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Computation of reduced-order models of multivariable systems by
balanced truncation

J. S. Garciay and J. C. Basilioz*

Previous algorithms to obtain reduced-order models by balanced truncation in a single
step either require a very speci®c way to solve a pair of Lyapunov equations or are
suitable only for scalar or symmetric MIMO systems. In this paper, model reduction is
revisited and an algorithm to obtain a reduced order model in one step only is proposed.
As in the previous algorithms, the key point is to construct two rectangular matrices
whose smaller dimensions are equal to the number of Hankel singular values to be kept
in the lower model. Unlike the one-step algorithms available in the literature, the
algorithm proposed here does not make any restriction to the way the Lyapunov equa-
tions necessary to obtain the controllability and observability gramians are solved.
Furthermore, since the algorithm only relies on singular value decomposition, it is
expected to be robust.

1. Introduction

Balanced realization (Moore 1981) has been proved
crucial in model reduction (Glover 1984) and also in
the computation of H1 optimal controllers in the 1984
approach (Doyle 1984). The idea behind its use in model

reduction is to measure the degree of controllability and
observability of the system modes and then to discard
those modes which are weakly controllable or obser-
vable. The computation of reduced-order models by

balanced truncation for non-minimal order systems
was initially carried out in three steps: (1) computation
of a minimal realization for the system; (2) construction

of a similarity transformation that relates the state-space
realization obtained in step (1) to a balanced realization
(Moore 1981, Laub et al. 1987 and references therein);
and (3) for a given error bound, balanced truncation is

deployed to reduce the system order (Glover 1984). This
three-step approach has the drawback that a minimal
order realization has to be found whose computation

is known to be problematic. To avoid such a di� culty,
Tombs and Postlethwaite (1987) proposed an algorithm

to compute a lower-order model in a single step. Despite

its usefulness, this algorithm has the disadvantage that it
requires a particular way (Hammarling 1982) to solve

the Lyapunov equations necessary to ®nd the controll-
ability and observability gramians of the system. More

recently, Aldhaheri (1991) has proposed another single-

step algorithm based on the computation of the eigen-
vectors associated with the largest eigenvalues (in

modules) of the cross-gramian Wco (Fernando and
Nicholson 1982, 1985). The drawbacks of this approach

are that the cross-gramian requires the system to be
either scalar or symmetric (in the multivariable case),

and the realization obtained is not balanced. In
common, Tombs and Postlethwaite (1987) and

Aldhaheri (1991) have the fact that the reduced-order
model is obtained via pre- and post-multiplication of

the state matrix by rectangular matrices.

In this paper, an algorithm is proposed to obtain a
reduced-order model for a non-minimal state-space

realization, whose key point, as in Tombs and
Postlethwaite (1987) and Aldhaheri (1991), is the con-

struction of two rectangular matrices whose smaller

dimension corresponds to the number of Hankel sin-
gular values to be kept in the lower model. Di� erently

from the previous algorithms, it does not make any
restriction on the way the Lyapunov equations, necess-

ary to compute the gramians, are solved, and is suitable
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for both scalar and multivariable systems. Furthermore,
since the algorithm relies only on singular value decom-
position, it is expected to be robust.

This paper is structured as follows. In Section 2, the
problem of ®nding reduced-order models by balanced
truncation is reviewed and, in the sequel, the problem
of obtaining directly a balanced realization for the
reduced-order model of a given non-minimal order rea-
lization is formulated. Some preliminary mathematical
results are presented in Section 3. The main result is
given in Section 4, where a rectangular matrix and its
right-inverse are constructed. The balanced reduced-

order system will be obtained by appropriate pre- and
post-multiplications by these rectangular matrices. The
paper results are summarized in Section 5, where an
algorithm is presented. In Section 6, the results are
illustrated by means of a numerical example. Finally,
conclusions are drawn is Section 7.

2. Problem formulation

Assume that a p £ m stable transfer matrix G…s† has the
following state±space realization:

G…s† ˆ A B

C D

µ ¶
; …1†

where A 2 n£n, B 2 n£m, C 2 p£n, D 2 p£m and m,
n, p 2 * with (A; B†=…C; A† are possibly uncontrol-
lable/unobservable. In addition, let Wc and Wo denote,
respectively, the controllability and observability
gramians of (1), i.e. Wc and Wo are solutions of the
following Lyapunov equations:

AWc ‡ WcA
T ˆ ¡BBT …2†

ATWo ‡ WoA ˆ ¡CTC: …3†

It is well known that since G…s† is stable, then Wc and
Wo are positive semide®nite. It is also known that
although the gramians are not invariant under similarity
transformation, their product is invariant in the sense
that the eigenvalues of the product of the gramians
remain the same no matter what state±space realization
is being used. In the control literature, the square roots
of the non-zero eigenvalues of WcWo are usually
referred to as the Hankel singular values of G…s†.

Consider now the eigenvalue decomposition of WcWo

(Zhou et al. 1996, p. 77):

WcWo ˆ W
§2 0

0 0

" #
W¡1;

where

§2 ˆ
§2

L

§2
s

0

2

64

3

75;

and where §2
L ˆ diag f¼2

1Im1, ¼2
2Im2; . . . ; ¼2

·rr Im·rr
g and

§2
s ˆ diag f¼2

·rr‡1Im·rr‡1
, ¼2

·rr‡2Im·rr‡2
; . . . ; ¼2

·kkIm ·kk
g, with ¼i > 0,

i ˆ 1; 2; . . . ; ·kk and ¼i > ¼j, i < j. Note that §L and §s

are formed, respectively, with the largest and smallest
Hankel singular values of G…s†, i.e. those which are to
be kept and discarded in the model reduction. Suppose
that we are interested in obtaining a reduced-order
model ~GG…s† for G…s† such that the error between ~GG…s†
and G…s† is µ 2…¼·rr‡1 ‡ ¼·rr‡2 ‡ ¢ ¢ ¢ ‡ ¼ ·kk) in H1 sense,
namely:

e ˆ kG ¡ ~GGk1 µ 2…¼·rr‡1 ‡ ¼·rr‡2 ‡ ¢ ¢ ¢ ‡ ¼ ·kk†: …4†

Then, the problem of ®nding a balanced realization
directly from the state±space representation (1) for
the reduced order model ~GG…s† of G…s† can be stated as
follows: ®nd rectangular matrices TL 2 r£n and
T

y
L 2 n£r, r ˆ m1 ‡ m2 ‡ ¢ ¢ ¢ ‡ m·rr, TLT

y
L ˆ Ir (Ir

denoting the identity matrix of order r), such that

~GG…s† ˆ
~AA ~BB
~CC ~DD

µ ¶
ˆ

TLAT y
L TLB

CT
y
L D

" #
…5†

with controllability and observability gramians being
given by:

§L ˆ diag f¼1Im1
; ¼2Im2

; . . . ; ¼·rrIm·rr
g: …6†

3. Preliminary mathematical results

In this section, the following problem is considered:
given a matrix T1 2 k£n and its right inverse
Ty

1 2 n£k …k < n), with T1 full row rank, i.e.

»…T1† ˆ k, where »…¢† denotes rank, ®nd matrices
T2 2 n¡k£n and T

y
2 2 n£n¡k such that

T1

T2

µ ¶
‰T y

1 T y
2 Š ˆ In:

To solve this problem, a preliminary result is needed.

Lemma 1: The matrix In ¡ T
y
1T1 is diagonalizable, and

has n ¡ k eigenvalues ˆ 1 and k eigenvalues =0.

Proof: Since T1T y
1 ˆ Ik then (Horn and Johnson 1985,

p. 53) T y
1T1 has k eigenvalues ˆ 1 and n ¡ k zero eigen-

values. This implies that »…T y
1T1† ˆ k and consequently

¸…Ty
1T1† ˆ n ¡ k, where ¸…:† denotes nullity. Thus, the

dimension of the invariant subspace of T
y
1T1 associated

with the zero eigenvalues is n ¡ k. In addition, since
T1T

y
1 ˆ Ik, then …Ty

1T1†T
y
1 ˆ IkT y

1 , which shows that
the columns of Ty

1 generates the invariant subspace of
T

y
1T1 associated with the eigenvalues which are equal to
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1. These facts allow us to conclude that T y
1T1 has the

following eigenvalue decomposition:

T y
1T1 ˆ W

Ik 0

0 0

µ ¶
W¡1

for some full rank matrix W. Therefore:

In ¡ T
y
1T1 ˆ In ¡ W

Ik 0

0 0

µ ¶
W¡1 ˆ W

0k 0

0 In¡k

µ ¶
W¡1;

…7†

which proves the lemma. &

The use of Lemma 1 leads to the following result.

Lemma 2: Given T1 and Ty
1 satisfying the conditions

above, there exist two matrices T2 2 …n¡k†£n and
T

y
2 2 n£…n¡k† such that:

T1

T2

µ ¶
‰Ty

1 T
y
2 Š ˆ

T1T
y
1 T1T

y
2

T2Ty
1 T2Ty

2

" #
ˆ I : …8†

Proof: From (7), we may write:

In ¡ T
y
1T1 ˆ ‰W1 W2Š

0k 0

0 In¡k

µ ¶
VT

1

VT
2

" #

;

where W1, V1 2 n£k. W2, V2 2 n£…n¡k† and
W1VT

1 ‡ W2VT
2 ˆ In. De®ning T2 ˆ VT

2 and Ty
2 ˆ W2,

we have:

(1) T1Ty
1 ˆ Ik, by de®nition;

(2) T2T
y
2 ˆ VT

2 W2 ˆ In¡k;

(3) (In ¡ T
y
1T1†T

y
2 ˆ …In ¡ T

y
1T1†W2 ˆ W2 ˆ T

y
2 . There-

fore T1…In ¡ T
y
1T1†Ty

2 ˆ T1T
y
2 , which implies that

T1T
y
1T1T

y
2 ˆ 0 or equivalently T1T

y
2 ˆ 0.

(4) T2…In ¡ T y
1T1† ˆ VT

2 …In ¡ T y
1T1† ˆ VT

2 ˆ T2. Thus,

T2…In ¡ T y
1T1†Ty

1 ˆ T2Ty
1 and proceeding as in (3)

we obtain T2Ty
1 ˆ 0, which completes the proof.

&

Remark 1: Note from Lemma 2 that given a full row
rank rectangular matrix T1 and its right-inverse T

y
1 , the

construction of a square matrix T, whose ®rst k rows are
T1, and its inverse T¡1, whose ®rst k columns are Ty

1 , is
not a matter of adding a bottom matrix T2 whose rows
are linearly independent on the rows of T1. This is so
because the right-inverse Ty

1 is also given and, hence, as
stated in the lemma, the rows of T2 must lie in the left
null space of T

y
1 , and the columns of its right-inverse T

y
2

must lie in the right null space of T1. This is achieved, as
shown in the lemma, by taking, respectively, the eigen-
vectors and dual-eigenvectors of In ¡ T1T

y
1 associated

with the unity eigenvalues. &

4. Main results

In this section, we will initially obtain an expression for
two matrices T1 2 k£n and T

y
1 2 n£k …T1T

y
1 ˆ Ik†,

which leads to a minimal realization in balanced form
for the non-minimal state±space realization given in (1),
i.e.

G…s† ˆ
Ab Bb

Cb Db

µ ¶
ˆ

T1AT y
1 T1B

CT y
1 D

" #

; …9†

where T1ATy
1 has all the controllable and observable

modes of G…s†. At this point, it is important to ®nd
the relationship between the modes of a given realization
and the eigenvalues of Wc and Wo, as far as controll-
ability and observability are concerned. This is given by
the following results.

Lemma 3: Let

A B

C D

µ ¶

be a state±space realization of a not-necessarily stable
transfer matrix G…s† and assume that there exists a sym-
metric matrix P,

P ˆ P* ˆ
P1 0

0 0

µ ¶
;

solution to the Lyapunov equation

AP ‡ PA* ‡ BB* ˆ 0;

with P1 non-singular. If we partition …A; B; C; D† compat-
ibly with P, i.e.

A11 A12 B1

A21 A22 B2

C1 C2 D

2

64

3

75;

then

A11 B1

C1 D

µ ¶

is also a realization of G…s†. Moreover, …A11, B1† is con-
trollable if A11 is stable.

Proof: See Zhou et al. (1996, pp. 72, 73). &

Lemma 4: Let

A B

C D

µ ¶

be a state±space realization of a not-necessarily stable
transfer matrix G…s† and assume that there exists a sym-
metric matrix Q,

Q ˆ Q* ˆ
Q1 0

0 0

µ ¶

solution to the Lyapunov equation

Computation of reduced-order models of multivariable systems 849



QA ‡ A*Q ‡ C*C ˆ 0;

with Q1 non-singular. If we partition …A; B; C; D† compat-
ibly with Q, i.e.

A11 A12 B1

A21 A22 B2

C1 C2 D

2

64

3

75;

then

A11 B1

C1 D

µ ¶

is also a realization of G…s†. Moreover, …C1; A11† is obser-
vable if A11 is stable.

Proof: See Zhou et al. (1996, p. 73). &

From Lemmas 3 and 4, it is possible to conclude that the
number of non-hidden modes of G…s† is equal to the
number of non-zero eigenvalues of WcWo, the product
of the controllability and observability gramians associ-
ated with the non-minimal realization (1). It is necessary
therefore to compute the eigenvalues of WcWo, which
can be done in a more robust way as follows.

Lemma 5: The Hankel singular values of a stable G…s†
are identical to the non-zero singular values of W 1=2

o W 1=2
c .

Proof: Let ¼…:†, ¶…:† denote singular values and eigen-
values, respectively. Then:

¼…W 1=2
o W 1=2

c † ˆ ¶1=2…W1=2
o W 1=2

c W 1=2
c W 1=2

o †

ˆ ¶1=2…W1=2
o WcW

1=2
o † ˆ ¶1=2…WcWo†:

To complete the proof, note that the Hankel singular
values are the square root of the non-zero eigenvalues of
the product WcWo. &

Remark 2: At this point it is important to note that
since Wc and Wo are symmetric positive semide®nite
matrices, their square roots can be simply computed
by ®nding the corresponding eigenvalue decomposition
(or, equivalently, the singular value decomposition) and
squaring down the eigenvalues (singular values). &

Besides being a robust way to compute the eigen-
values of WcWo, the singular value decomposition of
W 1=2

o W 1=2
c also plays an important role in the construc-

tion of the matrices T1 and Ty
1 as shown below.

Theorem 1: Let G…s† be a stable transfer matrix and
assume that …1† is any state±space representation of
G…s† with gramians Wc and Wo. In addition, suppose
that WcWo has the following eigenvalue decomposition
(Zhou et al. 1996, p. 77):

WcWo ˆ W
§2 0

0 0

" #
W¡1; …10†

or, equivalently (Lemma 5), that W 1=2
o W 1=2

c has the
following singular value decomposition:

W 1=2
o W 1=2

c ˆ ‰X1 X2Š
§ 0

0 0

µ ¶
YT

1

YT
2

" #
ˆ X1§YT

1 : …11†

De®ning

T1 ˆ §¡1=2XT
1 W1=2

o and T y
1 ˆ W 1=2

c Y1§¡1=2; …12†

then the realization (9) is minimal, and has controllability
and observability gramians both equal to §.

Proof: For T1 and T
y
1 , de®ned in (12), ®nd two

matrices T2 and T y
2 (Lemma 2) and construct a simi-

larity transformation matrix T and its inverse T¡1, as
follows:

T ˆ
T1

T2

µ ¶
and T¡1 ˆ ‰T y

1 Ty
2 Š: …13†

Thus

G…s† ˆ
ÂA B̂B

ĈC D̂D

" #
ˆ TAT¡1 TB

CT¡1 D

" #

has controllability and observability gramians, ŴWc and
ŴWo, respectively, given by:

ŴWc ˆ
T1

T2

" #
Wc‰TT

1 TT
2 Š ˆ

T1WcT
T
1 T1WcT

T
2

T2WcT
T
1 T2WcT

T
2

" #

ˆ
§ 0

0 F

" #

ŴWo ˆ
…Ty

1†T

…Ty
2†T

" #
Wo‰T

y
1 T y

2 Š

ˆ
…Ty

1†TWoTy
1 …T y

1†TWoT
y
2

…Ty
2†TWoTy

1 …T y
2†TWoT

y
2

" #
ˆ

§ 0

0 L

" #

;

where F ˆ T2WcT
T
2 and L ˆ …Ty

2†TWoT
y
2 . Note that

FL ˆ T2WcT
T
2 …T y

2†TWoTy
2

ˆ T2W 1=2
c W 1=2

c TT
2 …T y

2†TW 1=2
o W 1=2

o Ty
2

ˆ T2W 1=2
c …W 1=2

o T y
2T2W 1=2

c †TW 1=2
o T y

2 ˆ 0:

since, according to Lemma 2 and equation (12),

850 J. S. Garcia and J. C. Basilio



W1=2
o T

y
2T2W 1=2

c ˆ W 1=2
o …In ¡ T

y
1T1†W 1=2

c

ˆ W 1=2
o W 1=2

c ¡ W 1=2
o T y

1T1W
1=2
c

ˆ W 1=2
o W 1=2

c ¡ W 1=2
o W 1=2

c Y1

£ §¡1=2§¡1=2XT
1 W1=2

o W 1=2
c ˆ 0

Let us now partition ÂA, B̂B and ĈC compatibly with T as
follows:

G…s† ˆ
ÂA B̂B

ĈC D̂D

" #
ˆ

ÂA11 ÂA12 B̂B1

ÂA21 ÂA22 B̂B2

ĈC1 ĈC2 D̂D

2

64

3

75;

where ÂA11 ˆ T1AT
y
1 , B̂B1 ˆ T1B and ĈC1 ˆ CT

y
1 . To prove

that Ab, Bb and Cb, given in (9), are, respectively, equal
to ÂA11, B̂B1 and ĈC1, given above, note that since FL ˆ 0
then one of the following possibilities must occur:

(1) Either L or F is identically zero. In this case, the
result follows directly by application of Lemmas 3
and 4.

(2) The matrices L and F are both non-identically zero.
This implies that the columns of L must lie in the
right null space of F or, equivalently, the rows of F
must lie in the left null space of L. This fact implies
that F has the following eigenvalue decomposition:

F ˆ UT
F

¤f 0

0 0

µ ¶
UF ; …14†

where ¤F ˆ diagf¶1, ¶2; . . . ; ¶f g, ¶i ¶ ¶j > 0, i < j
and f < n ¡ k.

Consider now the similarity transformation:

·TT ˆ
Ik 0

0 UF

µ ¶
and ·TT¡1 ˆ

Ik 0

0 UT
F

µ ¶
:

Therefore

G…s† ˆ
·TTÂA ·TT¡1 TB̂B

ĈC ·TT¡1 D̂D

" #

ˆ
ÂA11 ÂA12UT

F B̂B1

UF ÂA21 UF ÂA22UT
F UF B̂B2

ĈC1 ĈC2UT
F D̂D

2

664

3

775 …15†

has gramians

·WW …1†
c ˆ ·TTŴWc

·TTT ˆ
§ 0

0 UF FUT
F

µ ¶
ˆ

§ 0 0

0 ¤F 0

0 0 0

2

64

3

75

and

·WW …1†
o ˆ … ·TT¡1†TŴWo

·TT¡1 ˆ
§ 0

0 UFLUT
F

" #

ˆ

§ 0 0

0 ·LL11
·LL12

0 ·LL21
·LL22

2

664

3

775:

Partitioning the realization (15) compatibly with ·WW …1†
c ,

gives:

G…s† ˆ

ÂA11
·AA12

·AA13 B̂B1

·AA21
·AA22

·AA23
·BB2

·AA31
·AA32

·AA33
·BB3

ĈC1
·CC2

·CC3 D̂D

2

66664

3

77775
;

and applying Lemma 3 to the realization above, we
obtain:

G…s† ˆ
ÂA11

·AA12 B̂B1

·AA21
·AA22

·BB2

ĈC1
·CC2 D̂D

2

64

3

75; …16†

whose gramians are:

·WW …2†
c ˆ

§ 0

0 ¤F

µ ¶
and ·WW …2†

o ˆ
§ 0

0 ·LL11

µ ¶
:

Note that

¤F
·LL11 ˆ 0

since

·WW …1†
c

·WW …1†
o ˆ

§2 0 0

0 ¤F
·LL11 ¤F

·LL12

0 0 0

2

64

3

75:

and

·WW …1†
c

·WW …1†
o ˆ ·TTŴWcŴWo

·TT¡1 ˆ §2 0

0 0

" #

In addition, note that ¤F is, by de®nition, full rank and
hence, ·LL11 must be identically zero.

Therefore:

·WW …2†
o ˆ

§ 0

0 0

µ ¶
:

Finally, applying Lemma 4 to (16), gives equation (9),
with ÂA11 ˆ Ab, B̂B1 ˆ Bb and ĈC1 ˆ Cb. &

Once a minimal realization for G…s† in a balanced form
has been obtained, model reduction by balanced trunca-
tion can be employed directly to realization (16). This
can be done in accordance with the following theorem
(Glover 1984).
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Theorem 2: Consider the balanced realization of G…s†
given in …16† and assume that its controllability and
observability gramians are § ˆ diag f§L, §sg, where

§L ˆ diag f¼1Im1, ¼2Im2; . . . ; ¼·rrIm·rr
g and §s ˆ diag

f¼·rr‡1Im·rr‡1
, ¼·rr‡2Im·rr‡2

; . . . ; ¼ ·kkIm ·kk
g with ¼i > ¼j,

i ˆ 1; 2; . . . ; ·kk, i < j and mi being the multiplicity of ¼i.
Partition …16† in accordance with §, namely:

G…s† ˆ
Ab11

Ab12
Bb1

Ab21
Ab22

Bb2

Cb1
Cb2

Db

2

64

3

75:

Then the truncated system

~GG…s† ˆ
Ab11

Bb1

Cb1
Db

" #
…17†

is balanced and stable. Moreover

kG ¡ ~GGk1 µ 2…¼·rr‡1 ‡ ¼·rr‡2 ‡ ¢ ¢ ¢ ‡ ¼·kk†: …18†

Proof: See Glover (1984) and Zhou et al. (1996). &

The direct application of Theorem 2 to equation (9)
leads to the following result.

Corollary 1: Let us partition the matrices T1 and T
y
1 in

accordance with the gramian §, given in Theorem 2, as
follows:

T1 ˆ
T1

Ts

µ ¶
and T y

1 ˆ ‰T y
L Ty

s Š: …19†

Then

~GG…s† ˆ
TLAT y

L TLB

CT y
L D

" #

is such that kG ¡ ~GGk1 µ 2…¼·rr‡1 ‡ ¼·rr‡2 ‡ ¢ ¢ ¢ ‡ ¼ ·kk†.

Proof: Note that the matrices Ab11
, Bb1

and Cb1
of (17)

are obtained from Ab, Bb and Cb as follows:

Ab11
ˆ ‰Ir 0r£…k¡r†ŠAb

Ir

0…k¡r†£r

" #

;

Bb1
ˆ ‰Ir 0r£…k¡r†ŠBb and Cb1

ˆ Cb

Ir

0…k¡r†£r

" #

;

where r ˆ
P·rr

iˆ1 mi and k ˆ
P ·kk

iˆ1 mi. Hence, substituting

Ab ˆ T1AT
y
1 , Bb ˆ T1B and Cb ˆ CT

y
1 in equation

above, and noting that

TL ˆ ‰Ir 0r£…k¡r†ŠT1 and T
y
L ˆ T

y
1

Ir

0…k¡r†£r

" #

gives the result. &

Remark 3: Note that, from the de®nitions of T1 and
Ty

1 , given in (12), and of TL and T y
L, given in (19), we

may write:

T1 ˆ
TL

Ts

" #
ˆ

§
¡1=2
L 0

0 §¡1=2
s

" #
XT

L

XT
s

" #
W 1=2

o

T y
1 ˆ W 1=2

c ‰YL YsŠ
§

¡1=2
L 0

0 §¡1=2
s

" #

;

and therefore

TL ˆ §
¡1=2
L XT

L W 1=2
o and T y

L ˆ W 1=2
c YL§

¡1=2
L : …20†

&

5. The algorithm

The results obtained in the previous section may be
summarized in the following algorithm.

Algorithm 1: For a p £ m stable, rational and proper
transfer matrix G…s† with a non-minimal state-space
representation given by

G…s† ˆ A B

C D

µ ¶
;

a reduced-order model ~GG…s†, in balanced form, can be
obtained as follows:

Step 1. Compute the observability and controllability
gramians, Wc and Wo respectively, by solving
the following Lyapunov equations:

AWc ‡ WcA
T ˆ ¡BBT

ATWo ‡ WoA ˆ ¡CTC:

Step 2. Compute the singular value decompositions of
Wc and Wo,

Wc ˆ Uc¤cU
T
c and Wo ˆ Uo¤oUT

o ;

respectively, and ®nd

W1=2
c ˆ Uc¤

1=2
c UT

c and W 1=2
o ˆ Uo¤1=2

o UT
o :

Step 3. Compute the singular value decomposition
of the product W 1=2

o W 1=2
c and partition it as

follows:

W 1=2
o W 1=2

c ˆ ‰XL Xs X2Š

§L 0 0

0 §s 0

0 0 0

2

664

3

775

YT
L

YT
s

YT
2

2

664

3

775;

where §L ˆ diag f¼1Im1
, ¼2Im2

; . . . ; ¼·rrIm·rr
g and

§s ˆ diag f¼·rr‡1Im·rr‡1
, ¼·rr‡2Im·rr‡2

, . . . ; ¼ ·kkIm ·kk
g are

formed with the Hankel singular values to be
kept and discarded, respectively.
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Step 4. Compute

TL ˆ §
¡1=2
L XT

L W 1=2
o and T y

L ˆ W 1=2
c YL§

¡1=2
L :

Step 5. Obtain the reduced order model ~GG…s†:

~GG…s† ˆ
TLAT

y
L TLB

CT
y
L D

" #

:

6. Example

With the view to illustrating the algorithm proposed in this paper, let us consider the MIMO system

G…s† ˆ
1

…s ‡ 1†2…s ‡ 1†

£

s ‡ 1 …s ‡ 1†…2s ‡ 1† s…s ‡ 1†

s ‡ 2 …s ‡ 2†…s2 ‡ 5s ‡ 3† s…s ‡ 2†

1 2s ‡ 1 s

2

664

3

775;

which has originally appeared in (Zhou et al. 1996, p. 82). From the Smith±McMillan form of G…s†, we can conclude
that its poles are ¡2 and ¡1 (multiplicity 3) and its unique zero is ¡2. Therefore, any minimal order realization for
G…s† must have four states. An immediate state±space representation for G…s† is as follows:

G…s† ˆ

¡3 2 0 0 0 0 0 0 1 0:5

¡1 0 0 0 0 0 0 0:25 0:25 0

0 0 ¡2 2 0 0 0 0 1:5 0:5

0 0 ¡0:5 0 0 0 0 0:25 0:5 0

0 0 0 0 ¡4 4 0 0 0 0

0 0 0 0 ¡1:25 0 1 0 0:5 0:25

0 0 0 0 ¡0:5 0 0 0:25 0:25 0

2:0000 0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0

2

6666666666666666664

3

7777777777777777775

:

which is clearly non-minimal.
The next step towards obtaining a reduced model for G…s† is to perform the singular value decomposition of

W 1=2
o W 1=2

c ˆ X§YT. In doing so, we ®nd out that G…s† has the following Hankel singular values:

H ˆ f1:34599705068499; 0:561442935324430; 0:229553347221876; 0:121751694629952;

0:994480795128365 £ 10¡8; 0:377508751606880 £ 10¡8; 0:137796554002854 £ 10¡8g:

Note that if the last three Hankel singular values are discarded, then the error of approximation kG ¡ ~GGk1 will be
µ 3:0196 £ 10¡8. Therefore, forming the matrices TL …Ty

L) with the ®rst four columns (rows) of X (YT) we obtain the
following reduced order model ~GG…s† of G…s†:

~GG…s† ˆ

¡1:19912 1:17669 ¡0:20410 0:08115 0:31978 1:71569 0:42683

¡0:22153 ¡0:61453 ¡0:23408 0:09276 0:66409 ¡0:22411 ¡0:44588

¡1:20966 0:99303 ¡2:28659 0:50952 ¡0:09831 0:85714 0:55265

¡0:23454 ¡0:34857 ¡0:25357 ¡0:89976 0:10835 0:25235 ¡0:37904

0:77478 ¡0:19715 0:82738 ¡0:32752 0 0 0

1:58965 ¡0:78316 0:06424 0:16676 0 1 0

0:31744 ¡0:19452 ¡0:60092 ¡0:28986 0 0 0

2

66666666664

3

77777777775



for which Wc ˆ Wo ˆ diag {1.34600, 0.56144, 0.22955,
0.12175}, and therefore the realization above is
balanced. Note that the actual H1 error between G…s†
and ~GG…s† is approximately 1:5 £ 10¡15.

Remark 4: A realization, with less states then that
given above, could be obtained by following the steps
of algorithm (1). Indeed, suppose that we are interested
in keeping the ®rst three Hankel singular values. In this
case, proceeding according to algorithm (1), we obtain a
three-state balanced realization for which the actual H1
error between G…s† and ~GG…s† and the error bound (18)
are approximately equal to 0.2435. &

7. Conclusions

The problem of model reduction by balanced truncation
has been revisited and a simple algorithm presented. The
reduced-order model is obtained by pre- and post-multi-
plication of the non-minimal order state±space realiza-
tion by rectangular matrices. Moreover, there is no
restriction on the way the Lyapunov equations, required
to calculate the gramians, are computed. Other features
of the algorithm are the realization obtained for the
reduced model is in a balanced form, and the algorithm
is expected to be robust, since it relies solely on singular
value decompositions.
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