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SUMMARY

Controlled systems designed by using the characteristic locus method can be very sensitive to small perturbations in the plant
input and output at the frequencies where the plant transfer matrix is far from normal. In order to improve the closed-loop
system robustness, previous work proposes the design of a dynamic normalizing pre-compensator followed by the design
of a commutative controller for the pre-compensated plant. The restriction on its structure and the need for approximation
by a stable rational transfer matrix were among the limitations of the dynamic pre-compensator. This paper shows that it
suffices to design a static pre-compensator that makes the pre-compensated plant as closely as possible to a normal matrix
in a frequency band containing the crossover frequency. The pre-compensator is found by solving an optimization problem,
whose solution is obtained directly by computing either a singular value decomposition of a real matrix or the spectral
decomposition of a symmetric matrix, depending on whether normalization is to be achieved in one or more frequencies.
Numerical examples illustrate the theoretical results of the paper. Copyright q 2009 John Wiley & Sons, Ltd.

Received 1 May 2008; Revised 10 October 2008; Accepted 20 November 2008

KEY WORDS: robustness; multivariable systems; frequency domain; characteristic locus method; pre-compensator design

1. INTRODUCTION

The generalized Nyquist stability criterion [1] is
an important tool for stability analysis and design
of closed-loop multivariable linear systems since it
provides an integrated assessment of closed-loop
stability and dynamic performance. The design
technique that emerged naturally from the gener-
alized Nyquist stability criterion is the well-known

∗Correspondence to: J. C. Basilio, Universidade Federal do Rio
de Janeiro, COPPE - Programa de Engenharia Elétrica, Cidade
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characteristic locus method (CLM) [2–4], and the
controllers designed according to the CLM are known
as commutative controllers, since they commute with
the plant transfer function with respect to multipli-
cation. The commutativity property has the effect of
changing a multivariable design in m single-input–
single-output (SISO) designs, where m is the number
of inputs/outputs of the plant to be controlled. This
is carried out through the choice of the controller
eigenfunctions with the view to modifying the char-
acteristic loci of the plant in the same manner as
SISO controllers modify the Nyquist diagram of the
plant in scalar systems. In spite of this simplifica-
tion, the resulting controller is a full multivariable
controller, as opposed to those obtained by sequential
loop closing or independent design of each loop using
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SISO controllers as is the case of decentralized control
systems [5–12].

Despite being acknowledged as an efficient design
technique, the CLM was under serious criticism on
account of eigenvalue sensitivity [13], i.e. for plants
with frequency responses far from normal at a certain
frequency band, the characteristic loci can be very
sensitive to perturbations in the plant input and output
at these frequencies [14, 15]. In order to improve the
robustness of closed-loop systems compensated with
commutative controllers, a two-stage-design approach
has been proposed in [16], as follows: for an m×m
plant with transfer function G(s), a dynamic normal-
izing pre-compensator, i.e. a pre-compensator Kp(s)
that approximately normalizes the pre-compensated
plant G( jw)Kp( jw) at the whole frequency range is
obtained initially and, in the sequel, a controller, Kc(s),
that commutes with G(s)Kp(s) and also internally
stabilizes the feedback system [17, 18], is designed.
The overall controller transfer function is therefore
K (s)=Kp(s)Kc(s). More recently, with the view to
considering the sensitivity of the characteristic loci
with respect to perturbations in both the plant input and
output, the design of a normalizing pre-compensator
for G(s) has been proposed through the solution of
an optimization problem based on a measure of the
misalignment between the input and output principal
directions of the plant in each frequency [19]. Although
this pre-compensation scheme has led to insensitive
open-loop characteristic loci, several constraints have
been imposed in the pre-compensator structure.

This paper deals with the design of a pre-
compensator with the view to normalizing the plant;
therefore, improving the robustness of the closed-loop
system compensated in accordance with the CLM.
It is shown that it suffices to design a static pre-
compensator that makes the pre-compensated plant as
closely as possible to a normal matrix at a frequency
band containing the crossover frequency; therefore, the
need for normalization in the whole frequency range,
as done in [16, 19]. The pre-compensator is found
by solving an optimization problem, whose solution
is obtained directly by computing either a singular
value decomposition of a real matrix or the spectral
decomposition of a symmetric matrix, depending on
whether normalization is to be achieved in one or more

frequencies. In addition, different from previous works,
the proposed pre-compensator has no constraints in its
structure.

This paper is structured as follows: in Section 2 it is
shown that it suffices to use a static pre-compensator
that normalizes the plant at the vicinity of the crossover
frequency; in Section 3 an optimization problem for
the design of a static pre-compensator with the view
to normalizing the pre-compensated plant at a desired
frequency �0 is formulated and solved; this optimiza-
tion problem is also extended to the multi-frequency
case in this section; finally, two numerical examples
are presented in Section 4 to illustrate the theoretical
results presented in the paper.

2. PRELIMINARY RESULTS

Let G(s) and K (s) be the m×m transfer matrices
of the plant and controller, respectively. According
to the generalized Nyquist stability criterion [1], the
closed-loop system of Figure 1 is stable if and only
if the net sum of anticlockwise encirclements of the
critical point −1+ j0, by the characteristic loci of
G(s)K (s), is equal to the number of unstable poles of
G(s) and K (s). The use of the generalized Nyquist
stability criterion as a design tool is by means of the
so-called commutative controllers, that is, a controller
K (s) such that G(s)K (s)=K (s)G(s). Commutativity
is achieved whenever G(s) and K (s) share the same
eigenvector and dual eigenvector frames, in which case,
the eigenvalues of the product G(s)K (s) are equal
to the product of the eigenvalues of G(s) and K (s).
In this regard, closed-loop stability and performance
requirements such as tracking, disturbance rejection
and good transient response are achieved through
the manipulation of the eigenfunctions of the open-
loop transfer matrix, i.e. by choosing, in an adequate

Figure 1. Closed-loop feedback control system.
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CLM ROBUSTNESS IMPROVEMENT 373

manner, the controller eigenfunctions. This controller
design strategy is known as the CLM. However, as
shown in [13], the CLM can only be effective from the
robustness point of view if the plant transfer matrix is
normal. The definition of normal matrix is as follows.

Definition 1
Amatrix G∈Cm×m is normal if and only if it commutes
with its conjugate transpose, G�, i.e. GG� =G�G.

Some measures of approximate normality of a
complex matrix are presented in [20]. One of these
measures is based on the following theorem.

Theorem 1
A matrix G∈Cm×m is normal if and only if it has an
orthonormal set of m eigenvectors.

Proof
See [21]. �

An immediate consequence of Theorem 1 is the defi-
nition of the degree of normality of a matrix and of
approximately normal matrices. This is done with the
help of the following definitions [22].
Definition 2
Let A∈Cm×m . If A−1 exists, then the Euclidean condi-
tion number of A, denoted as C(A), is given by

C(A)= �̄(A)

�(A)
(1)

where �̄(·) and �(·) denote, respectively, the maximum
and minimum singular values of a matrix.

Definition 3
Let Dm×m be the set of all invertible diagonal matrices
in Cm×m . Under the same assumptions as in Defini-
tion 2, then the optimal condition number of a complex
matrix A, denoted as Copt(A), is defined as:

Copt(A)= inf
D∈Dm×m

C(AD) (2)

It is shown in [22] that optimization problem (2) is
convex and, therefore, it has only one minimum that
can be achieved through convex programming.

Measures of normality and approximately normality
can now be introduced, as follows.

Definition 4
Let G∈Cm×m and suppose that G=W�V , V =W−1,
is a spectral decomposition of G. The degree of
normality of G is defined as

�=Copt(W )−1 (3)

Moreover, when �→0, then the matrix G is said to be
approximately normal.

The optimal condition numbers of the eigenvector
matrices of G( jw)K ( jw) and K ( jw)G( jw) can be used
to give an upper bound for a measure of robustness of
the closed-loop system with respect to perturbations in
the plant output and input, respectively. This will be
done with the help of the following result.

Lemma 1 (Small gain theorem)
Let MG(s) be a stable transfer matrix and define

Gp(s)=[I +MG(s)]G(s) (4)

as the plant transfer matrix with multiplicative pertur-
bation in the plant output, where �̄[MG( jw)]��G(�)

and �G(�) is a nonnegative real function. Then, K (s)
stabilizes Gp(s) if and only if K (s) stabilizes G(s) and

�̄{G( jw)K ( jw)[I +G( jw)K ( jw)]−1}

<
1

�G(�)
(5)

Proof
See [23]. �

A necessary condition for robust stability of the
closed-loop system, given in terms of the eigenvalues
of the open-loop transfer matrix, can be obtained from
Lemma 1 and using the fact that the maximum singular
value is an upper bound for the moduli of the eigen-
values of a matrix, as follows:

max
i∈Im

∣∣∣∣ �i {G( jw)K ( jw)}
1+�i {G( jw)K ( jw)}

∣∣∣∣< 1

�G(�)
(6)

where Im ={1,2, . . . ,m}. Consider now the following
result.
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Lemma 2
Let A∈Cm×m and let A=WA�AVA, VA=W−1

A , be a
spectral decomposition of A. Then,

�̄{A}
Copt(WA)

�max
i∈Im

|�i {A}| (7)

Proof
Note that A=WA�AVA=(WAD)�A(D−1VA), for all
D∈Dm×m . Thus

�̄{A} = �̄{WAD�AD
−1VA}� �̄{WAD}

�{WAD} �̄{�A}

=C(WAD)max
i∈Im

|�i {A}| (8)

Replacing D, in inequality (8), with the optimal solu-
tion of problem (2) gives the desired result. �

A sufficient condition for robust stability of the
closed-loop system, expressed in terms of the eigen-
values of the open-loop transfer matrix, can be obtained
with the help of Lemmas 1 and 2, as follows.

Theorem 2
If K (s) stabilizes G(s) and for each �∈R

max
i∈{1,2,...,m}

∣∣∣∣ �i {G( jw)K ( jw)}
1+�i {G( jw)K ( jw)}

∣∣∣∣
<

1

�G(�)[1+�( jw)] (9)

where �( jw)=Copt[W ( jw)]−1 with W ( jw) denoting
the eigenvector matrix of G( jw)K ( jw), then K (s)
stabilizes Gp(s).

Proof
The proof is straightforward and will be omitted. �

Remark 1

(i) Similar results to those given in Theorem 2
and inequality (6) can be obtained assuming
multiplicative perturbation in the plant input,
i.e. Gp(s)=G(s)[I +MG(s)]. In this case the
upper bounds are given in terms of the optimal
condition number of the eigenvector matrix of
K ( jw)G( jw).

(ii) When the matrix G(s) is normal at a certain
frequency �, then �( jw) becomes zero and thus
inequalities (9) and (6) become identical. In this
case, inequality (6) provides a necessary and
sufficient condition, as claimed in [13].

Based on Lemma 1, Theorem 2 and inequality (6),
the following conclusions regarding the normality of
the open-loop transfer matrix can be drawn

(1) At high frequencies, since G(s) is usually strictly
proper, G( jw)K ( jw)→O . As a consequence,
�i [G( jw)K ( jw)]→0, i=1, . . . ,m. Therefore,
conditions (6) and (9), become, respectively,

�<
1

�G
and �<

1

�G(1+�)
, �→0 (10)

which are satisfied for arbitrarily large values of
�. This implies that there is no need for normal-
ization at high frequencies.

(2) At low frequencies, due to integral action
required to track step reference signals,
G( jw)K ( jw) becomes infinite and thus,
according to inequality (5), �G <1 becomes a
necessary and sufficient condition for robust
stability of the closed-loop system. Therefore,
normalization is not a crucial requirement for
low sensitivity of the characteristic loci at low
frequencies when integral action is deployed;
see also [3].

(3) At the frequencies near the crossover frequency
�c, the sufficient condition (9) approaches the
necessary condition (6) when �→0, namely that
when G( jwc)K ( jwc) becomes approximately
normal.

(4) Same conclusions can be drawn for the product
K ( jw)G( jw) concerning perturbations in the
plant input. The only difference is that, now, �
denotes the degree of normality associated with
the optimal condition number of the eigenvector
matrix of K ( jw)G( jw).

Conclusions (1)–(4) ensure that only when G( jw)

is not normal at a frequency band containing the
crossover frequency �c, a static normalizing pre-
compensator Kp should be designed in order to make
G( jw)Kp approximately normal in this frequency band.
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CLM ROBUSTNESS IMPROVEMENT 375

Therefore, instead of designing a dynamic normalizing
pre-compensator, as proposed in [16, 19], it suffices
to design a static pre-compensator that normalizes the
plant at the vicinity of �c.

It can be easily proved that although the resulting
controller

K (s)=KpKc(s) (11)

where Kp is the normalizing pre-compensator and
Kc(s) is a controller that commutes with G(s)Kp
can be designed to improve the closed-loop system
robustness with respect to perturbations in the plant
output, it may be possible that the closed-loop system
robustness with respect to perturbations in plant
input be poor. This difficulty can be overcome by
introducing another objective on the design of Kp,
namely that Kp should make both KpKc( jw)G( jw)

and G( jw)KpKc( jw) approximately normal at the
frequency range of interest.

3. NORMALIZING PRE-COMPENSATORS

3.1. Problem formulation

With the view to considering the normalization of both
G(s)K (s) and K (s)G(s), the so-called reversed-frame-
normalizing-controllers has been introduced [20]. It can
be seen that both G(s)K (s) and K (s)G(s) are normal
if and only if the singular-vector frames of K (s) are
those of G(s) taken in reversed order, as stated in the
following lemma.

Lemma 3
Suppose that G,K ∈Cm×m are both of rank m and let

G=Y�U � (12)

be a singular value decomposition of G, where
�=diag{�i , i=1, . . . ,m}. Then GK and KG are both
normal if and only if

K =U�KY
� (13)

for some nonsingular diagonal matrix �K ∈Cm×m .

Proof
See [20]. �

According to Lemma 3, the characteristic loci of
G(s)K (s) are at their least sensitivity to perturba-
tions in the plant input and output if and only if the
controller K (s) has the structure given by Equation
(13). However, in this paper, the controller is defined
by Equation (11), which implies that Kp must have a
specific structure so that G(s)K (s) and K (s)G(s) be
both normal, as stated below.

Theorem 3
Suppose that the product GK∈Cm×m is of rank m and
has all eigenvalues distinct. In addition, assume that all
eigenvalues of GKp are also distinct and let K =KpKc,
where Kc has the same eigenvector matrix as GKp.
Then, GK and KG are both normal matrices if and
only if

Kp=U�Y � (14)

where � is a nonsingular diagonal matrix.

Proof
(⇒) If GK and KG are normal matrices, then,
according to Lemma 3,

K =KpKc=U�KY
� (15)

Therefore, from Equations (12) and (13), it can be seen
that GK =Y�U �U�KY � =Y��KY �, which is a spec-
tral decomposition of GK . Since GKp is assumed to
have distinct eigenvalues and Kc and GKp share the
same eigenvector matrices, then Kc=Y�cY �, where
�c is the eigenvalue matrix of Kc, is a spectral decom-
position of Kc. Using Equation (15), we obtain

Kp=U�K�−1
c Y � (16)

which is equivalent to Equation (14) for �=�K�−1
c .

(⇐) The proof is straightforward and will be
omitted. �

Assuming that, for a given frequency w0, Kc( jw0)

is chosen in such a way that all eigenvalues of
G( jw0)K ( jw0) are distinct, then exact normality
of G( jw0)K ( jw0) and K ( jw0)G( jw0) are achieved
through the choice of a nonsingular diagonal matrix
� such that G( jw0)Kp has distinct eigenvalues and
by computing Kp in accordance with Equation (14).
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However, in this paper, the computation of a normal-
izing static pre-compensator is considered, which
implies that Kp must be a real matrix. Since the matrices
U ( jw0),Y ( jw0)∈Cm×m , then, only for special cases
it is possible to obtain Kp real; in [20] the design of
static pre-compensators with the structure given by
Equation (14) is considered in two cases where it is
possible to obtain real pre-compensators, namely that,
at d.c. frequency (�0=0) and at very high frequencies
(�0→∞). In these cases U ( jw0),Y ( jw0)∈Rm×m .
However, the need for normalization is more crit-
ical at frequencies, where the characteristic loci are
close to the critical point −1+ j0, i.e. at intermediate
frequencies, as pointed out in Section 2.

Since exact normalities of G( jw)K and KG( jw)

at intermediate frequencies by means of a complex
matrix K =KpKc (Kp∈Rm×m) cannot, in general,
be simultaneously obtained, it is more realistic to
seek approximate normality. The following results
relates the approximate normality of G( jw)K ( jw)

and K ( jw)G( jw) to the approximate normality of
G( jw)Kp and KpG( jw), respectively.

Theorem 4
Let K (s) be given by Equation (11), and assume that
G and K denote, respectively, the values of G( jw0)

and K ( jw0) at a given frequency �0∈R. In addition,
assume that all eigenvalues of GKp are distinct and
Kc has the same eigenvector matrix as GKp. Then (i)
GK is approximately normal if GKp is approximately
normal and (ii) assuming that Kp is nonsingular, KG is
approximately normal if KpG is approximately normal.

Proof

(i) The proof is straightforward and comes from the
fact that since Kc has the same eigenvectors as GKp,
then GKp and GK have the same eigenvector matrices.

(ii) Let a singular value decomposition of G be given
by Equation (12) and for a nonsingular matrix Kp,
define

M( jw0)=U ( jw0)
�KpY ( jw0) (17)

It follows from Equations (12) and (17) that:

GKp=Y�U �UMY� =Y�MY� (18)

Suppose now that �M=W�M��MV�M , where ��M
is a diagonal matrix, W�M is an eigenvector matrix of
�M and V�M =W−1

�M . Then, GKp can be written as:

GKp=YW�M��MV�MY � (19)

Since, by assumption, Kc has the same eigenvector
matrix as GKp, a spectral decomposition of Kc can
always be given as

Kc=YW�M�cV�MY � (20)

where �c is a diagonal matrix formed with the eigen-
values of Kc. Thus, according to Equations (17), (20)
and (12), and after simple algebraic manipulations, KG
can be written as:

KG=UMW�M�c��MV�MM−1U � (21)

Therefore, for any commutative controller Kc, an eigen-
vector matrix of KG will be given by UMW�M . In
particular, for Kc= I , KpG will have the following
spectral decomposition:

KpG=UMW�M��MV�MM−1U � (22)

Since, by assumption, all eigenvalues of KpG are
distinct, then an eigenvector matrix of KpG is equal to
UMW�M up to a scaling to have the smallest condition
number according to Equation (2). Therefore, if the
eigenvector matrix of KpG has optimal condition
number approximately equal to one, i.e. if KpG is
approximately normal, then KG is also approximately
normal. �

Theorems 3 and 4 lead to the formulation of
the following optimization problem to find a real
pre-compensator Kp that approximately normalizes
G( jw)Kp and KpG( jw) at �=�0

min
(Kp,�)

‖Kp−U�Y �‖2F (23)

where U =U ( jw0) and Y =Y ( jw0) are obtained
according to Equation (12) from a singular value
decomposition of G( j�0) and ‖·‖F denotes the
Frobenius norm, subject to the following constraints:
Kp∈Rm×m and nonsingular, and �∈Cm×m , diagonal
and nonidentically zero.
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Optimization problem (23) leads to a pre-compensator
that approximately normalizesG( jw)Kp and KpG( jw),
as shown by the following results.

Lemma 4 (Bauer and Fike [24])
Let A∈Cm×m be a diagonalizable matrix and A=
W�V , where V =W−1, be a spectral decomposition
of A and let �∈Cm×m . In addition, assume that �̂ is an
eigenvalue of A+�. Then there exists an eigenvalue �i
of A such that

|�̂−�i |��̄(W )�̄(V )�̄(�)=C(W )�̄(�) (24)

Proof
See [21]. �

Lemma 5
Let P ∈Cm×m be such that P=ej�+P0, where � is a
diagonal matrix, P0∈Cm×m and �̄(P0)=�<1. Then,

C(P)�1+�

1−�
(25)

Proof
The proof can be easily obtained using properties of
the singular values. �

Theorem 5
Let G=Y�U � be a singular value decomposition of G,
�∈Cm×m be a diagonal matrix and Kp∈Rm×m . Define

E=U �KpY −� (26)

and Z =��=diag{z1, z2, . . . , zm}. Then, if zi 	= z�, i 	=
�, i,�∈Im , where Im ={1,2, . . . ,m} and

2
√
m‖�‖F

mini,�∈Im ,i 	=� |zi −z�|‖E‖F→0 (27)

then �GKp →0 and �KpG →0, where �GKp and �KpG
denote the deviation from normality of GKp and KpG,
respectively, given according to Definition 4.

Proof
Let

Gp=GKp=Wp�pVp (28)

be a spectral decomposition of GKp where Vp=W−1
p .

Since Y is a unitary matrix, then any eigenvector matrix

of Gp formed with eigenvectors with unity Euclidean
norm can be written as

Wp=Y P (29)

where P ∈Cm×m is a nonsingular matrix with all
columns with Euclidean norm equal to one. Thus,
using Equations (28), (29) and (26), it can be verified
that:

��+�E= P�pP
−1 (30)

According to Lemma 4, associated with each diagonal
entry of ��, �i�i , there exists an eigenvalue of �p,
�pi , such that

|�i�i −�pi |��̄(�E)�‖�‖F‖E‖F (31)

Therefore, defining the complex matrix

�̂=��−�p (32)

and using inequality (31) and the fact that �̂ is a diag-
onal matrix, it follows that:

�̄(�̂)=max
i

|�i�i −�pi |�‖�‖F‖E‖F (33)

Substituting �p given by Equation (32), in Equation
(30), and after simple algebraic manipulations, one
obtains:

P��−��P=�EP+P�̂ (34)

Computing the Frobenius norm of both sides of
Equation (34) and using properties of the norm of
matrices, it results in:

‖P��−��P‖F
�‖�‖F‖E‖F‖P‖F+‖P�̂‖F (35)

Since all columns of P have Euclidean norm equal
to one, then ‖P‖F=√

m. In addition, using Equation
(33), one can write

‖P�̂‖F =
(

m∑
i=1

|	̂i |2‖pi‖22
)1/2

�
√
mmax

i
|	̂i |=√

m�̄(�̂)

�
√
m‖�‖F‖E‖F (36)
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where 	̂i denotes the i th entry of the main diagonal of
�̂ and p

i
, the i th column of P . Therefore, inequality

(35) can be written as:

‖P��−��P‖F�2
√
m‖�‖F‖E‖F (37)

Defining Z =��, then, it can be seen that the (i,�)
entry of Z P−PZ is given by (zi −z�)pi�, where pi�
denotes entry (i,�) of P . Thus,

‖Z P−PZ‖2F=
m∑

�=1

m∑
i=1,i 	=�

|zi −z�|2|pi�|2 (38)

Therefore, the following relationship can be estab-
lished: (

m∑
�=1

m∑
i=1,i 	=�

|pi�|2
)1/2

min
i 	=�

|zi −z�|

�‖P��−��P‖F

�
√
m‖E‖F‖�‖F (39)

Assuming now that ‖E‖F satisfies the condition given
by (27), then(

m∑
�=1

m∑
i=1,i 	=�

|pi�|2
)1/2

→0 (40)

Since all columns of P have Euclidean norm equal
to one, inequality (40) implies that P is approxi-
mately unitary and diagonal. Therefore, according to
Lemma 5, C(P)→1 and since C(Wp)=C(Y P)=
C(P)�Copt(P), then it is straightforward to see that
�GKp →0.

In order to show that �KpG →0 when condition (27)
is satisfied, it suffices to follow the same steps as the
proof above for KpG; the only difference is that, in this
case the eigenvector matrix of KpG, Ŵp must satisfy
Ŵp=U P , where U is the input principal direction
matrix of a singular value decomposition of G, and P
and Ŵp have all columns with Euclidean norm equal
to one. �

Theorem 5 shows that if a pair (K opt
p ,�opt), solu-

tion to optimization problem (23), satisfies condition
(27) then G( jw0)K

opt
p and K opt

p G( jw0) will both have

eigenvector matrices with optimal condition numbers
approximately equal to one, being, therefore, approxi-
mately normal.

3.2. Solution to the optimization problem

Optimization problem (23) can be written as

min
Kp∈Rm×m ,� nonidentically zero

J (Kp,�) (41)

where

J (Kp,�)=‖Kp−U�Y �‖2F (42)

The solution to this problem is given by the following
theorem.

Theorem 6
Let UR (UI ) and YR (YI ) denote the real (imaginary)
parts of U and Y , respectively, for a given frequency
�0 and u

Ri
(u

Ii
), i=1,2, . . . ,m denote the ith column

of UR (UI ) and yRi j (yIi j ) denote the (i, j) entry of YR

(YI ). Define the matrix

A=[ARR+AI I ARI −AI R] (43)

where ARR , AI I , ARI and AI R are defined as

A
� =

⎡
⎢⎢⎢⎢⎢⎢⎣

u
1 y�11
u
2 y�12

· · · u
m y�1m

u
1 y�21
u
2 y�22

· · · u
m y�2m

...
...

...

u
1 y�m1
u
2 y�m2

· · · u
m y�mm

⎤
⎥⎥⎥⎥⎥⎥⎦

(44)

with 
 and � being replaced with R or I where appro-
priate. In addition, write

Kp=[k1 k2 . . . km] (45)

where ki denotes the ith column of Kp and �=�R+
j�I , where �R and �I are diagonal matrices with real
entries. Form the vectors

� = [�T
R

�T
I
]T (46)

k = [kT1 kT2 . . . kTm]T (47)
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where �
R
and �

I
are column vectors formed with the

diagonal entries of �R and �I . Let A=YA�AU �
A be a

singular value decomposition of A, �A1 be the largest
singular value of A and uA1

(y
A1
) the first column

of UA (YA). Assuming that � is normalized to have

unit Euclidean norm, then min‖Kp−U�Y �‖2F=1−
�2A1

, and is achieved by the pair (K opt
p ,�opt) obtained

from the entries of �opt=uA1
and

kopt=�A1 yA1
(48)

Proof
After some simple algebraic manipulations, J (Kp,�)

can be written as

J (Kp,�) = tr(KpK
T
p )−2Re{tr(U �KpY��)}

+tr(���) (49)

where Re{·} and tr(·) denote, respectively, the real part
and the trace of a complex matrix. Since,U =UR+ jUI ,
Y =YR+ jYI and �=�R+ j�I , then J (Kp,�) can also
be written as

J (Kp,�)= tr(KpK
T
p )−2H+ tr(���) (50)

where

H = tr(UT
RKpYR�R)+ tr(UT

RKpYI�I )

−tr(UT
I KpYR�I )+ tr(UT

I KpYI�R) (51)

Notice that each term on the right-hand side of Equation
(51) has the same structure, i.e. tr(U
KpY���), where

, � and � are replaced with R or I , when appropriate.
Defining the vectors � and k, according to Equations
(46) and (47), then it is straightforward to check that

H =kTA� (52)

where A is defined according to Equation (43). There-
fore, the problem of minimizing J (Kp,�) given by
Equation (50) is equivalent to the problem of mini-
mizing

J (k,�)=kTk−2kTA�+�T� (53)

Note that if one fixes the values of the elements of
vector �, then the cost function J (k,�) describes a
paraboloid whose minimum value is given by

Jmin(�)=�T�−kTk (54)

where k= A�. Therefore, the problem of minimizing
J (k,�), given by Equation (53), is equivalent to the
following optimization problem:

min
�

�T(I −ATA)� (55)

for all � such that � is nonidentically zero. Note that
since the cost function of problem (55) is equivalent
to the norm defined in Equation (42), then the matrix
(I −ATA) is either positive definite or positive semi-
definite. Furthermore, since the Euclidean norm of
vector � is assumed to be equal to one, it can be seen
that problem (55) is equivalent to:

max
�

�T(ATA)� (56)

Let A=YA�AU �
A be a singular value decomposition

of A. Then, the solution to optimization problem (56)
is achieved for �opt=uA1

(the first column of UA),
and the maximum value of cost function (56) is given
by �2A1

(the square of the largest singular value of A).

Furthermore, it is not hard to check that kopt= A�opt=
�A1 yA1

, where y
A1

denotes the first column of YA. �

Remark 2
In general, choosing k=�A1 yA1

leads to a nonsin-
gular Kp; this has actually happened in all examples
considered so far [25]. However, if it happens that the
minimum is achieved with a singular Kp, then a nonsin-
gular Kp must be obtained among the suboptimal solu-
tions of problem (56). In order to do so in a systematic
manner, note that any vector � can always be written
as a linear combination of the columns of the matrix
UA, as follows:

�=
1uA1
+
2uA2

+·· ·+
2muA2m
(57)

where it is straightforward to see that 
1=1, 
2=
3=
·· ·=
2m =0 for �opt. Therefore, the cost of problem
(56) can be written in terms of 
i , i=1,2, . . . ,2m, as

�T(ATA)�=
21�
2
A1

+
22�
2
A2

+·· ·+
22m�2A2m
(58)
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with the constraint


21+
22+·· ·+
22m =1 (59)

which is implied by ‖�‖22=1. Moreover, since k= A�,
then using Equation (57), we may write

k=
1�A1 yA1
+
2�A2 yA2

+·· ·+
p�Ap yAp
(60)

where y
Ai
, i=1, . . . , p, are the first p columns of the

output principal direction matrix YA associated with
nonzero singular values. Using Equation (60), it is
possible to express Kp as

Kp=
1�A1YA1 +
2�A2YA2 +·· ·+
p�ApYAp (61)

where YAi is an m×m matrix formed from y
Ai
, i=

1,2, . . . , p. Let �2 denote the value of cost (58). There-
fore, it can be easily checked that


21
a21

+ 
22
a22

+·· ·+ 
2p
a2p

=1 (62)

where ai =�/�Ai , i=1,2, . . . , p. Note that Equations
(59) and (62) define, respectively, a hypersphere
of radius 1 and a hyper-ellipsoid of semi-axes ai ,
1=1,2, . . . , p. Furthermore, the following can be
stated about their interception points (it is assumed
here, for simplicity, that A has distinct singular values):
(i) when �=�A1 , then a1=1 and ai>1, i=2,3, . . . , p,
the hypersphere is inside the hyper-ellipsoid and is
tangent to it at point (1,0, . . . ,0); (ii) as � decreases,
a1 becomes smaller than 1, which creates several inter-
ception points; (iii) when �=�p, the hyper-ellipsoid
becomes internal and tangent to the hypersphere and
the unique interception point is (0,0, . . . ,1). Therefore,
a nonsingular Kp that leads to a suboptimal solution to
optimization problem (56) can be found using a search
algorithm.

It may happen that the solution to optimization
problem (55) for just one frequency leads to a pre-
compensated plant that is approximately normal only at
a small vicinity of the frequency �0 considered in the
optimization problem. If a larger band is required, then
it is necessary to consider more than one frequency
in the computation of the pre-compensator Kp. This
problem is addressed in the next section.

3.3. Extension to multi-frequencies

Assume that l distinct frequencies are chosen in the
intermediate frequency range. Then, the cost function
(42) can be modified in order to compute a static pre-
compensator, as follows:

J (Kp,�n)=
l∑

n=1
w̃n‖Kp−Un�nY

�
n ‖2F (63)

where {w̃n ∈R∗+,n=1, . . . , l} is a set of weights,
Kp∈Rm×m , �n ∈Cm×m is a diagonal matrix, and Un ,
Yn are, respectively, the input and output principal
direction matrices of a singular value decomposition
of G( jwn) for n=1, . . . , l. It is not hard to check
that if K opt

p and �opt
n , n=1,2, . . . , l, satisfy condi-

tion (27) then G( jwn)K
opt
p and K opt

p G( jwn) will be
approximately normal at the selected frequencies �n .

The problem of minimizing J (Kp,�n) can be
converted to an eigenvalue problem, whose solution
(K opt

p ,�opt
1 ,�opt

2 , . . . ,�opt
l ) is obtained according to the

following Theorem.

Theorem 7
Let UnR (UnI ) and YnR (YnI ) denote the real (imag-
inary) parts of Un and Yn , respectively, for a given
frequency �n and unRi

(unIi
), i=1,2, . . . ,m, denote

the ith column of UnR (UnI ) and ynRi j (ynIi j ) denote
the (i, j) entry of YnR (YnI ). Define the matrix

An = [AnRR +AnI I AnRI −AnI R ]
n=1,2, . . . , l (64)

where AnRR , AnI I , AnRI and AnI R are defined as

An
� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

un
1
yn�11

un
2
yn�12

· · · un
m
yn�1m

un
1
yn�21

un
2
yn�22

· · · un
m
yn�2m

...
...

...

un
1
yn�m1

un
2
yn�m2

· · · un
m
yn�mm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(65)

with 
 and � being replaced with R or I , where appro-
priate, and form the following matrix:

Ã=[A1 A2 . . . Al ] (66)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 20:371–386
DOI: 10.1002/rnc



CLM ROBUSTNESS IMPROVEMENT 381

In addition, form the vector

�̃=[w̃1�
T
1

w̃2�
T
2

. . . w̃l�
T
l
]T (67)

where

�
n
=[�T

nR
�T
nI

]T, n=1,2, . . . , l (68)

with �
nR

and �
nI

being column vectors formed with

the diagonal entries of �nR and �nI (�nR and �nI
are diagonal matrices corresponding to the real and
imaginary parts of �n). Write

Kp=[k1 k2 . . . km] (69)

and stack its columns to form the following vector:

k=[kT1 kT2 . . . kTm]T (70)

Finally, let �p1 and v p1 denote the smallest eigenvalue
and the corresponding eigenvector of the matrix

P = diag

{
1

w̃1
I2m,

1

w̃2
I2m, . . . ,

1

w̃l
I2m

}

− 1∑l
n=1 w̃n

ÃT Ã (71)

where I2m denote the identity matrix of order 2m.
Assuming that � is normalized to have unit Euclidean

norm, then min
∑l

n=1 w̃n‖Kp−Un�nY �
n ‖2F=�p1 and

is achieved by the (l+1)-tuple (K opt
p ,�opt

1 ,�opt
2 , . . . ,�opt

l )

obtained from the entries of �̃
opt=v p1 and

kopt= 1∑l
n=1 w̃n

Ãv p1 (72)

Proof
It is not hard to check that Equation (63) can be
rewritten as

J (k,�
n
)=

l∑
n=1

w̃n(k
Tk−2kTAn�n

+�T
n
�
n
) (73)

where An and �n are defined according to Equations
(64) and (68), respectively. Using the definitions of Ã

and �̃, given by Equations (66) and (67), respectively,
then Equation (73) becomes:

J (k,�
n
) =

(
l∑

n=1
w̃nk

Tk

)

−2kT[A1 A2 . . . Al ]

×

⎡
⎢⎢⎢⎢⎢⎢⎣

w̃1�1

w̃2�2

...

w̃l�l

⎤
⎥⎥⎥⎥⎥⎥⎦

+w̃1�
T
1
�
1
+w̃2�

T
2
�
2

+·· ·+w̃l�
T
l
�
l

(74)

Fixing the value of �̃, the minimum of J (k,�
n
) is

achieved for

k= 1∑l
n=1 w̃n

Ã�̃ (75)

Therefore, substituting k, given by Equation (75), in
Equation (73), and following the same steps as in the
proof of Theorem 6, one obtains the following opti-
mization problem:

min
�̃

�̃TP�̃ (76)

where P is defined in accordance with Equation (71).
Note that, since minimization problems (76) and (63)
are equivalent, then the matrix P is either a positive
definite or a semi-definite matrix. Thus, assuming that
�̃ has Euclidean-norm equal to one, then the minimum

of Equation (76) is achieved when �̃=v p1 , where v p1
denotes the eigenvector associated with the smallest
eigenvalue, �p1 , of P . Moreover, the minimum is given
by �p1 . �

4. NUMERICAL EXAMPLES

In this section, two examples will be used to illustrate
the pre-compensator design proposed in this paper: the
first example illustrates the improvement that can be
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achieved by considering more than one frequency in the
optimization problem; the second example addresses
the design of both the normalizing pre-compensator and
the commutative controller.

4.1. Example 1

Consider the transfer matrix of a linearized model of
the vertical plane dynamics of an aircraft [26] given by

G(s)= 1

d(s)
N (s)

where d(s)=s5+1.5953s4+1.7572s3+0.1112s2+
0.0561s, N (s)=[ni j (s)], and

n11(s) = −1.5750s3−1.1190s2

+1.5409s−0.0816

n12(s) = 0.2909s2+0.2527s+0.3712

n13(s) = 0.0732s3−0.0646s2

−1.2125s−0.0204

n21(s) = −0.12s4−0.0739s3

−0.5319s2−0.2458s

n22(s) = s4+1.5415s3+1.6537s2

n23(s) = −0.0052s3+0.1570s2+0.1828s

n31(s) = 4.419s3+1.6674s2+0.1339s

n32(s) = 0.0485s2+0.3279s

n33(s) = −1.6650s3−1.1574s2−0.0918s

Let �c=10rad/s [26] be the desired crossover
frequency. As can be seen from Figure 2(a) (solid line),
the condition number of the eigenvector matrix of
G( jw) is large for almost all frequencies and approx-
imately equal to seven for G( j10), which shows that
G(s) is not normal at the vicinity of �c. Therefore, it is
necessary to compute a normalizing pre-compensator
in order to normalise both GKp and KpG at the vicinity
of �c. This can be done as follows: (i) form matrix A,
according to Equation (43), and compute its singular
value decomposition; (ii) compute the largest singular

value of A and its corresponding output principal
direction, y

A1
; (iii) obtain kopt in accordance with

Equation (48) and form Kp using Equations (45) and
(47). Proceeding in this way, we obtain the following
normalizing pre-compensator:

Kp1 =
⎡
⎢⎣
0.3171 0.0030 0.0731

0.0385 −0.0138 0.0080

0.8953 0.0027 0.3010

⎤
⎥⎦ (77)

for which, the minimum value of the cost function
(55) is equal to 0.000142463442298. From Figure 2(a)
(dashed line), it can be seen that G( jw)Kp1 is closer
to normal than G( jw) at almost all frequencies. Thus,
according to Theorem 2, the characteristic loci of
the open-loop system can be used to give a reliable
measure of robust stability as far as uncertainty in
the plant output is concerned. However, as shown in
Figure 2(a) (dash-dotted line), the optimal condition
number of Kp1G( jw) at �=1rad/s is approximately
6.58 and thus the characteristic loci can be sensi-
tive to model uncertainties in the plant input around
this frequency. This shows the need for considering
the multi-frequency approach of Section 3.3, which
is carried out as follows: (i) choose two frequen-
cies �1=1rad/s and �2=10rad/s, and, as weights,
w̃1= w̃2=1; (ii) form, according to Equation (71),
matrix P (a 12×12 dimensional matrix); (iii) compute
the smallest eigenvalue of P (�P1 ), and the corre-
sponding eigenvector vP1 ; (iv) obtain kopt according
to Equation (72), and Kp according to Equations
(70) and (69). Proceeding this way, the following
pre-compensator is obtained:

Kp2 =
⎡
⎢⎣

0.1851 −0.0817 −0.9711

−0.0683 0.5303 −0.1237

−0.7982 −0.1022 0.0072

⎤
⎥⎦ (78)

for which the value of the cost function (63) is 0.0335.
The optimal condition numbers of the eigenvector
matrices of G( jw)Kp2 and Kp2G( jw) are shown in
Figure 2(b) (dashed and dash-dotted lines, respec-
tively). It can be seen that, now, both matrices are
approximately normal at the frequency range of interest
(the optimal condition numbers of the eigenvector
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(a) (b)

Figure 2. (a) Optimal condition numbers of the eigenvector matrices of G( jw) (solid line), G( jw)Kp1 (dashed line) and
Kp1G( jw) (dash-dotted line); and (b) optimal condition numbers of the eigenvector matrices of G( jw) (solid line), G( jw)Kp2

(dashed line) and Kp2G( jw) (dash-dotted line).

matrices are smaller than 1.5 for all frequencies greater
than 0.8rad/s). Therefore, the CLM can now be effec-
tively applied to the pre-compensated plant assuming
uncertainties at both the plant input and output.

4.2. Example 2

The plant to be considered here is that proposed in [13],
for which the CLM is known to be very sensitive to
uncertainties:

G(s)= 1

(s+1)(s+2)

[−47s+2 56s

−42s 50s+2

]
(79)

It is suggested in [13] that, since the eigenfunctions
of G(s) are equal to �g1(s)=1/(s+1) and �g2(s)=
2/(s+2), then appropriate gain and phase margins
can be achieved with the commutative controller
K (s)= I . However, for this controller, the maximum
singular value of the closed-loop transfer matrix
Tc(s)=G(s)K (s)[I +G(s)K (s)]−1 at �≈3rad/s is
very high (approximately 16.2), showing that the
closed-loop system is very sensitive to plant multi-
plicative uncertainties at the vicinity of this frequency,
i.e. even for small variations on G(s), the characteristic

loci of the perturbed system differ a great deal from
those of the nominal system (the perturbed system may
actually become unstable). The low tolerance to plant
multiplicative uncertainty can be explained by the lack
of normality of G(s) at almost all frequencies: the
optimal condition number of the eigenvector matrix
of G( jw) is equal to 196 at all frequencies, except
at the dc frequency, when G(s) becomes equal to the
identity matrix. It is therefore necessary to design a
normalizing pre-compensator for G(s).

Suppose that the desired bandwidth frequency is
�b=1rad/s, and thus, the characteristic loci should be
insensitive to perturbations in the plant input and output
in the vicinity of �b. Following the same steps as in
the first part of Example 1, the following optimal static
pre-compensator is obtained:

Kp=
[
0.0216 −0.7068

0.7068 0.0216

]
(80)

It can be easily verified that the optimal condition
numbers of the eigenvector matrices of G( jw)Kp and
KpG( jw), are both equal to one at all frequencies,
showing that G( jw)Kp and KpG( jw) are both approx-
imately normal matrices.
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Figure 3. Step responses of the closed-loop system, where u0(t) is the unit step signal.

Consider now the design of a commutative controller
for Gp(s)=G(s)Kp and assume the following design
specifications: (S1) rise time smaller than 5s for each
loop; (S2) low interactions between outputs; (S3) good
damping of step responses with peak overshoot no
greater than about 10%; (S4) zero steady-state error for
step reference input and disturbance; (S5) tolerance to
multiplicative uncertainty of size up to 1

1.2 .

Deploying the degrees of freedom available in the
parametrization of all rational commutative controllers
[18], a controller Kc(s) that commutes with Gp(s)=
G(s)Kp can be obtained. The details involved in the
calculation of Kc(s) are not presented here since the
design of commutative controllers is not the paper main
focus; the interested reader is referred to [18]. One of
such controllers, has the following transfer function:

Kc(s) = 1

dKc(s)

[
138.4s4+1790s3+4210.1s2+2036.4s+2

−154.9s4−2009.7s3−4792.4s2−2467.6s−93.4

−154.9s4−1996.8s3−4627.4s2−2080.6s+93.4

173.5s4+2243.8s3+5277.1s2+2551.5s+2

]
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Figure 4. Moduli of eigenfunctions (dashed and solid lines) and maximum singular value (circles)
of the closed-loop transfer matrix.

where dKc(s)=s5+22.3s4+143.3s3+210.4s2+82.6s,
and has the following properties:

1. It commutes with Gp(s) at all frequencies, as it
can be verified by the high degree of commuta-
tivity between Gp( jw) and Kc( jw), according to
the commutativity indicator

e(�) = |�Qi ( jw)−�Gpi
( jw)�Kci

( jw)|
|�Qi ( jw)| ×100%

i = 1,2

which is smaller than 2.5×10−3% for i=1,2,
where Q(s)=Gp(s)Kc(s).

2. It satisfies design specifications S1–S4, as one can
see from Figure 3.

3. It also satisfies design specification S5, as one
can conclude from Figure 4. In this figure, it is
shown the moduli of the eigenfunctions (dashed
and solid lines) and the maximum singular value
(circles) of the closed-loop transfer matrices
Tc(s)=G(s)K (s)[I +G(s)K (s)]−1; the moduli
of the eigenfunctions and the maximum singular
value of T ′

c(s)=[I +K (s)G(s)]−1K (s)G(s)

for the frequency range of interest have not
been shown, but it can be easily checked that
they coincide with those of the closed-loop
transfer function. In addition, note that the largest
singular value and the largest modulus of the
eigenfunctions are approximately equal for the
whole frequency range showing that the pre-
compensation scheme proposed here has actually
succeeded in providing the basis for the design
of a reliable commutative controller, as far as
sensitivity to uncertainty in both the plant input
and output is concerned.

5. CONCLUSIONS

In this paper, it is shown that, to improve the robust-
ness of a multivariable system compensated with a
controller designed in accordance with the CLM,
the first step is to pre-compensate the plant transfer
matrix with a static pre-compensator that makes the
pre-compensated system approximately normal in a
frequency band containing the crossover frequency.
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In order to achieve this goal, a systematic method-
ology for the design of an optimal static normalizing
pre-compensator is presented in the paper. The effec-
tiveness of the proposed pre-compensation scheme is
illustrated by means of two numerical examples taken
from the open literature.
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