1), i.e., with only one
unobservable event.

O3. For k0 ≥ 4, the average state size of verifiers for sets Â(n,k0,u), u ∈ I2:10, is
approximately equal to 2n2.

Figure 9b shows the standard deviations of variables V̂(n,k,u), (n, k, u) ∈ I1. The
most important conclusion that can be drawn from this plot is that the standard deviation
decreases with an increase in the number of events; for example, for k = 10, the stan-
dard deviation is approximately equal to 4 (states), for any number n of states. Such a fact
corroborates observation (O3) in the sense that not only the average state size of verifiers
approximates 2n2 but also most of the verifiers constructed has 2n2 states. Finally, Fig. 9c
shows the histograms of variables V̂(n,k,u), n ∈ I11:14, k ∈ {4, 5, 8, 10}, u = 1, 2, 3, where
all plots in the same row (resp. column) have the same number of events (resp. states),
and the colors identify different number of unobservable events. The abscissas of each his-
togram ranges from 0 to 2n2. A closer look at the diagram also reveals that the state size of
verifiers concentrates in two values: for u = 1, it concentrates in the neighborhood of n2,
and for u = 2, 3, it concentrates near 2n2.

6This scale has been chosen since the worst case computational complexity of verifiers proposed by Moreira
et al. (2011) and Moreira et al. (2016) is O(n2)
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a

b

c

Fig. 9 Average of observed variables V̂(n,k,u), (n, k, u) ∈ I1 (a); Standard deviation of variable V̂(n,k,u),
(n, k, u) ∈ I1 (b); Histograms of variables V̂(n,k,u), n ∈ I11:14, k ∈ {4, 5, 8, 10}, u ∈ {1, 2, 3} (c)
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a b

Fig. 10 Box plots of the percent error in the estimation of the sample means D̃(n,k,u), (n, k, u) ∈ I1 (a); Box
plot of the percent error in the estimation of the mean Ṽ(n,k,u), (n, k, u) ∈ I1 (b)

4.3.3 Checking the correctness of the sample size

We will now check if the sample size (10,000) computed in Section 4.2 has actually made
the error in the estimation of the expected value in the construction of diagnosers and
verifiers less than 1%. We start by defining the following variables:

– ED = {ρ(n,k,u)
D : (n, k, u) ∈ IU }: set of points representing the distribution of the

percent error in the estimation of the expected values of variables D(n,k,u) using the
central limit theorem. Each value ρ

(n,k,u)
D ∈ R represents the percent error of the sample

mean D̂(n,k,u) when used as an estimate of D(n,k,u), i.e., the expect value of the state
size of diagnosers for a set of valid automata A(n,k,u)

v . The value of each ρ
(n,k,u)
D was

calculated using Eq. 17 with a confidence level equal to 95%.
– EV = {ρ(n,k,u)

V : (n, k, u) ∈ IU }: set of points that represent the distribution of the
percent error in the estimation of the expected values of variables V(n,k,u) using the cen-
tral limit theorem. Each value ρ

(n,k,u)
V ∈ R gives the percent error of the sample mean

V̂(n,k,u) as an estimate of V(n,k,u), and was computed using Eq. 17 with a confidence
level of 95%.

Figure 10a and b show the box plots7 of the percent errors in the estimation of the sample
means D̃(n,k,u) and Ṽ(n,k,u), (n, k, u) ∈ IU , respectively. From the box plot of ρD , shown in
Fig. 10a, we can draw the following conclusions regarding the behavior of the percent error
in the estimation of the expected values of variables D(n,k,u), (n, k, u) ∈ IU , as follows:
(i) the medians indicate that the error is approximately equal to 1%; (ii) the third quartile
indicate that typical errors can be as large as 1.5%; (iii) the maximum value of the error
is approximately 3%. The box plot EV shown in Fig. 10b allows us to draw the following

7A box plot is a graphical display that provides a visual representation of the five-number summary of a data
set: first quartile Q1, median, third quartile Q3 and the maximum value. The box of the plot contains the
central 50% of the distribution, from the first (Q1) to the third (Q3) quartile. A line inside the box marks the
median. The lines extending from the box are called whiskers, and encompass the rest of the data, except for
potential outliers (data that lie more than 1.5IQR = 1.5(Q3 − Q1) below the Q1 and above Q3), which are
shown separately (Hair et al. 2007).
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conclusions regarding the percent error in the estimation of the average state size of veri-
fiers: (i) the median of the error is approximately 0.03%; (ii) the third quartile indicates that
typical errors can reach 0.1%; (iii) only outliers can reach 1%. We can, therefore, conclude
that the choice of a sample size equal to 10,000 provides statistical conditions closed to that
specified for diagnosers and verifiers.

4.4 Empirical models for the average state sizes of verifiers and diagnosers

Based on the results of the experiments with uniform sampling, we will now propose
experimental models for the average state sizes of verifiers and diagnosers.

4.4.1 An empirical model for the average state size of verifiers

Let MV (n, k, u) and M̂V (n, k, u) denote the functions that map a point (n, k, u) ∈ IU to
the expected values of the state size of the verifiers built for the elements of A(n,k,u)

v (of all
valid automata), and to the sample mean of the state sizes of verifiers of the elements of
Â(n,k,u)

v (of all valid automata generated with uniform distribution), respectively. As shown
in Section 4.3.3, with sample size N = 10, 000, M̂V (n, k, u) is a very close estimation of
the expected value MV (n, k, u) of the state size of verifiers (with around 0.1% of error).
Therefore, based on the growth of M̂V (n, k, u), we will propose an empirical model for
the average state size of verifiers. The strategy adopted here is to carry out nonlinear least-
square regression on the contours of M̂V (n, k0, u0), where k0 and u0 are fixed, using the
following nonlinear regression model (Fox and Weisberg 2011):

M̂V (n, k0, u0) = f (n; (a, b)) + en, (18)

where f (n; (a, b)) is a model with parameters a and b, and en is the n-th residual for n ∈
I3:20. A numerical algorithm for the minimization of the weighted sum of square residuals

S(a, b) =
∑

n∈I3:20

wn(M̂V (n, k0, u0) − f (n; (a, b)))2, (19)

where wn is a parameter that is used to weigh the fit quality in different points, will be used
to find the parameters of each contour.

Function f (n; (a, b)) in Eq. 18 is defined (depending on the number of unobservable
events), as follows:

– For u0 = 1, f (n; (a, b)) = (n + a)b for the ten contours M̂V (n, k0, 1) that correspond
to each value of k0 ∈ I2:10 ∪ {16}.

– For u0 = 2, f (n; (a, b)) = 2(n + a)b for the nine contours M̂V (n, k0, 2) that
correspond to each value of k0 ∈ I3:10 ∪ {16}.

These functions have been chosen since the results shown in Fig. 9 suggests a quadratic
model. Then, we cannot expect to find a lower growth model in average state size of
verifiers.

Table 5 presents the regression models for the contours M̂V (n, k0, u0) that were calcu-
lated8 for wn = 1, n ∈ I3:20. For example, for k0 = 3 (second row of Table 5), the following
models were obtained: (i) (n−0.62)1.93 for u0 = 1, which gives an estimation of the asymp-
totic growth in the average state size equal to n1.93; (ii) 2(n − 0.88)1.92 for u0 = 2, which

8The calculation was carried out using the open source statistic package R (The R foundation 2016).
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Table 5 Regression models of the contours M̂V (n, k0, u0) used to approximate the growth of the average
state size of verifiers

u0 = 1 u0 = 2

k0 Model �(·) Model �(·)

2 (n + 0.25)1.51 n1.51 – –

3 (n − 0.62)1.93 n1.93 2(n − 0.88)1.92 n1.92

4 (n − 0.01)1.97 n1.97 2(n − 0.42)1.98 n1.98

5 (n + 0.23)1.99 n1.99 2(n + 0.19)1.99 n1.99

6 (n + 0.33)1.99 n1.99 2(n + 0.11)2.00 n2.00

7 (n + 0.39)2.00 n2.00 2(n + 0.06)2.00 n2.00

8 (n + 0.42)2.00 n2.00 2(n + 0.04)2.00 n2.00

9 (n + 0.44)2.00 n2.00 2(n + 0.03)2.00 n2.00

10 (n + 0.45)2.00 n2.00 2(n + 0.02)2.00 n2.00

16 (n + 0.48)2.00 n2.00 2(n + 0.00)2.00 n2.00

leads to an estimation of the asymptotic growth in the average state size equal to n1.92. Fig-
ure 11a–f show, using logarithmic scales for both axis, the fit between different contours
M̂V (n, k0, u0) and their corresponding models, represented by the dashed lines in the plots.
The values n = 32 and n = 64 correspond to the experimental results used to validate the
model over extrapolated values different from those used in the computation of the regres-
sion model. As seen in the plots, there is a significant agreement between each contour
M̂V (n, k0, u0) and the corresponding regression model.

The results obtained in the regression models for the contours of M̂V (n, k0, u0) indicate
that for k0 ≥ 5, the average state size of verifiers is quadratic (approximately). Such an
observation is illustrated in Fig. 12a and b; Fig. 12a depicts the surface M̂V (n, k, 1), n ∈
I3:20∪{32, 64}, k ∈ I2:10∪{16}, i.e., with one unobservable event only, from where, it can be
seen that, as expected, it converges to plane (n+0.48)2, and Fig. 12b shows the simultaneous
graphical representations of surfaces M̂V (n, k, u), n ∈ I3:20 ∪ {32}, k ∈ I2:10 ∪ {16}, u ∈
{2, . . . , k − 1)}, i.e., with two or more unobservable events, which are bounded above by
plane 2n2. As a consequence, the asymptotic growth of the surface M̂V (n, k, u), (n, k, u) ∈
IU can be empirically modeled as �(n2). In addition, as observed in Figs. 11 and 12a, b, the
empirical model of growth n2, when extrapolated to values of n and k outside the regression
interval, was also verified. Based on these observations, we make the following conjecture.

Conjecture 1 The verifiers built in accordance with Moreira et al. (2011) have state size
�(n2), on the average.

4.4.2 An empirical model for the average state size of diagnosers

Let MD(n, k, u) and M̂D(n, k, u) denote the functions that associate a point (n, k, u) ∈
IU to the expected value of the computational complexities of the diagnosers built for the
elements of set A(n,k,u)

v of all valid automata, and to the sample means of the state size
of the diagnosers built for the set Â(n,k,u)

v of all valid automata generated with uniform
distribution.
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a b

c d

e f

Fig. 11 Plots of the regressions of the contours MV (n, k0, u0) for a few values of k0 and u0. The points in
green correspond to the values used for the computation of the regression model, the dashed line represents
the regression model and the red points are experimental results used to validate the extrapolation of each
model

As shown in Section 4.3.3, the sample size N = 10, 000 ensures that the sample
mean M̂D(n, k, u) can estimate the expected value MD(n, k, u) with around 1% of per-
cent error. In addition, according to the experimental results of Section 4.3.1, the sample
means of the state size of the instances tested in the experiment, are bounded above by
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a

b

Fig. 12 Convergence of surface Mv(n, k, 1), n ∈ I3:20 ∪ {32, 64}, k ∈ I3:10 ∪ {16} to plane (n + 0.48)2 (a);
convergence of surface Mv(n, k, u), n ∈ I3:20 ∪ {32}, k ∈ I3:10 ∪ {16}, u ∈ {2, . . . , max(k − 1, 8)} to plane
2n2 (b)

the surface M̂D(n, k, 1), i.e., M̂D(n, k, k − 1) ≤ · · · ≤ M̂D(n, k, 2) ≤ M̂D(n, k, 1).
Therefore, the largest sample mean of the state sizes appears in the sets A(n,k,1)

v formed
with all valid automata with only one unobservable event; Fig. 8a illustrates this fact
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Table 6 Empirical models for
the estimation of the average
state size of diagnosers

k0 Model �(·)

2 (n + 4.72)0.62 n0.62

3 (n + 1.90)1.32 n1.32

4 (n + 2.29)1.63 n1.63

5 (n + 2.06)1.84 n1.84

6 (n + 1.61)2.00 n2.00

7 (n + 1.36)2.13 n2.13

8 (n + 0.95)2.24 n2.24

9 (n + 0.62)2.34 n2.34

10 (n + 0.30)2.42 n2.42

16 (n − 1.20)2.76 n2.76

24 (n − 2.49)3.05 n3.05

for M̂D(n, k, u), (n, k, u) ∈ I1. This fact suggests that it is possible to use the surface
M̂D(n, k, 1) in order to obtain an empirical model for the average state size of diagnosers.

As in the case of verifiers, in order to estimate the growth of state size of diagnosers, we
will use the following non-linear regression model:

M̂D(n, k0, 1) = (n + a)b + en, (20)

where a and b are the parameters of the model, and en is the n-th residual for n ∈ I3:20. We
use the algebraic model of Eq. 20 since other lower models commonly used (for instance,
log n, n log n) are not an upper bound for M̂D(n, k0, 1) and, as shown in Fig. 8, we have
obtained that the growth of M̂D(n, k0, 1) is subexponential. The model parameters will be
estimated by minimizing the following weighted sum of the square residuals:

S(a, b) =
∑

n∈I3:20

wn(M̂D(n, k0, 1) − (n + a)b)2,

where wn = n, n ∈ I3:20, since the objective is to identify the asymptotic growth of the
curves M̂D(n, k0, 1), and, thus, smaller values of n are less important.

Table 6 shows the regression models found for the contours M̂D(n, k0, 1), k0 ∈ I2,10 ∪
{16, 20, 24}; for example for k0 = 6 (fifth row of the table), the corresponding model is
(n + 1.61)2.00, which leads to n2.00, as an estimate for the asymptotic growth.

Figure 13a–f show, using a logarithmic scale for both axes, the fit of some of the contours
M̂D(n, k0, u0) of Table 6 together with their corresponding models; each regression model
is represented in the graph by a dashed line. As expected, the fit is better for higher values
of n, which is due to the choice of weights. Notice that, even the values of the average state
sizes for n = 32 and n = 64 (used for validating the model extrapolation) are bounded
above by the regression model.

In order to provide an order of magnitude for the asymptotic growth, we will now inves-
tigate the behavior of exponent b in Expression (20) in terms of the number of events k

using the following linear model:

b = c1 log k0 + c2,
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a b

c d

e f

Fig. 13 Plots of the regressions of the contours MD(n, k0, u0) for a few values of k0 and u0. The points in
green correspond to the values used for the computation of the regression model, the dashed line represents
the regression model and the red points are experimental results used to validate the extrapolation of each
model

where c1 and c2 are the model parameters and k0 is the regressor. Carrying out a linear
regression based on the values of b of the empirical models of Table 6, we obtain the
following linear model:

g(n, k) = n0.77 log k+0.63, (21)
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a b

Fig. 14 Curve of exponent b and the regression model as a function of the number of events (a); MD(n, k, 1)

and surface n0.77 log k+0.63 (b)

that represents an estimation on the growth of surface M̂D(n, k, 1), n ∈ I3:20 ∪{32, 64}, k ∈
I2:10 ∪ {16, 24, 32}, as shown in Fig. 14b. Therefore, we can make the following conjecture
about the average state size of diagnosers.

Conjecture 2 The diagnosers built in accordance with Sampath et al. (1995) have state size
�(n0.77 log k+0.63), on the average.

5 Conclusions

The purpose of this paper was to carry out an experimental study on the average state sizes of
diagnosers and verifiers used in diagnosability analysis. In this regard, the first contribution
of this paper is to introduce a method for experimental analysis of the computational com-
plexity of algorithms proposed in DES theory using deterministic and accessible automata
generators (reported in the Computer Science community literature) and data analysis. We
also build over the previously known results by proposing an algorithm for exhaustive
generation of sets of accessible (not necessarily complete) automata with n states and k

events.
By restricting the scope to the specific instances included in this study, the main

conclusions that can be drawn from the experimental analysis carried out here are as follows:

1. The diagnoser proposed by Sampath et al. (1995) is, in average, easier to build than
expected when we just consider the worst-case computational complexity upper bound
given by O(22n). In this regard, it is conjectured here that the state size of diagnosers
is �(n0.77 log k+0.63), on the average, where n and k are, respectively, the number of
states and events of the input automaton, and was obtained by performing successive
regressions of the sample means.

2. The average state size of the verifier proposed by Moreira et al. (2011) is of quadratic
order in the number of states of the input automaton. According to the results shown in
Sections 4.3.2 and 4.4.1, the state size of verifiers becomes progressively concentrated
around n2 (for automata with one unobservable event and) and 2n2 (for automata with
more than one unobservable event) with the increase in the number of events of the
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input automata. This behavior makes clear that the previously established quadratic
worst-case complexity of the algorithm proposed by Moreira et al. (2011) is indeed a
tight bound.

It is worth remarking that the algorithm for automaton generation used here does not pre-
clude the possibility of generating non-minimal state automata. How minimal automata may
affect the conjectures made here may be a problem of interest for future investigation.

Finally, it is important to remark, as pointed out by McGeoch (2012), that the main objec-
tive of studying algorithm performance by means of empirical methods is to get insights
about the complexity of algorithms and to make quantitative hypothesis on their complexi-
ties that can be either extended or validated by creating a theory that explains the observed
behavior.
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