
Linear Algebra and its Applications 357 (2002) 259–271
www.elsevier.com/locate/laa

Inversion of polynomial matrices via state-space

J.C. Basilio1

Departamento de Eletrotécnica, Universidade Federal do Rio de Janeiro, Escola de Engenharia,
Cidade Universitária, Ilha do Fundão, 21.945-970, Rio de Janeiro, Brazil

Received 30 August 2001; accepted 30 April 2002

Submitted by P. Lancester

Abstract

In this paper, the problem of computing inverses of polynomial matrices has been revisited
and algorithms of easy implementation are proposed to deal with either column or non-column
reduced matrices. Other contributions of the paper are algorithms to perform column reduction
and determinant of polynomial matrices.
© 2002 Elsevier Science Inc. All rights reserved.

Keywords: Matrix polynomials; State-space methods; Polynomial matrix inversion; Matrix fraction de-
scription

1. Introduction

Polynomial matrices play an important role in mathematics [1,2] and also in
control engineering [3–5]. Among the topics related to polynomial matrices, the
computation of inverses has recently been of great interest [5–9]. Inouye [6] pro-
poses an algorithm, which requires the polynomial matrix to be column-proper.2

This deficiency has been removed by Buslowicz [7] without ensuring that the in-
verse numerator matrix is irreducible and the denominator polynomial is minimal.
This constraint has been partially solved by Zhang [8], who addressed the case
of column reduced polynomial matrices. The algorithms proposed by Inouye,

E-mail address: basilio@coep.ufrj.br (J.C. Basilio).
1 This work has been supported in part by the Brazilian Research Council (CNPq) under Grant No.

520190/96.
2 A matrix is said to be column-proper if the highest power coefficient matrix is full rank.

0024-3795/02/$ - see front matter� 2002 Elsevier Science Inc. All rights reserved.
PII: S0024-3795(02)00418-4



260 J.C. Basilio / Linear Algebra and its Applications 357 (2002) 259–271

Buslowicz and Zhang have, in common, the fact that they are all based on recur-
sive formulae, being suitable only for matrices of low dimensions. In a different
way, Schuster and Hippe [9] compute polynomial matrix inverses by interpolation,
but the efficiency of the proposed algorithm is very dependent on the interpolating
points which are to be chosen. A more general algorithm for the computation of
polynomial matrix inverse has been given by Stefanidis et al. [5], which is based
on the inversion of a real matrix obtained from an appropriate Sylvester resultant
matrix. Sylvester resultant matrices are generally of high order and this makes the
algorithm proposed by Stefanidis et al. also suitable only for polynomial matrices
of low dimensions.

In this paper we propose a general algorithm valid for both column and non-
column reduced matrices. When the matrix is column reduced, a minimal state-space
realization for the inverse can be obtained directly. Otherwise, an algorithm, which
is a modification of a previous one [10], provides the means to obtain a column
reduced matrix by post-multiplication of the original one by unimodular matrices.
In that case, inversion is carried out by finding the inverse of the resulting reduced
matrix and then by pre-multiplying the inverse by the unimodular matrix constructed
in the reduction algorithm. In both cases, Leverrier’s algorithm can be deployed to
get a transfer function representation of the inverse. The whole algorithm is very
simple to implement and this has been possible because well-known facts of the
theory of polynomial matrix and state-space realizations have been put together.
To the author’s knowledge, this had not been done before.

This paper is structured as follows. Section 2 presents the problem of inverting
a polynomial matrix and proposes three algorithms: Algorithm 1 proposes to find
a state-space representation of the inverse of a column reduced matrix; Algorithm
2 proposes to carry out column reduction and Algorithm 3 proposes to find in-
verses of non-column reduced matrices. The results of the paper are illustrated by
means of two numerical examples in Section 3. Finally, conclusions are drawn in
Section 4.

2. The algorithm

2.1. Problem formulation

Let Rm×m[s] andRm×m(s) denote, respectively, the rings of polynomial and ra-
tional matrices (not necessarily proper) of orderm and letD(s) ∈ Rm×m[s]. The
problem of computing the inverse ofD(s) can be stated as follows: find a matrix
G(s) ∈ Rm×m(s) such thatG(s)D(s) = Im, whereIm denotes the identity matrix of
orderm. Assuming thatD−1(s) exists,G(s) can be written as

G(s) = ImD
−1(s). (1)



J.C. Basilio / Linear Algebra and its Applications 357 (2002) 259–271 261

WhenD(s) is not a unimodular matrix, then the right-hand side of Eq. (1) represents
a matrix fraction description (MFD)3 of G(s). Moreover, this MFD is irreducible,
i.e., all the greatest common right divisors ofI andD(s) are unimodular, as stated in
the following proposition.

Proposition 1. G(s) = ImD
−1(s) is an irreducible MFD of G(s).

Proof. It suffices to find two matrices̃X(s), Ỹ (s) ∈ Rm×m[s] satisfying the Bezout
identity [4, p. 379]:

X̃(s)D(s) + Ỹ (s)I = I. (2)

It is immediate to see that̃X(s) = I andỸ (s) = I − D(s) satisfy Eq. (2). �

Remark A. Although Proposition 1 seems to be very straightforward, the fact
that G(s) = ID−1(s) is a right-coprime MFD has not appeared in the literature.
Indeed, the derivation of the algorithm proposed by Stefanidis et al. [5] starts from
the same manner as above, i.e., by writing the inverse of a polynomial matrix
D(s) asG(s) = ID−1(s), a right MFD. The authors, however, have not realized
the coprime nature of this MFD. In the sequel, Stefanidis et al. writeG(s) as
G(s) = [d(s)In]−1Adj[D(s)] (a left MFD), whered(s) is the determinant ofD(s),
and by inverting a real matrix obtained from an appropriate resultant matrix,
Adj[D(s)] is obtained. It is important to remark that the real matrix to be inverted
in [5] has generally high dimensions, which makes the computation ofD−1(s)

numerically expensive.

With Proposition 1 in mind, a minimal order realization forG(s) can be obtained
according to the following result.

Proposition 2. Any realization of order equal to the degree of the determinant
of the denominator matrix of an MFD will be minimal if and only if the MFD is
irreducible.

Proof. See Kailath [4, p. 439]. �

Therefore, the problem of finding the inverse of a polynomial matrixD(s) turns
out to be the one of finding a minimal state-space realization for the irreducible
MFD given in (1). WhenD(s) is column reduced, such a realization can be obtained
directly [4, p. 403], as shown in the following section.

3 A MFD of a matrixG(s) ∈ Rm×m(s) is a “ratio” of two matricesN(s),M(s) ∈ Rm×m[s] such that
G(s) = N(s)M−1(s).



262 J.C. Basilio / Linear Algebra and its Applications 357 (2002) 259–271

2.2. A minimal realization for G(s) = ImD
−1(s) when D(s) is column reduced

It is well known [4, p. 384] that any polynomial matrixD(s) can be written as
follows:

D(s) = Dhc diag{sνi , i = 1, 2, . . . , m} + Dlc�(s), (3)

whereνi, i = 1, 2, . . . , m are the column degrees ofD(s) (the degrees of the poly-
nomials of largest degrees of each column ofD(s)), Dhc is the leading coefficient
matrix (a matrix whoseith column is formed with the coefficients ofsνi ), Dlc is a
matrix formed with the coefficients of the remaining lower degree terms and�(s)

has the following form:

�T(s) = diag
{
[sνi−1 · · · s 1], i = 1, 2, . . . , m

}
. (4)

It is not hard to check that whenD(s) is column reduced thenDhc is non-singular
and therefore the degree of the determinant polynomial ofD(s) will be given by:

deg det[D(s)] =
m∑
i=1

νi . (5)

This implies that, any state-space realization of (1) of ordern = ∑m
i=1 νi will, ac-

cording to Proposition 2, be minimal. A straightforward realization for (1) is the
so-called controller realization [4, p. 403], which requires the following conditions
to be met: (i)D(s) column reduced, and (ii)G(s) strictly proper. At this point it
will be assumed that condition (i) is satisfied (if this is not the case, an algorithm to
form a column reduced matrix equivalent toD(s) will be proposed in Section 2.4).
As far as condition (ii) is concerned, notice that if one or more columns ofD(s)

have column degree equal to zero, thenG(s) = ID−1(s) will not be strictly proper.
When this happens, it is necessary first to post-multiplyD(s) by a diagonal matrix
�(s) whose diagonal elements are eithers or 1, if the corresponding column degrees
of D(s) are 0 or greater than 0. For example, letD(s) ∈ R2×2[s] and assume that its
column degrees are 1 and 0. In this case�(s) = diag{1, s}.

The post-multiplication ofD(s) by a diagonal matrix�(s), defined as above,
implies that one is now computing the inverse of the following polynomial matrix:

D̃(s) = D(s)�(s). (6)

From the computational point of view this does not represent any problem since
the multiplication of a polynomial matrix by the diagonal matrix defined above is
straightforward. It is also important to notice that:

(i) D̃(s) andD(s) have the same high coefficient matrices;
(ii) det[D̃(s)] = det[D(s)]sn0, wheren0 is the number of columns ofD(s) with

degree equal zero;
(iii) D−1(s) = �(s)D̃−1(s).

With this in mind, a minimal order state-space realization forD̃−1(s) can be ob-
tained according to the following algorithm.



J.C. Basilio / Linear Algebra and its Applications 357 (2002) 259–271 263

Algorithm 1.
Step 1. For a given column reduced polynomial matrix

D(s) = [
d1(s) d2(s) · · · dm(s)

]
computeD̃(s)=D(s)�(s), where�(s) = diag{δi(s), i = 1, 2, . . . , m} with δi(s) =
1, if deg[di(s)] /= 0, orδi(s) = s, if deg[di(s)] = 0.

Step 2. Find constant matricesDhc andDlc such thatD̃(s) = Dhc diag{sνi , i =
1, 2, . . . , m} + Dlc�(s) as given in (3).

Step 3. Form the matricesAc0, Bc0 andCc0, where

Ac0 = block diag







0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


 , νi × νi, i = 1, 2, . . . , m



,

Bc0 = block diag
{[

1 0 · · · 0
]T
, νi × 1, i = 1, 2, . . . , m

}
and compute the matricesAc andBc as follows:

Ac = Ac0 − Bc0D
−1
hc Dlc,

Bc = Bc0D
−1
hc .

Step 4. WriteIm, the numerator matrix of̃G(s) = ImD̃
−1(s), as Im = Nlc�(s),

where

Nlc = block diag
{[

0 0 · · · 0 1
]
, 1 × νi, i = 1, 2, . . . , m

}
and obtainCc = Nlc.

Step 5.[Ac, Bc, Cc] is a minimal order realization of̃G(s) = ImD̃
−1(s).

Remark B.
1. The algorithm above provides a simple and effective way to form a minimal order

state-space realization of the inverse of a column reduced polynomial
matrix D̃(s). Notice that sincẽD−1(s) = Cc(sI − Ac)

−1Bc, then a transfer func-
tion representation of̃D−1(s) can be obtained directly via Leverrier’s algorithm.4

The computation ofD−1(s)will then be immediate sinceD−1(s) = �(s)D̃−1(s).
2. According to [4, p. 409], det[D̃(s)] = det(Dhc) det(sI − Ac), and once again,

Leverrier’s algorithm can be deployed to compute det[D̃(s)] in a straightforward

4 A concise and helpful presentation of Leverrier’s algorithm can be found in [4, p. 657].



264 J.C. Basilio / Linear Algebra and its Applications 357 (2002) 259–271

way. In addition, since the realization is minimal, then deg det[D̃(s)] = n, which
implies that the denominator polynomial ofD−1(s) is minimal.

2.3. Reduction of non-column reduced matrices

When the matrixD(s) is not column reduced, it is necessary, before applying
Algorithm 1, to find a column reduced matrix̄D(s), Smith equivalent toD(s). This
is done by post-multiplyingD(s) by a unimodular matrixU(s), which is generally
formed by the product of unimodular matrices.

Column reduction of polynomial matrices can be done in a variety of ways [3,4].
The methods are generally based on elementary column operations, which are known
to be very sensitive. Here we propose a more robust algorithm which is based on
singular value decomposition. This algorithm is a modification of a previous one
[10] that was used to find a right-coprime matrix fraction description of a transfer
matrix. The idea is, at each iteration, to post-multiply the matrix by an elementary
one (formed by a suitable permutation of the identity matrix) with the view to reor-
dering (in descending order) the column degrees and, in the sequel, to post-multiply
by a unimodular matrix (formed by replacing some columns of the identity matrix
by polynomial vectors) in order to reduce appropriately the column degrees. The
algorithm below gives not only the column reduced matrixD̄(s), Smith equivalent
toD(s), but also the unimodular matrixU(s). The reader may find it useful to refer
to Example 2 while following the steps of the algorithm.

Algorithm 2.
Step 1. DefineD̄(s) = D(s) andU(s) = Im.

Step 2. Find a constant matrixE such thatD̂(s) = D̄(s)E has column degreeŝν1 �
ν̂2 � · · · � ν̂m. The matrixE can be obtained by an appropriate permutation of the
columns of the identity matrix of orderm. ComputeÛ (s) = U(s)E.

Step 3. WriteD̂(s) = D̂hcŜ(s) + D̂lc�̂(s), whereŜ(s) = diag{sν̂i , i = 1, 2, . . . , m}
andD̂hc, D̂lc and�̂(s) are formed as in (3) and (4).

Step 4. Perform a singular value decomposition ofD̂hc and writeD̂hc = X̂�̂Ŷ �. Let
p denote the number of zero singular values ofD̂hc. If p = 0, then makeD̄(s) =
D̂(s),U(s) = Û (s) and stop. Otherwise, collect the columnsŷm−p+j , j = 1, . . . , p
of Ŷ associated with thep zero singular values and form the set

Ŷ = {ŷm−p+j , j = 1, . . . , p}.
Step 5. Let̂κj denote the position of the first non-zero element ofŷm−p+j and notice
that, because of the way singular value decompositions are performed,κ̂j+1 � κ̂j .
Form the set

Ȳ = {ȳ1, ȳ2, . . . , ȳp̄},



J.C. Basilio / Linear Algebra and its Applications 357 (2002) 259–271 265

by keeping only the elements ofŶ with distinct positions of the first non-zero ele-
ments. Let the position of the first non-zero element ofȳj be κ̄j .

Step 6. Form a unimodular matrix̄U(s) by replacing columns̄κj , j = 1, . . . , p̄, of
the identity matrix of orderm by polynomial vectors̄uj (s) whose elements̄uk,j (s),
k = 1, . . . , m are given by:

ūk,j (s) =
{

0, k < κ̄j ,

ȳk,j s
ν̂κ̄j −ν̂k , k � κ̄j .

Step 7. ComputēD(s) = D̂(s)Ū(s), U(s) = Û (s)Ū(s) and go back to step 2.

Remark C. The reader might have realized that the matricesD̂(s) and Û (s) are
re-defined at each iteration. This is so because the matrices actually needed are the
column reduced matrix̄D(s) and the unimodular matrixU(s) which carries out the
column reduction ofD(s).

2.4. Inverse of non-column reduced matrices

Algorithm 2 provides the means to obtain column reduced and unimodular matri-
ces (D̄(s) andU(s), respectively) such that for a given non-column reduced matrix
D(s), we have:

D̄(s) = D(s)U(s). (7)

Let Ḡ(s) = D̄−1(s) and notice that sincēD(s) is column reduced. Then Algo-
rithm 1 can be deployed to computeḠ(s). In addition, from Eq. (7), it can be checked
that:

D−1(s) = U(s)D̄−1(s), (8)

which implies that

G(s) = U(s)Ḡ(s). (9)

The computation of the inverse of non-column reduced polynomial matrices can
be summarized in the following algorithm.

Algorithm 3. For a givenD(s), non-column reduced, thenG(s) = D−1(s) is ob-
tained as follows:
Step 1. Use Algorithm 2 to computēD(s) andU(s) such thatD̄(s) = D(s)U(s),
whereD̄(s) is column reduced andU(s) unimodular.

Step 2. Use Algorithm 1 to computēG(s) = D̄−1(s).

Step 3. ComputeG(s) = U(s)Ḡ(s).



266 J.C. Basilio / Linear Algebra and its Applications 357 (2002) 259–271

3. Examples

In this section the methodology proposed in this paper will be illustrated by means
of two numerical examples.

3.1. Example 1

Consider, initially, the inversion of the following column reduced polynomial ma-
trix:

D(s) =

 5.4848s2 + 1.7321s − 0.2887

−0.8660s2 − 3.4641s − 0.2887
3.4641s2 + 2.3094s − 1.4434

−1.4142s2 + 4.2426s + 2.1213 −s2 − 3s + 1
−1.4142s − 2.1213 −2
3.5355s + 2.8284 −s2


 . (10)

A minimal order state-space realization forG(s) = D−1(s) can be obtained in a
straightforward way providingD(s) is written as

D(s) =

 5.4848 −1.4142 −1

−0.8660 0 0
3.4641 0 −1


 S(s)

+

 1.7321 −0.2887 4.2426 2.1213 −3 1

−3.4641 −0.2887 −1.4142 −2.1213 0 −2
2.3094 −1.4434 3.5355 2.8284 0 0


�(s),

where

S(s) = diag{s2, s2, s2} and �T(s) =

s 1 0 0 0 0

0 0 s 1 0 0
0 0 0 0 s 1


 .

Thus, according to steps 2 and 3 of Algorithm 1,G(s) = Cc(sI − Ac)
−1Bc, where

Ac =




−4 −0.3333 −1.6330 −2.4495 0 −2.3094
1 0 0 0 0 0

−6.1237 0.3402 −1.8333 −4 −2.1213 −2.5927
0 0 1 0 0 0

−11.5470 −2.5981 −2.1213 −5.6569 0 −8
0 0 0 0 1 0



,



J.C. Basilio / Linear Algebra and its Applications 357 (2002) 259–271 267

Bc=




0 −1.1547 0
0 0 0

−0.7071 −1.6499 0.7071
0 0 0
0 −4 −1
0 0 0



,

Cc=

0 1 0 0 0 0

0 0 0 1 0 0
0 0 0 0 0 1


 .

Finally, the use of Leverrier’s algorithm leads to the following transfer function rep-
resentation forG(s):

G(s)= 1

d(s)





 0 −1.1547 0

−0.7071 −1.6499 0.7071
0 −4 −1


 s4

+

 1.1547 0.5774 −1.1547

−2.8284 8.9567 4.9497
1.5 −6.5 −7.3333


 s3

+

 1.7321 −9.2376 −2.8868

−5.8926 1.8856 16.9706
−3.3333 −2 1.6667


 s2

+

 5.7735 −4.0415 −10.9697

−3.7712 −5.4212 0.7071
−6.5 −4.1667 4.3333


 s

+

 4.6188 2.3094 −1.7321

2.3570 1.1785 −0.7071
−3.1667 −1.8333 1





 , (11)

where

d(s)= s6 + 5.8333s5 + 5.1667s4 + 26.6667s3

+ 22.3333s2 + 11.3333s + 0.5.

3.2. Example 2

Suppose it is necessary to find an inverse of the following 3× 3 non-column
reduced polynomial matrix:

D(s) =

s3 + s2 + 5s + 3 −s2 − 3s + 1 2s4 + s3 + 2s + 1

−3 −2 s2 + 5s + 1
s3 + 5s + 4 −s2 2s4 + s3 + 3s2 + 4s + 5


 .



268 J.C. Basilio / Linear Algebra and its Applications 357 (2002) 259–271

According to Algorithm 3 the first step is to compute a column reducedD̄(s) and a
unimodular matrixU(s) such thatD̄(s) = D(s)U(s). This can be done by following
the steps of Algorithm 2.

Initially, let us defineD̄(s) = D(s) andU(s) = I3. Notice that the column de-
grees ofD(s) are 3, 2 and 4, respectively. This implies thatD̄(s) should be multiplied
by the following elementary matrix:

E = [
e3 e1 e2

]
,

whereei denotes theith column of the identity matrix, in order to obtain a ma-
trix D̂(s) = D̄(s)E whose columns degrees are in descending order. Therefore, at
this stage,Û (s) = E. In addition, writingD̂(s) as D̂(s) = D̂hcŜ(s) + D̂lc(s), one
obtains:

D̂hc =

2 1 −1

0 0 0
2 1 −1


 and S(s) = diag

{
s4, s3, s2}.

Notice thatD̂hc has clearly rank equal 1. Performing now a singular value decom-
position ofD̂hc and taking, according to step 4 of Algorithm 2, the columns ofŶ

corresponding to the two zero singular values, the following set can be formed:

Ŷ =




−0.5774

0.5774
−0.5774


 ,


 0

0.7071
0.7071





 .

It is important to note that the first nonzero elements of the columns ofŶ are
in different positions, which allows us to construct, in accordance with step 6 of
Algorithm 2, the matrixŪ (s) directly, as follows:

Ū (s) =

 −0.5774 0 0

0.5774s 0.7071 0
−0.5774s2 0.7071s 1


 .

Notice thatŪ (s) is constructed in order to be a lower triangular matrix, being, there-
fore, unimodular.

Following step 7 of Algorithm 2, it is possible now to computeD̄(s) andU(s),
which are given as:

D̄(s)=

1.7321s3 + 2.3094s2 + 0.5774s − 0.5774

0.5774s2 − 4.6188s − 0.5774
−0.5774s3 + 1.1547s2 − 2.8868

−1.4142s2 + 4.2426s + 2.1213 −s2 − 3s + 1
−1.4142s − 2.1213 −2
3.5355s + 2.8284 −s2






J.C. Basilio / Linear Algebra and its Applications 357 (2002) 259–271 269

and

U(s) = EŪ(s) =

 0.5774s 0.7071 0

−0.5774s2 0.7071s 1
−0.5774 0 0


 .

Going back to step 2, it is necessary now to find a new matrixE. It is clear that
E = I3, since the column degrees ofD̄(s) are already in descending order. Thus we
can makeD̂(s) = D̄(s) andÛ (s) = U(s). As pointed out in Remark B, since what
one is actually interested in is the resulting column reduced matrixD̄(s) and the
unimodular matrixU(s), the matricesD̂(s) andÛ (s) may be discarded after̄D(s)

andU(s) having been computed.
As in the previous iteration, the high leading coefficient matrixD̂hc and the matrix

Ŝ(s) of column degrees for̂D(s) should be obtained. These matrices are given by:

D̂hc =

 1.7321 −1.4142 −1

0 0 0
−0.5774 0 −1


 and Ŝ(s) = diag

{
s3, s2, s2}.

By performing singular value decomposition, it can be seen thatD̂hc has one zero
singular value, which shows thatD̂(s) is still non-column reduced. ConsequentlyŶ
is a single-element set, as follows:

Ŷ =
{[

0.5 0.8165 −0.2887
]t
}
.

This implies that

Ū (s) =

 0.5

0.8165s e2 e3−0.2887s


 .

The new matrices̄D(s) andU(s) will be given by:

D̄(s)=

 5.4848s2 + 1.7321s − 0.2887

−0.8660s2 − 3.4641s − 0.2887
3.4641s2 + 2.3094s − 1.4434

−1.4142s2 + 4.2426s + 2.1213 −s2 − 3s + 1
−1.4142s − 2.1213 −2
3.5355s + 2.8284 −s2




and

U(s) = Û (s)Ū(s) =

 0.8660s 0.7071 0

0.2887s2 − 0.2887s 0.7071s 1
−0.2887 0 0


 .



270 J.C. Basilio / Linear Algebra and its Applications 357 (2002) 259–271

Since the matrixD̄(s) above is column reduced, Algorithm 2 reaches its end. The
next step of Algorithm 3 is to use Algorithm 1 to find̄D−1(s). Notice that this has
already been done sincēD(s) given above is equal to the matrix given in (10), whose
inverse is shown in (11). Therefore a transfer function representation forG(s) =
D−1(s) = U(s)Ḡ(s) is given by:

G(s)= 1

d(s)





0 0 0

0 −0.3333 0
0 0 0


 s6

+

 0 −1 0

−0.1667 −0.6667 0.1667
0 0 0


 s5

+

 0.5 −0.6667 −0.5

−1.8333 −0.5 2
0 0.3333 0


 s4

+

 −0.5 −1.6667 1

−1.5 −3.6667 2.3333
−0.3333 −0.1667 0.3333


 s3

+

 0.8333 −2.1667 2.5

−6.3333 −4 4.8333
−0.5 2.6667 0.8333


 s2

+

 1.3333 −1.8333 −1

−6.1667 −4 4.3333
−1.6667 1.1667 3.1667


 s

+

 1.6667 0.8333 −0.5000

−3.1667 −1.8333 1
−1.3333 −0.6667 0.5000





 ,

where, as in Example 1,

d(s)=s6 + 5.8333s5 + 5.1667s4 + 26.6667s3

+ 22.3333s2 + 11.3333s + 0.5.

4. Conclusions

In this paper, algorithms of easy implementation to compute inverses of either
column or non-column reduced polynomial matrices have been proposed. With the
help of Leverrier’s algorithm, it has also been suggested an efficient way to com-
pute determinant of polynomial matrices. Finally, numerical examples are given to
illustrate the efficiency and simplicity of the algorithms.



J.C. Basilio / Linear Algebra and its Applications 357 (2002) 259–271 271

Acknowledgement

The author is grateful to Prof. S. P. Bhattacharyya (Texas A&M University) for
the encouragement to write and submit this paper for publication.

References

[1] F.R. Gantmacher, The Theory of Matrices, vols. I and II, Chelsea Publishing Company, New York,
1959.

[2] I. Gohbergb, P. Lancaster, L. Rodman, Matrix Polynomials, Academic Press, New York, 1982.
[3] W.A. Wolovich, Linear Multivariable Systems, Springer, New York, 1974.
[4] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[5] P. Stefanidis, A.P. Paplinski, M.J. Gibbard, Numerical Operations with Polynomial Matrices, Lec-

ture Notes in Control and Information Sciences, vol. 171, Springer, Berlin, 1992.
[6] Y. Inouye, An algortihm for inverting polynomial matrices, Int. J. Control 30 (1979) 989–999.
[7] M. Buslowicz, Inversion of polynomial matrices, Int. J. Control 33 (1980) 977–984.
[8] S. Zhang, Inversion of polynomial matrices, Int. J. Control 46 (1987) 33–37.
[9] A. Schuster, P. Hippe, Inversion of polynomial matrices by interpolation, IEEE Trans. Autom. Con-

trol 37 (1992) 363–365.
[10] J.C. Basilio, B. Kouvaritakis, An algorithm for coprime matrix fraction description using Sylvester

matrices, Linear Algebra Appl. 266 (1997) 107–125.


