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Abstract

In this paper, algorithms for the computation of all matrices of the generalized polyno-
mial Bezout identity are proposed. The algorithms are based on the computation of minimal
polynomial basis for the right null spaces of certain polynomial matrices. For this reason,
an algorithm for the computation of minimal polynomial bases is also proposed. Since this
algorithm relies solely on singular value decompositions of certain real matrices, formed with
the coefficients of the polynomial matrix whose minimal polynomial bases one is interested
in finding, it can be said to be robust.
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1. Introduction

In dealing with polynomial matrices, a particular problem which is important
from both, mathematical [1,2] and system theory [3–5] points of view, is the com-
putation of the solution of the generalized polynomial Bezout identity. This problem
can be formulated as follows: giving a matrix G(s) belonging to the ring of rational
matrices of dimension p × q (here denoted as Rp×q(s)) find matrices N(s), M(s),
Ñ(s), M̃(s), X(s), Y (s), X̃(s) and Ỹ (s) of appropriate dimensions belonging to the
ring of polynomial matrices (here denoted as Rm×n[s], where m and n may assume
the values of p or q when appropriate) such that

G(s) = N(s)M−1(s) = M̃−1(s)Ñ(s), (1)

and satisfy the generalized Bezout identity[
X̃(s) −Ỹ (s)

−Ñ(s) M̃(s)

] [
M(s) Y (s)

N(s) X(s)

]
=

[
Iq O

O Ip

]
, (2)

where In, n = p, q denotes the identity matrix of order n. Notice that Eq. (2) implies
that the polynomial matrices N(s) and M(s) (Ñ(s) and M̃(s)) are right (left) co-
prime. For this reason, they are usually referred, in the literature, to as a doubly
coprime matrix fraction description (MFD) for G(s).

The usual way to compute the matrices M(s), N(s), M̃(s), Ñ(s), X(s), Y (s),
X̃(s) and Ỹ (s) which satisfy Eqs. (1) and (2) is as follows: (i) find right and left
coprime MFD for G(s); (ii) find polynomial matrices X1(s), Y1(s), X̃(s) and Ỹ (s)

which satisfy, independently, the Bezout equations X̃(s)M(s) − Ỹ (s)N(s) = Iq and
M̃(s)X1(s) − Ñ(s)Y1(s) = Ip; (iii) defining Q(s) = X̃(s)Y1(s) − Ỹ (s)X1(s) then
it is clear that X(s) = X1(s) − N(s)Q(s), Y (s) = Y1(s) − M(s)Q(s) satisfy the
generalized Bezout equation (2). The computation of right and left coprime MFD
of given rational matrix can be carried out in several ways (see [6] and the ref-
erences therein), while algorithms for solving the Bezout identity are given in
[7–11].

To the authors’s knowledge, the problem of solving directly the generalized poly-
nomial Bezout identity in a single step has only been addressed by Fang [12], who
presented closed forms for the elements of Eq. (2). The deficiency of Fang’s algo-
rithm is that it is based on the placement of all eigenvalues of a state matrix, after
state feedback, at the origin, and it is well known that this procedure usually leads to
numerical difficulties.

In this paper, the problem of solving the generalized polynomial Bezout identity
is revisited. Algorithms for the computation of all elements of Eq. (2) are proposed.
The algorithms are based on the computation of minimal polynomial basis [13] for
the right null spaces of certain polynomial matrices. For this reason, an algorithm for
the computation of minimal polynomial bases is also proposed. Since this algorithm
relies solely on singular value decompositions (SVD) of certain real matrices (the
convolution matrices formed with the coefficients of the polynomial matrix whose
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minimal polynomial bases one is interested in finding), it can be said to be robust. It
is important to remark that SVD algorithms have recently been used for some stan-
dard polynomial computation [14], leading to an algorithm for computing greatest
common divisors of polynomials where the coefficients are not exactly known. Both
algorithms, [14] and the one introduced in this paper, are based, respectively, on the
SVD of appropriate Sylvester and convolution matrices; however the former uses
SVD to obtain the size of the allowable perturbation on the polynomial coefficients
while the latter deploys SVD to find the dimension of the null space of the Sylvester
matrices and also a basis for it. Another application of SVD on polynomial matrices
has been given in [6].

This paper is organized as follows. Section 2 presents the necessary background
on minimal polynomial bases and, in the sequel, a robust algorithm for the compu-
tation of minimal polynomial basis for the null space of polynomial matrices will be
proposed. In Section 3, the algorithm proposed in Section 2 will be used to compute
the matrices M(s), N(s), M̃(s), Ñ(s), and in Section 4, this algorithm will be slightly
modified in order to be used for the computation of X(s), Y (s), X̃(s) and Ỹ (s). Two
examples to illustrate the algorithms proposed in the paper are given in Section 5.
Finally, conclusions are drawn in Section 6.

2. Minimal polynomial bases: background and a robust algorithm

Assume that a matrix T (s) ∈ Rm×n[s] (m < n, for simplicity) has the following
Smith form:

�T (s) =




ε1(s) 0 · · · 0 0 · · · 0
0 ε2(s) · · · 0 0 · · · 0
...

...
. . .

...
...

...

0 0 · · · εm(s) 0 · · · 0


 ,

where εk(s) ≡ 0 for k = m − ν + 1, . . . , m. In this case, the matrix T (s) is said to
have a right null space of dimension ν̄ = n − m + ν, i.e., it is always possible to find
a set of ν̄ linearly independent polynomial vectors f (s), over the field of rational
functions, such that T (s)f (s) = 0. This leads to the following well known result.

Theorem 1. Let F (s) = [
f

1
(s) f

2
(s) · · · f

ν̄
(s)

]
, where deg[f

i
(s)] = φi,

be a polynomial matrix such that T (s)F (s) = O. Then, the following statement are
equivalent:

(1) F (s) is a minimal polynomial bases for the right null space of T (s).

(2) F (s) is column-reduced and irreducible.

(3) F (s) has minimal order, i.e.
∑ν̄

i=1 φi is a minimum.

Proof. See [3], Theorem 6.5-10, p. 458. �
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Theorem 1 above suggests the following way to compute a minimum bases for the
right null space of T (s): find a non null polynomial vector f

1
(s), with least possible

degree φ1, such that T (s)f
1
(s) = 0; in the sequel, find a vector f

2
(s) satisfying

T (s)f
2
(s) = 0, with smallest possible degree φ2 � φ1, among all vectors that are

linearly independent from f
1
(s); continuing in this way, ν̄ polynomial vectors f

i
(s)

with degrees φ1 � φ2 � · · · � φν̄ will be obtained.
When the dimension of the right null space of a polynomial matrix is known,

either because of the problem under consideration or because it has been calculated,
then the problem of computing the right null space of the polynomial matrix T (s) can
be turned to a problem of computing the right null space of a real coefficient matrix.
In order to do so, write T (s) = T0sα + T1sα−1 + · · · + Tα and f

i
(s) = f

i0
sφi +

f
i1

sφi−1 + · · · + f
iφi

, Ti ∈ Rm×n and f
ij

∈ Rn. Defining

Cφi
(T ) =




T0 0 · · · 0
T1 T0 · · · 0
...

...
. . .

...

Tα Tα−1 · · · T0
0 Tα · · · T1
...

...
. . .

...

0 0 · · · Tα




and f (i) =




f
i0

f
i1
...

f
iφi


 , (3)

where Cφi
(T ) ∈ Rm(α+φi+1)×n(φi+1) and f (i) ∈ Rn(φi+1), then, it is clear that

T (s)f
i
(s) = 0 ⇐⇒ Cφi

(T )f (i) = 0. (4)

The matrix Cφi
(T ), above, is usually referred to as the convolution matrix of T (s)

of order φi . The following result may then be stated.

Theorem 2. A necessary condition for a polynomial vector f
i
(s) of degree φi to be

an element of the minimal polynomial bases for the right null space of T (s) is that
Cφi

(T ) be rank deficient and the vector f (i) formed by stacking all the coefficient
vectors of f

i
(s), as in Eq. (3), be in the right null space of Cφi

(T ).

Theorems 1 and 2 together can be used to generate a robust algorithm for the
computation of a minimal polynomial bases for the right null space of a polyno-
mial matrix (if it exists), i.e., the search for a polynomial vector of the bases can
be carried out by computing the singular value decomposition of Cφi

(T ), namely
Cφi

(T ) = Uφi
�φi

V t
φi

. Candidate polynomial vectors to a minimal polynomial bases
of the right null space of T (s) will be formed either from the columns of Vφi

which
are associated with zero singular values of Cφi

(T ) or, if Cφi
(T ) has more col-

umns than rows, from those columns corresponding to the excess of columns. Thus,
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a matrix F (s) = [
f

1
(s) f

2
(s) · · · f

ν̄
(s)

]
, whose columns form a minimal

polynomial bases for the right null space of T (s), can be computed as follows:

Algorithm 1. Let ν̄ be the dimension of the right null space of T (s).

STEP 1: Make i = 1 and set deg[f
i
(s)] = φi = 0.

STEP 2: Form the matrix Cφi
(T ) according to Eq. (3) and compute its singular

value decomposition Cφi
(T ) = Uφi

�φi
V t

φi
.

STEP 3: Let nφi
denote the dimension of the null space of Cφi

(T ), which is
given by the number of zero singular values of Cφi

(T ) plus the number of col-
umns in excess.
If nφi

= 0, set φi = φi + 1 and go back to step 3.
If nφi

> 0, there will be up to nφi
polynomial vectors of degree φi which can be

inserted in the bases. These vectors will be formed from the last nφi
columns of

Vφi
. When nφi

> 0 and i = 1 one vector f (1) will be used to form a polynomial
vector of the bases providing at least one of its first n elements is non-zero.
Furthermore, since F (s) should be column reduced, then, when nφi

> 1, other
polynomial vectors will also be vectors of the minimal polynomial bases pro-
viding the leading coefficient matrix of the polynomial matrix formed with the
polynomial vectors, which already belong to the bases, and the one formed from
the appropriate column of Vφi

, be full rank (this can be done in a robust way
by computing the singular values of the leading coefficient matrix). Repeat this
step until either all possible vectors formed from Vφi

have been checked or the
bases has been completed. Set i = i + 1, each time a new polynomial vector is
added to the bases set.
STEP 4: If i < ν̄ then set i = i + 1 and φi = φi + 1 and go back to step 3.

Remark 1

(1) The assumption that the dimension of the right null space (ν̄) is known, by no
means, hampers the general use of Algorithm 1. A robust way to compute the
dimension of the right null space of a polynomial matrix is by deploying the
algorithm for column reduction proposed in [6,15]. The use of this algorithm
leads to a Smith equivalent column reduced matrix whose number of identically
zero columns is equal to the dimension of its right null space. In addition, as will
become clear in the following sections, the dimensions of the right null spaces of
appropriate polynomial matrices, formed in order to solve Eq. (2), will always
be known in advance.

(2) Theorem 2 suggests that the search of the polynomial vector of the bases should
be done by increasing one-by-one the polynomial vector degrees. When these
vectors form a column reduced matrix, it is immediate to see that they are lin-
early independent, and thus, according to Theorem 1, these vectors will also
belong to the minimal polynomial bases. In addition, due to Theorem 2, the
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real coefficient vectors formed by stacking the coefficient vectors of these poly-
nomial vectors must also satisfy Eq. (4). This is what is actually being done in
step 3.

3. Computation of the matrices M(s), N(s), M̃(s) and Ñ(s)

Let G(s) ∈ Rp×q(s) and assume that G(s) is expressed as follows:

G(s) = 1

d(s)
NG(s), (5)

where N(s) ∈ Rp×q [s] and d(s) is a polynomial (the least common multiple of all
the denominator polynomials of the entries of G(s)). In addition, assume that G(s) is
proper, i.e., lims→∞ G(s) = G∞ (constant). A non-coprime left MFD Ã−1(s)B̃(s)

for G(s) can be defined as Ã(s) = d(s)Ip and B̃(s) = NG(s), where Ip denotes the
identity matrix of order p. Let G(s) = N(s)M−1(s) be a right coprime MFD for
G(s). Then the polynomial matrices N(s) and M(s) must satisfy:[

B̃(s) −Ã(s)
] [

M(s)

N(s)

]
= O, (6)

which shows that all right coprime MFD of G(s) must be generated by the minimal
polynomial bases of the right null space of

T1(s) = [
B̃(s) −Ã(s)

]
. (7)

This leads to the following result.

Theorem 3. Let F (s) be a minimal polynomial bases for the right null space of
T1(s), i.e., T1(s)F (s) = O and assume that the columns of F (s) have column de-
grees arranged in descending order. Writing

F (s) =
[
M(s)

N(s)

]
, (8)

then M(s) and N(s) are right coprime. Moreover, M(s) is column reduced.

Proof. The first part of the proof is a consequence of the fact that F (s), being a
minimal polynomial bases, is irreducible, and thus, Smith equivalent to [Iq O]T.

To prove that M(s) is column reduced, notice that since the columns of F (s)

define a minimal polynomial bases for the right null space of T1(s) then F (s) is
column reduced and thus, the matrix

Fhc =
[
Mhc

Nhc

]
formed with the highest coefficient matrix of F (s) is full rank. Suppose now that Mhc

is singular. Thus, there exists a unimodular matrix U(s) [6,15] such that the degree
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of the first column of M1(s) = M(s)U(s) is smaller than that of the corresponding
column of M(s). Two possibilities may occur: (i) the degree of the first column of
N1(s) = N(s)U(s) decreases, which implies that there exists another polynomial
vector belonging to the bases of degree less than that of the bases, thus contradicting
the assumption that F (s) is a minimal polynomial bases; (ii) the degree of the first
column of N1(s) is larger than or equal to the degree of the corresponding column
of M1(s), which implies that either the assumption that F (s) is a minimal polyno-
mial bases or the assumption that G(s) is proper is contradicted. Thus, Mhc must be
non-singular, which completes the proof. �

Consider, now, the computation of a left coprime MFD M̃−1(s)Ñ(s) for G(s). In
order to do so, notice, from Eq. (2), that[−Ñ(s) M̃(s)

] [
M(s)

N(s)

]
= O �⇒ [−NT(s) MT(s)

] [
M̃T(s)

ÑT(s)

]
= O, (9)

which shows that M̃(s) and Ñ(s) can also be computed by direct application of
Algorithm 1 to the polynomial matrix

T2(s) = [−NT(s) MT(s)
]

. (10)

4. Computation of X(s), Y(s), X̃(s) and Ỹ (s)

Let us consider, initially, the computation of X̃(s) and Ỹ (s). From Eq. (2), one
can write:

MT(s)X̃T(s) − NT(s)Ỹ T(s) − Iq = O, (11)

or equivalently,

[
MT(s) −NT(s) −Iq

] 
X̃T(s)

Ỹ T(s)

Iq


 = O. (12)

It has already been shown [8] that Eq. (11) will have a solution if and only if it is
possible to find

[
X̃(s) Ỹ (s) C

]T
, with C non-singular, which solves Eq. (12).

Therefore, the problem of finding X̃(s) and Ỹ (s), solution to Eq. (11), is equivalent

to the problem of computing a (p + 2q) × q polynomial matrix F̂ (s) whose column
vectors belong to the right null space of

T3(s) = [
MT(s) −NT(s) −Iq

]
(13)

with the restriction that all sub-matrices formed with the last q rows of the coefficient
matrices of F̂ (s) must be identically zero, except that of the independent power of
s, whose q bottom rows must form a non-singular matrix. For example, if F̂ (s) has
degree φ, then
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F̂ (s) = F̂0sφ + F̂1sφ−1 + · · · + F̂φ−1s + F̂φ, (14)

where

F̂i =




[
F̂

(top)
i

Oq×q

]
, i = 0, . . . , φ − 1,[

F̂
(top)
i

C

]
, i = φ,

(15)

where C must be a q × q non-singular matrix. It is not hard to see that such a matrix
always exists since M(s) and N(s) are, by construction, right coprime. Furthermore,
it is important to remark that the computation of X̃(s) and Ỹ (s) does not require that
a minimal polynomial bases for the right null space of T3(s) be found. On the other
hand, the convolution matrix formed from T3(s) will have a special form, since it
must guarantee that F̂i has the form given by (15). For this reason this convolution
matrix will be denoted by Ĉφi

(T3) and will be referred to as a modified convolution
matrix of T3(s). In order to obtain Ĉφi

(T3), let us define

T̂3(s) = [
MT(s) −NT(s)

]
. (16)

Thus the modified convolution matrix of T3(s) will be formed as follows:

Ĉφi
(T3) =

[
Cφi

(T̂3)
O(φi+α)q×q

−Iq

]
, (17)

where α is the degree of T̂3(s) and Cφi
(T̂3) is obtained according to (3). Therefore,

the q polynomial vectors which satisfy Eq. (12) can also be found by searching over
the right null space of Ĉφi

(T3), defined in (17), for vectors whose last q components
form full column rank matrices. A slight modification of Algorithm 1 leads to a
systematic manner to carry out this search, as follows.

Algorithm 2

STEP 1: Make i = 1 and set deg[f̂
i
(s)] = φi = 0.

STEP 2: Form the matrix Ĉφi
(T3) according to Eq. (17) and compute its singular

value decomposition, i.e., Ĉφi
(T3) = Uφi

�φi
V t

φi
.

STEP 3: Let nφi
denote the dimension of the null space of Ĉφi

(T3), which is
given by the number of zero singular values of Ĉφi

(T3) plus the number of
columns in excess.
If nφi

= 0, set φi = φi + 1 and go back to step 2.
If nφi

> 0, there will be up to nφi
polynomial vectors of degree φi which can

satisfy Eq. (12). These vectors will be formed from the last nφi
columns of Vφi

.

When i = 1, f̂
(1)

will be chosen among the last nφi
columns of Vφi

for which
at least one of the last q elements is different from zero. When nφi

> 1, other
polynomial vectors will also satisfy Eq. (12) providing the matrix formed with

the last q elements of the vectors f̂
(i)

, which have already been chosen, and the
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last q elements of the vector under consideration, be full column rank. Repeat
this step until either all possible vectors formed from Vφi

have been checked
or the bases has been completed. Set i = i + 1, each time a new polynomial
vector is added to the bases set.
STEP 4: If i < q then set i = i + 1 and φi = φi + 1 and go back to step 2. Oth-
erwise assume that max(φi) = φ and denote F̂ (s) = F̂0sφ + F̂1sφ−1 + · · · +
F̂φ−1s + F̂φ . Form, according to Eq. (15), the matrix C with the last q rows of
F̂φ and compute F (s) = F̂ (s)C−1.

Let us, now, consider the computation of X(s) and Y (s). Since M̃(s), Ñ(s), X̃(s)

and Ỹ (s) have already been computed, then, according to Eq. (2), X(s) and Y (s)

must satisfy:[
X̃(s) −Ỹ (s)

−Ñ(s) M̃(s)

] [
Y (s)

X(s)

]
=

[
O

Ip

]
, (18)

or, equivalently,[
X̃(s) −Ỹ (s) O

−Ñ(s) M̃(s) −Ip

]
Y (s)

X(s)

Ip


 = O. (19)

Therefore, defining

T4(s) =
[

X̃(s) −Ỹ (s) O

−Ñ(s) M̃(s) −Ip

]
, (20)

then the problem of computing X(s) and Y (s) is equivalent to that of finding p

polynomial vectors belonging to the right null space of T4(s) such that the p × p

bottom matrix be full rank. This problem is similar to that of computing X̃(s) and
Ỹ (s) and, therefore, the same procedure to find the polynomial vectors of the right
null space of T3(s), which satisfy Eq. (12), can now be followed to obtain X(s) and
Y (s), which solve Eq. (19). Indeed, defining

T̂4(s) =
[

X̃(s) −Ỹ (s)

−Ñ(s) M̃(s)

]
, (21)

then the modified convolution matrix of T4(s) (Ĉφi
(T4)) will be given by:

Ĉφi
(T4) =


Cφi

(T̂4)

O(φi+α)(p+q)×p

Oq×p

−Ip


 , (22)

where α is the degree of T̂4(s) and Cφi
(T̂4) is formed according to (3). Therefore,

providing it is possible to find polynomial matrices X(s) and Y (s) which satisfy Eq.
(18), then Algorithm 2 can also be used to find p polynomial vectors belonging to the
right null space of T4(s) with the restrictions imposed by Eq. (19). It is well known
that such matrices do exist (the usual approach to find them has been described in
the introduction). Moreover they are unique, as shown in the following theorem.
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Theorem 4. Assume that the polynomial matrices N(s), M(s), Ñ(s), M̃(s), X̃(s)

and Ỹ (s) which satisfy Eqs. (9) and (11) are given. Then, the polynomial matrices
X(s) and Y (s) which solve Eq. (18) are unique. Furthermore, they are also given
as:

X(s) = [I + N(s)Ỹ (s)]M̃−1(s) and Y (s) = M(s)Ỹ (s)M̃−1(s). (23)

Proof. Since M̃(s) and Ñ(s) are left coprime there exist two polynomial matrices
X1(s) and Y1(s) such that M̃(s)X1(s) − Ñ(s)Y1(s) = Ip, and using Eqs. (9) and
(12), then Eq. (2) must be modified as follows:[

X̃(s) −Ỹ (s)

−Ñ(s) M̃(s)

] [
M(s) Y1(s)

N(s) X1(s)

]
=

[
Iq ((s)

O Ip

]
. (24)

Eq. (24) implies that

[
X̃(s) −Ỹ (s)

−Ñ(s) M̃(s)

]
is unimodular. Thus, the polynomial matri-

ces X(s) and Y (s) which solve Eq. (18) are uniquely determined as:[
Y (s)

X(s)

]
=

[
X̃(s) −Ỹ (s)

−Ñ(s) M̃(s)

]−1 [
O

Ip

]
. (25)

Suppose, now, that X(s) and Y (s) has been computed in accordance with Eq. (25).
Then, X(s) and Y (s) should also satisfy the generalized Bezout identity (2). Re-
writing Eq. (2) in reversed order, i.e.,[

M(s) Y (s)

N(s) X(s)

] [
X̃(s) −Ỹ (s)

−Ñ(s) M̃(s)

]
=

[
Iq O

O Ip

]
,

then the following relationships can be obtained:

−M(s)Ỹ (s) + Y (s)M̃(s) = O and − N(s)Ỹ (s) + X(s)M̃(s) = Ip,

which, after some straightforward manipulation, leads to Eq. (23). �

Remark 2. Theorem 4 has not only proved the existence and uniqueness of the
polynomial matrices X(s) and Y (s) which satisfy Eq. (18), but has also provided
another way to compute X(s) and Y (s). This is so because, since M̃(s) is column
reduced, then the algorithm proposed in [15] for the computation of polynomial
matrix inverses can be used to easily compute M̃−1(s).

5. Examples

In this section, two examples will be presented. In the first example, a 2 × 2 ra-
tional matrix will be used to explain in detail all the steps of the proposed algorithms
while in the second one, the algorithm will be applied to 5 × 3 rational matrix.
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5.1. Example 1

With the view to illustrating the results of the paper, consider the following ra-
tional 2 × 2 matrix [16]:

G(s) = 1

d(s)
NG(s) = 1

d(s)

[ −54.32s −47s + 2
−48.5s − 1.94 −42s

]
, (26)

where d(s) = s2 + s − 2. Suppose we need to find a doubly coprime matrix frac-
tion description of G(s), i.e. G(s) = N(s)M−1(s) = M̃−1(s)Ñ(s), and the matrices
X(s), Y (s), X̃(s) and Ỹ (s) which satisfy the generalized Bezout identity.

Notice that G(s) is already expressed in the form required by Eq. (5). Thus, the
matrix T1(s) defined in Eq. (7) will be given by:

T1(s) =
[ −54.32s −47s + 2 −(s2 + s − 2) 0
−48.5s − 1.94 −42s 0 −(s2 + s − 2)

]
.

According to Section 3 and Algorithm 1, the computation of M(s) and N(s) is car-
ried out through the computation of the right null space of Cφi

(T1), where φi varies
from 0 up to finding two linearly independent vectors belonging to the right null
space of T1(s). In order to do so, let us set, initially, φ1 = 0 and form the convolution
matrix C0(T1). This is a 6 × 4 matrix having the following singular values: 96.3368,
2.9041, 2.4494, and 0.6809, which are clearly different from zero. Thus its right null
space is zero dimensional, which, according to Theorem 2, implies that the minimal
polynomial bases for the right null space of T1(s) has no polynomial vector with zero
degree. Following Algorithm 1, the next step is to increase φi . Accordingly, setting
now φ1 = 1, forming the corresponding convolution matrix C1(T1) (an 8 × 8 dimen-
sional matrix), and computing the singular value decomposition U1�1V T

1 of C1(T1),
then it is possible to see that it has the following singular values: 96.3784, 96.3414,
2.8102, 2.6454, 2.2365, 0.9997, 0.0770 and 0.00000000000000. Since C1(T1) has
only one zero singular value, then with the column of V1,

f (1) = [
0.3840 −0.4345 0 0 −0.3840 0.4345 −0.4345 −0.3724

]T
,

corresponding to the zero singular value, it is possible to form only one vector
belonging to the minimal polynomial bases of T1(s), being given as:

f
1
(s) =




0.3840s − 0.3840
−0.4345s + 0.4345

−0.4345
−0.3724


 .

Thus, according to steps 4 and 5 of Algorithm 1, i and φi should be increased by
one, being now i = 2 and φ2 = 2. It is necessary, then, to form the 10 × 12 dimen-
sional convolution matrix C2(T1) and to compute its singular value decomposition
U2�2V2. This matrix has the following singular values: 96.3858, 96.3785, 96.3384,
2.8311, 2.8076, 2.5947, 1.8086, 0.9997, 0.0887, 0.00000000000001, which implies
that, since C2(T1) has two columns more than rows, its right null space is three
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dimensional. Therefore, there are three candidate vectors to complete the bases,
namely the last three columns of V2. Let us form with the last column vector of
V2,

f (2) = [−0.1920 0.2345 0 0 −0.0309 0.0523 −0.5942
−0.5389 0.2229 −0.2868 0.2868 0.2162

]
,

the polynomial vector

f
2
(s) =




−0.1920s2 − 0.0309s + 0.2229
0.2345s2 + 0.0523s − 0.2868

−0.5942s + 0.2868
−0.5389s + 0.2162


 .

Therefore, since f (2) belongs to the right null space of C2(T1), then f
2
(s) will be

an element of the minimal polynomial bases for the right null space of T1(s) if and
only if the matrix

F (s) = [
f

1
(s) f

2
(s)

]
is column reduced. Indeed, forming the high coefficient matrix of F (s),

Fhc =




0.3840 −0.1920
−0.4345 0.2345

0 0
0 0


 ,

it can be checked that it has no zero singular value, being therefore a full column
rank matrix. Consequently, the columns of F (s) form a minimal polynomial bases
for the right null space of T1(s). Moreover, by partitioning F (s) appropriately, then
a right coprime factorization of G(s) will be given as:

M(s) =
[

0.3840s − 0.3840 −0.192s2 − 0.0309s + 0.2229
−0.4345s + 0.4345 0.2345s2 + 0.0523s − 0.2868

]
and

N(s) =
[−0.4345 −0.5942s + 0.2868
−0.3724 −0.5389s + 0.2162

]
.

The computation of the left coprime matrices Ñ(s) and M̃(s) is carried out in the
same way as for N(s) and M(s); the difference is that it is necessary to find a minimal
polynomial bases for the right null space of the matrix T2(s), defined in Eq. (10).
Therefore, with the help of Algorithm 1, we obtain:

M̃(s) =
[−0.3823s + 0.3823 0.4369s − 0.4369

0.1359s − 0.1359 0.0147s2 − 0.1406s + 0.1258

]
and

Ñ(s) =
[ −0.4238 −0.3823
−0.7147s + 0.1221 −0.6189s + 0.1359

]
.
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Let us, now, consider the computation of X̃(s) and Ỹ (s). This problem is slightly
different from the above, i.e., it is not necessary to compute a minimal polynomial
bases for the right null space of T3(s), defined in Eq. (13), being enough to find
two polynomial vectors in the right null space of T3(s) such that: (i) T3(s)F̂ (s) = O

and; (ii) the matrix formed with the last two rows of F̂φ (defined in Eq. (15)) is
non-singular. This search is carried out in accordance with Algorithm 2, as follows.
Set i = 1 and φ1 = 0 and form the matrix Ĉ0(T3) (a 6 × 6 matrix). Performing the
singular value decomposition U0�0V t

0 of Ĉ0(T3), it can be seen that its singular
values are 1.5007, 1.0004, 0.7102, 0.4927, 0.0101 and 0.00000000000000, which
implies that the last column of V0 will form the first column of F̂ (s) providing that
at least one of its last 2 elements is different from zero. This is actually so, and, thus,
the first column of F̂ (s) will have zero degree, being given by:

f̂1(s) = [
0 0 −0.6714 0.7402 0.0160 −0.0325

]T
.

Following Algorithm 2, the next step is to increase i and φi , i.e. i = 2 and φ2 = 1.
The modified convolution matrix Ĉ1(T3) has the following singular values: 1.5630,
1.1900, 1.0004, 0.7687, 0.6456, 0.3640, 0.0101 and 0. Since Ĉ1(T3) is an 8 × 10
matrix, there are three candidate vectors for f̂2(s). Performing the singular value
decomposition U1�1V t

1 of Ĉ1(T3), and taking the last column of V1, then it is clear
that it generates, together with the previously chosen vector, the following 2 × 2
matrix:

C =
[

0.0160 0.0028
−0.0325 0.0302

]
,

which is clearly non-singular. Consequently, the second column vector of F̂ (s) will
be given by:

f̂2(s) =




−0.5320
−0.4583

−0.0602s + 0.4630
0.0565s − 0.5338

0.0028
0.0302




.

The bases is now complete and then, according to step 4 of Algorithm 2, F (s) =
F̂ (s)C−1. Finally, partitioning F (s) appropriately, we obtain:

X̃(s) =
[−30.1232 −25.9497
−14.8571 −12.7987

]
and

Ỹ (s) =
[

3.4090s + 9.1368 −3.1970s − 8.7549
1.6814s − 16.1615 −1.5768s + 18.4703

]
.

For the computation of X(s) and Y (s) the same procedure as above should be
followed. The only difference is that now the matrices Ĉφi

(T4), i = 1, 2 should be
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formed according to Eq. (22). Following the steps of Algorithm 2, with T3 replaced
by T4, leads to the following matrices:

X(s) =
[

2.6132s − 24.8330 −13.9018
2.3700s − 22.5223 −12.6083

]
and

Y (s) =
[

0.8443s2 − 12.1547s − 10.7858 −4.4913s + 21.9808
−1.0313s2 + 14.4766s + 13.6655 5.4866s − 24.8750

]
.

5.2. Example 2

Consider the following 5 × 3 rational matrix [17]:

G(s)= 1

d(s)







0 0 0
−0.12 1 0

0 0 0
4.4190 0 −1.6650
1.5750 0 −0.0732


 s4 +




−1.5750 0 0.0732
−0.0739 1.5415 −0.0052
4.4190 0 −1.6650
1.6674 0.0485 −1.1574
6.1213 −0.2909 −1.8201


 s3

+




−1.1190 0.2909 −0.0646
−0.5319 1.6537 0.1570
1.6674 0.0485 −1.1574
0.1339 0.3279 −0.0918
0.3466 −0.1978 −0.0977


 s2 +




1.5409 0.2527 −1.2125
−0.2458 0 0.1828
0.1339 0.3279 −0.0918

0 0 0
0.2332 0 −0.0835


 s

+




−0.0816 0.3712 −0.0204
0 0 0
0 0 0
0 0 0
0 0 0





 ,

where d(s) = s5 + 1.5953s4 + 1.7572s3 + 0.1112s2 + 0.0561s. The problem con-
sidered now is, as in example 1, the computation of a doubly coprime matrix frac-
tion description of G(s), i.e. G(s) = N(s)M−1(s) = M̃−1(s)Ñ(s), and the matrices
X(s), Y (s), X̃(s) and Ỹ (s) satisfying the generalized Bezout identity 2.

The algorithms proposed in the paper have been implemented using Matlab, lead-
ing to the following matrices:

M(s)=

0 −0.0140 0.1326

0 −0.3375 0.2029
0 −0.0679 0.0839


 s2 +


 0 −0.0776 0.1471

0.6452 −0.5654 −0.1503
0 −0.2319 0.0433


 s

+

0.1369 −0.0875 0.1999

0.0511 −0.0348 0.0560
0.3822 −0.2832 0.2184


 ,
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N(s)=




0 0 0
0 −0.3358 0.1870
0 0 0
0 0.0513 0.4462
0 −0.0170 0.2027


 s +




0 0.0170 −0.2027
0.6452 −0.5392 −0.1637

0 0.0513 0.4462
0 0 0
0 0.0581 0.5051


 ,

M̃(s)=




0 −0.2447 −0.5788 −0.2418 0.4617
0 0.6490 −0.2527 −0.0632 0.2323
0 −0.0994 −0.2922 0.0985 0.2463
0 −0.0161 0.4458 −0.0678 0.2895

−0.5633 −0.0644 −0.0485 −0.0046 0.0883


 s

+




0 0.1329 −0.0419 −0.1143 0.0890
0 0.1056 0.1111 −0.0460 0.0496
0 0.0615 −0.0170 0.1172 0.2757
0 0.0866 −0.0028 −0.8087 0.1311
0 0.0224 0.6266 −0.0485 −0.5028


 ,

Ñ(s)=




−0.3119 −0.2447 0.3688
0.0088 0.6490 0.0882
0.8352 −0.0994 −0.1821
0.1585 −0.0161 0.0916
0.1264 −0.0644 0.0012


 ,

X(s)=




0 0 0 0 0
−0.4658 −1.4202 1.1373 5.7122 −15.7290

0 0 0 0 0
0.4644 0.2067 0.4094 −1.2546 0
0.1364 −0.0762 0.2950 0.1342 −1.7754


 ,

Y (s)=

 0.0840 −0.0618 0.2006 0.1371 −1.2858

−0.4557 −1.4276 1.1614 5.7286 −15.8833
−0.0560 −0.2881 0.2865 1.1175 −3.4127


 s

+

−0.5924 −0.7609 −1.0040 1.1772 −4.1629

0.3525 −1.4804 0.2379 0.4954 −1.2206
−3.2578 −2.2201 −0.3374 3.8039 −10.4265


 ,

X̃(s)=

0 0 0

0 0 0
0 0 0


 ,

Ỹ (s)=

−19.9990 −1.5499 −25.1971 −5.5880 13.7315

−24.7947 0 −11.2627 0 0
2.8522 0 −0.9455 0 0


 .

For reasons of conciseness, only four decimals have been shown in all polyno-
mial matrices M(s), N(s), M̃(s), Ñ(s), X(s), Y (s), X̃(s) and Ỹ (s) obtained above.
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However, if all the decimals are used, then the matrices above satisfy Eq. (2) with an
error of 4.3521 × 10−14 in magnitude (i.e. the maximum absolute value of the differ-
ences between all the coefficients of the polynomial matrix obtained by performing
the multiplication of the left hand side of Eq. (2) and the identity matrix of order
eight), showing the accuracy of the algorithm.

Remark 3. For example 2, the matrix X̃(s) is identically zero. It is not hard to check
that a necessary condition for this to happen is the rational matrix G(s) has no finite
zero (i.e. does not loose rank for any finite value of s ∈ C), since in this case N(s)

will be full column rank for all s ∈ C. Since N(s)M−1(s) and M̃−1(s)Ñ(s) are,
respectively, right and left coprime matrix fraction descriptions of G(s), then the
zeros of G(s) will be also the values of s ∈ C for which Ñ(s) looses rank. However,
Ñ(s) has only real coefficients and has full column rank, showing the consistency of
the result.

6. Concluding remarks

In this paper, robust algorithms for the computation of all matrices of the gener-
alized polynomial Bezout identity have been proposed. The robustness of the algo-
rithms comes from the fact that they rely solely on singular value decompositions
of real coefficient matrices. A numerical example illustrates the efficiency of the
proposed algorithm. It has been suggested by an anonymous reviewer that the com-
putation of singular value decomposition at each step could be replaced by some sort
of recursive algorithms (such as QR-factorization) without sacrificing significantly
the accuracy. This will be the subject of future research.
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