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The Characteristic Locus Method constitutes a generalisation of the classical frequency

response approach and as such provides a natural platform for design aimed at meeting

specifications such as closed-loop stability and dynamic performance. However, to overcome

problems of sensitivity to uncertainty, it is necessary to precondition the plant transfer

function matrix (TFM) with the view to improving the orthogonality of the eigenvector

functions. All that remains then is to use controllers which adjust the frequency response of

the eigenfunctions of the TFM while leaving the eigenvectors unaltered. This implies the need

for commutative controllers which may be irrational and may not be internally stabilising. The

present paper gives a complete characterisation of the class of stabilising rational commutative

controllers and derived necessary and sufficient conditions for the existence of this class. These

ideas are illustrated by means of case study in which the degrees of freedom contained within

the class of commutative controllers are deployed for the meeting design specifications on

dynamic performance as well as tolerance to uncertainty.

1. Introduction

The strength of classical frequency response techniques
is that they allow an integrated assessment of closed-loop
stability and dynamic performance and hence provide
a useful basis for the design of feedback loops. Thus
critical point encirclements are used to assess stability,
whereas dc values provide the necessary information
about steady state accuracy. In addition, using the rough
but often useful rule of thumb that if h(t) denotes a stable
step response, then hð1=!Þ � Hðj!Þ

�� �� where Hðj!Þ
denotes the corresponding frequency response, it is
possible to relate (clearly only in an approximate
manner) system bandwidth to rise time, and maximum
M-circle values to peak overshoot. These ideas have
a natural extension to multivariable systems through
the Characteristic Locus Method (CLM) which for
obvious reasons is referred as the Generalized Nyquist
approach (MacFarlane and Postlethwaite 1977,

MacFarlane and Kouvaritakis 1977, Cameron and

Kouvaritakis 1979). The conditions for the assessment

of stability and relative stability margins which deploy

the Characteristic Loci (the frequency response plot of

the eigenfunctions of the appropriate transfer function

matrix (TFM)) are necessary and sufficient. This is in

contrast to other multivariable frequency response

methods which use sufficient only conditions (e.g.

based on decoupling or diagonal dominance) and hence

could lead to conservative results.
It is known that in the case of badly skewed

eigenvectors, eigenvalue/vector decompositions can be

sensitive to perturbations (Wilkinson 1965) and there-

fore in cases like this CLM results may not be robust

in the presence of model uncertainty (Doyle and Stein

1981, Moreira and Basilio 2005, Basilio and Sahate

2000). The remedy may be found in the H1 methodol-

ogy, but this does not provide the natural environment

for addressing specifications such as speed of response

and amount of allowable overshoot. On the other hand,
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avoids the CLM sensitivity problem and, accordingly,
it is possible to design precompensators which improve
the degree of normality over particular frequencies of
interest (e.g. Basilio and Sahate 2000, Moreira and
Basilio 2005). From this point on, CLM design would
consist of the derivation of controllers which preserve
the eigenvectors (and therefore the degree of normality)
while allowing for the adjustment of the CL. This can be
achieved through the use of commutative controllers
which however may be irrational and therefore difficult
to implement and/or may not be internally stabilising
(e.g. on account of the introduction of unstable fixed
modes). Necessary only conditions for the existence of
internally stabilising commutative control have been
given (Basilio and Kouvaritakis 1995) and it is the
purpose of the current paper to extend these results
by deriving a complete characterisation of the class of
rational internally stabilising commutative controllers
and establishing the necessary and sufficient conditions
for the existence of this class. It is demonstrated,
through a design study that the degrees of freedom
available within the class of commutative controllers can
be deployed in meeting a number of objectives that
concern dynamic performance as well as afford
prescribed margins of robustness; to illustrate the
efficacy of the overall proposed strategy, the plant for
this study is chosen to be that proposed in Doyle and
Stein 1981, for which CLM is known very sensitive to
uncertainty.
The layout of the paper is: x 2 presents a brief review

of the theory of minimal polynomial bases and fixed
modes; the problem of finding stabilising commutative
controllers is formulated in x 3; the design study in x 4
demonstrates how the degrees of freedom in the class
of commutative controllers can be given up in order to
meet a given set of design specifications.

2. Theoretical background

2.1 Minimal polynomial bases for the right null space
of a polynomial matrix

Let Rp�q
½s�,Rp�q

ðsÞ be the sets of p� q polynomial and
rational matrices, respectively. In addition, assume that
a matrix AðsÞ 2 R

p�q
½s� (p< q for simplicity) has the

following Smith form:

�AðsÞ ¼

"1ðsÞ
0
..
.

0

0
"2ðsÞ

..

.

0

� � � 0 0 � � �

� � � 0 0 � � �

. .
. ..

. ..
. . .

.

� � � "pðsÞ 0 � � �

0
0
..
.

0

2
6664

3
7775 ð1Þ

where "kðsÞ � 0, k ¼ p� �þ 1, . . . , p. In this case the
matrix A(s) is said to have a right null space of

dimension �� ¼ q� pþ �. This leads to the following
definition.

Definition 1: The normal rank of a polynomial matrix
A(s) is the integer r such that maxs 2 C �½AðsÞ� ¼ r, where
�(.) denotes the rank of a matrix.

Hence the rank of A(s) can be less than the normal
rank, only at a finite number of values of s (i.e. the
zeros of the invariant polynomials "iðsÞ, i ¼ 1, . . . , r). In
addition it is always possible to find �� ¼ q� r linearly
independent polynomial vectors f(s) over the field of
rational functions such that AðsÞfðsÞ ¼ 0. The latter
statement leads to the concept of minimal polynomial
basis.

Definition 2: (Forney 1975) Let FðsÞ ¼ ½ f1ðsÞ f
2
ðsÞ

. . . f
��
ðsÞ�, where deg½f

i
ðsÞ� ¼ �i, be a polynomial

matrix such that A(s)F(s)¼ 0. Then, the columns of
F(s) form a minimal polynomial basis for the right null
space of F(s) if and only if

P ��
i¼1 �i is a minimum.

The computation of a minimal polynomial basis for
the right null space of a polynomial matrix is
straightforward (e.g. one can use the robust algorithm
proposed in Basilio and Moreira 2004).

2.2 Fixed modes of a multivariable system

Let GðsÞ 2 R
m�m

ðsÞ and form the corresponding
characteristic equation of G(s):

�ðlg, sÞ ¼
�
det lgðsÞIm � GðsÞ

� �
¼ 0, ð2Þ

where Im denotes the identity matrix of order m and
det[�] denotes determinant. In general, �ðlg, sÞ cannot be
expressed as a product of linear factors of lg, and thus,
the eigenfunctions of a rational matrix are, in general,
irrational functions of s. However, �ðlg, sÞ can be
reduced as

�ðlg, sÞ ¼ �1ðlg, sÞ�2ðlg, sÞ . . . �kðlg, sÞ, ð3Þ

where the coefficients �iðlg, sÞ are algebraic functions
that are irreducible over the field of rational
functions of s. Therefore, each factor �iðlg, sÞ can be
written as:

bi0ðsÞl
�i
gi
þ bi1ðsÞl

�i�1
gi

þ � � � þ bi�i ðsÞ ¼ 0, ð4Þ

where bij(s) for j ¼ 0, 1, . . . , �i, are polynomials in s.
The characteristic functions of a square matrix GðsÞ 2
R

m�m
ðsÞ are defined as the set of algebraic functions

lgi ðsÞ, for i¼ 1, . . . , k, that satisfies equation (4).
Therefore, to any rational matrix G(s), it can be
associated a set of algebraic functions lgi ðsÞ whose
values are the eigenfunctions of G(s). This leads to the
following definition.
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Definition 3: (Poles and zeros of characteristic
functions) Let the algebraic equation associated
with the characteristic function lgiðsÞ be given by
equation (4) and also assume that bi0ðsÞ 6¼ 0 and
bi�i ðsÞ 6¼ 0. Then, the poles and the zeros of the
characteristic function lgi ðsÞ are the values of s 2 C for
which, respectively:

bi0ðsÞ ¼ 0, bi�iðsÞ ¼ 0: ð5Þ

Thus the polynomial of the poles and zeros of the
characteristic functions of G(s) are defined as

pfðsÞ ¼
Yk
i¼1

bi0ðsÞ, zfðsÞ ¼
Yk
i¼1

bi�iðsÞ: ð6Þ

Consider now the Smith–McMillan form of G(s):

MGðsÞ ¼
~MGðsÞr, r Or,m�r

Om�r, r Om�r,m�r

� �
, ð7Þ

where r denotes the normal rank of G(s) and

~MGðsÞ ¼ diag
"1ðsÞ

�1ðsÞ

"2ðsÞ

�2ðsÞ
� � �

"rðsÞ

�rðsÞ

� �

where "iðsÞ, �iðsÞ, for i¼ 1, . . . , r, are coprime monic
polynomials. Then the following algebraic definition
of the poles and zeros of a multivariable TFM
(Rosenbrock 1970) is possible.

Definition 4: The finite zeros of G(s) are defined as the
set of all zeros of the polynomials "iðsÞ, i ¼ 1, 2, . . . , r.
The poles of G(s) are defined as the set of all zeros
of �iðsÞ, i ¼ 1, 2, . . . , r.

Therefore, the pole and zero polynomials of G(s) are
given, respectively, by

pðsÞ ¼
Yr
i¼1

�iðsÞ, zðsÞ ¼
Yr
i¼1

"iðsÞ: ð8Þ

It is important to remark (MacFarlane and
Postlethwaite 1977; Smith 1981) that not all
poles of G(s) are poles of its characteristic functions.
Thus

pðsÞ ¼ eðsÞpfðsÞ, zðsÞ ¼ eðsÞzfðsÞ, ð9Þ

where pfðsÞ, zfðsÞ, pðsÞ, zðsÞ are, respectively given by
equations (6) and (8), and eðsÞ is a polynomial whose
zeros are the poles of G(s) that are not poles of any
of its characteristic functions.

Definition 5: The poles pi 2 C of G(s) such that
eðpiÞ ¼ 0 are called the fixed modes of G(s).

An important property of the zeros of eðsÞ, that justify
the name of fixed modes, is:

Lemma 1: The fixed modes of G(s) are the set of
poles of G(s) that remain fixed under any scalar
feedback �Im, where � 2 R.

Proof: See Smith (1981). œ

3. A parameterisation of all rational stabilising

commutative controllers

3.1 Problem formulation

Consider the feedback system of figure 1 where
GðsÞ,KðsÞ 2 R

m�m
ðsÞ are, respectively, the plant and

the controller TFM. In addition let

GðsÞ ¼ NðsÞM�1ðsÞ ¼ ~M�1ðsÞ ~NðsÞ ð10Þ

be a doubly coprime factorisation of G(s) in RHm�m
1

(the set of all stable TFM in R
m�m

ðsÞ). Thus, there
exist XðsÞ,YðsÞ, ~XðsÞ, ~YðsÞ 2 RHm�m

1 which satisfy the
Bezout identity

~XðsÞ � ~YðsÞ

~NðsÞ ~MðsÞ

2
4

3
5 MðsÞ YðsÞ

�NðsÞ XðsÞ

" #
¼

I O

O I

" #
: ð11Þ

Let K(s) be a commutative controller, so that

GðsÞKðsÞ ¼ KðsÞGðsÞ, ð12Þ

and assume that K(s) internally stabilizes the closed-
loop system of figure 1, i.e. that belongs to the class
(Youla et al. 1976, Kucera 1979):

KðsÞ ¼ UðsÞV�1ðsÞ ¼ ~V�1ðsÞ ~UðsÞ

¼ ½YðsÞ þMðsÞQðsÞ�½XðsÞ �NðsÞQðsÞ��1

¼ ½ ~XðsÞ �QðsÞ ~NðsÞ��1
½ ~YðsÞ þQðsÞ ~MðsÞ�,

ð13Þ

where QðsÞ 2 RHm�m
1 , i.e. is rational and has all its

poles with negative real part. Then, substitution
of GðsÞ ¼ NðsÞM�1ðsÞ ¼ ~M�1ðsÞ ~NðsÞ and KðsÞ ¼
UðsÞV�1ðsÞ ¼ ~V�1ðsÞ ~UðsÞ in equation (12), gives:

~M�1ðsÞ ~NðsÞUðsÞV�1ðsÞ

� ~V�1ðsÞ ~UðsÞNðsÞM�1ðsÞ ¼ O:
ð14Þ

r(s) +

−
K(s) G(s)

y(s)

Figure 1. Block diagram of a negative feedback control
system
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The Bezout identity (equation (11)) is satisfied by
~VðsÞ, ~UðsÞ, V(s), U(s) (as well as by ~XðsÞ, ~YðsÞ, X(s),
Y(s)). Therefore, after some algebraic manipulation,
equation (14) reduces to:

VðsÞ ~MðsÞ �MðsÞ ~VðsÞ ¼ O: ð15Þ

Substituting V(s)¼X(s)�N(s)Q(s) and ~VðsÞ ¼ ~XðsÞ�
QðsÞ ~NðsÞ in equation (15) above, yields:

NðsÞQðsÞ ~MðsÞ �MðsÞQðsÞ ~NðsÞ ¼ CðsÞ, ð16Þ

CðsÞ ¼ XðsÞ ~MðsÞ �MðsÞ ~XðsÞ: ð17Þ

Finally, for QðsÞ ¼ ½ q
1
ðsÞ q

2
ðsÞ . . . q

m
ðsÞ � and

CðsÞ ¼ ½ c1ðsÞ c2ðsÞ . . . cmðsÞ �, it follows that
equation (16) is equivalent to

PðsÞqðsÞ ¼ cðsÞ, ð18Þ

PðsÞ ¼ ~MtðsÞ �NðsÞ � ~NtðsÞ �MðsÞ

qðsÞ ¼ qt
1
ðsÞ qt

2
ðsÞ . . . qt

m
ðsÞ

� �t
,

cðsÞ ¼ ct1ðsÞ ct2ðsÞ . . . ctmðsÞ
� �t

ð19Þ

with � denoting the Kronecker product. Equations (18)
and (19) provide a necessary and sufficient condition
for the existence of a rational stabilising commu-
tative controller, namely that, there exists a rational
K(s) which stabilises the closed-loop system and
commutes with G(s) if and only if there exists a
stable vector qðsÞ 2 R

m2

ðsÞ such that equation (18) is
satisfied.

Remark 1: Although M(s), N(s), ~MðsÞ, ~NðsÞ, X(s) and
~XðsÞ are rational, it is always possible to form these
matrices in such a way that they all have the same
denominator polynomial (Nett et al. 1984). Thus, it is
always possible to assume that PðsÞ 2 R

m2�m2

½s� and
cðsÞ 2 R

m2

½s�.

3.2 Existence of rational stabilising commutative
controllers

An RSCC K(s) always exists when G(s) is stable since
in this case, it can be seen that

QeðsÞ ¼ �M�1ðsÞYðsÞ ¼ � ~YðsÞ ~M�1ðsÞ 2 RHm�m
1 ð20Þ

and satisfies the commutativity conditions,
equations (16) and (17). For unstable G(s), QeðsÞ 62
RHm�m

1 so in general, one must characterise the
space generated by all solutions to equation (18). Then
writing

qðsÞ ¼
1

dqðsÞ
nqðsÞ, ð21Þ

where nqðsÞ 2 R
m2

½s�, dq(s) is a polynomial, and
substituting the qðsÞ of equation (21), in equation (18),
yields:

PðsÞ
1

dqðsÞ
nqðsÞ ¼ cðsÞ, ð22Þ

or equivalently,

TðsÞ
nqðsÞ
dqðsÞ

� �
¼ 0, ð23Þ

TðsÞ ¼ PðsÞ �cðsÞ
� �

: ð24Þ

Thus the solutions of equation (18) are defined by the
right null space of T(s) and are given by linear
combinations of the elements of a minimal polynomial
basis for the right null space of T(s). The nullity of T(s)
can be deduced from the following result.

Lemma 2: Let A 2 C
m�m be a diagonalisable matrix

and assume that each distinct eigenvalue of A, lk,
k¼ 1, 2, . . . , l, have multiplicity �k. Then, there are
�l

k¼1�
2
k linearly independent matrices over the field of

complex numbers (C), which commutes with respect
to multiplication with A.

Proof: Let A ¼ W�AW
�1 be a spectral decom-

position of A, where �A ¼ diagf�Ak
, k ¼ 1, 2, . . . , lg,

�Ak
¼ lkI�k

, and consider a matrix B which commutes
under multiplication with A. Therefore

W�AW
�1B ¼ BW�AW

�1, ð25Þ

or equivalently:

�AðW
�1BWÞ ¼ ðW�1BWÞ�A: ð26Þ

Denoting �B ¼ ðW�1BWÞ then, from equation (26),
it can be seen that B commutes with A if and only if �B
commutes with �A, i.e. if and only if �B is block diagonal,
�B ¼ diagf �Bk, k ¼ 1, . . . , lg, where �Bk 2 C

�k��k . In
addition, since �Ak

is a diagonal matrix, it commutes
with any matrix �Bk. Let Eij denote a matrix whose
elements are zero except for element (i, j), which is equal
to 1. It is immediate to see that all matrix �Bk can be
expressed as a linear combination of Eij, i.e.

�Bk ¼
X�k

i¼1

X�k

j¼1

�b
ðkÞ
ij Eij, ð27Þ

where �b
ðkÞ
ij is element (i, j) of �Bk, thus defining �

2
k linearly

independent matrices that commute with �Ak
. Since

there are l distinct blocks �Ak
, it follows that there are

�l
k¼1�

2
k linearly independent matrices that commute

with A. œ

From lemma 2 one can obtain the nullity of P(s) and
T(s) from the eigenfunctions of G(s).
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Theorem 1: Let G(j!) be diagonalisable for all ! 2 R

and assume that G(s) has l distinct eigenfunctions lgiðsÞ
with multiplicity �i. Then, the normal rank of P(s)
is equal to m2 � ��, where �� ¼ �l

i¼1�
2
i . Furthermore,

the nullity of T(s) is ��þ 1.

Proof: For P(s) to have normal rank r<m2, there
must be �� ¼ m2 � r linearly independent polynomial
vectors �ðsÞ 2 R

m2

½s� such that:

�tðsÞPðsÞ ¼ 0t, ð28Þ

where �tðsÞ ¼ ½�t1ðsÞ �t2ðsÞ . . . �tmðsÞ� , �iðsÞ 2 R
m
½s�.

Defining,

AðsÞ ¼ ½�1ðsÞ �2ðsÞ . . . �mðsÞ �
t, ð29Þ

then equation (28) holds true if there exists a
matrix A(s), formed according to equation (29) that
satisfies:

~MðsÞAðsÞNðsÞ � ~NðsÞAðsÞMðsÞ ¼ O: ð30Þ

Premultiplying and postmultiplying equation (30) by
~M�1ðsÞ and M�1(s), respectively, yields:

AðsÞNðsÞM�1ðsÞ � ~M�1ðsÞ ~NðsÞAðsÞ ¼ O: ð31Þ

Using GðsÞ ¼ NðsÞM�1ðsÞ ¼ ~M�1ðsÞ ~NðsÞ and
G(s)¼NG(s)/d(s), where d(s) is the least common
denominator of all the elements of G(s) and
NGðsÞ 2 R

m�m
½s�, equation (31) can be rewritten as:

AðsÞ
1

dðsÞ
NGðsÞ ¼

1

dðsÞ
NGðsÞAðsÞ: ð32Þ

Since, by assumption, G(s) has l distinct eigenfunctions
lgiðsÞ with multiplicity �i, then for an infinite number
of frequencies !k, NG(j!k) has l distinct eigenvalues
where each one has multiplicity �i. Let !k be such
that j!k is not a zero of d(s). Then equation (32) is
satisfied if and only if A(j!k) commutes with NG(j!k).
According to lemma 2, there exist �l

i¼1�
2
i linearly

independent matrices that commute with NG(j!k),
hence for an infinite number of values of !k, the
nullity of P(j!k) is �� ¼ �l

i¼1�
2
i , or equivalently, the

rank of P(j!k) is equal to m2 � ��, and thus,
according to definition 1, the normal rank of PðsÞ is
m2 � ��.
Finally, notice that the commutativity condition

given by equations (16) and (17) is always verified
when Q(s)¼Qe(s) given by equation (20), which
implies that the vector cðsÞ always belongs to the
space generated by the columns of P(s). Therefore,
assuming that the polynomial matrix P(s) has
nullity equal to ��, then T(s), given by equation (24),
has nullity ��þ 1. œ

According to theorem 1, the characterisation of all
solutions to equation (23) is given by the right null

space of T(s) which has dimension ��þ 1, and is
spanned by the vectors of a minimal polynomial basis,
defined by the columns of a ðm2 þ 1Þ � ð ��þ 1Þ
polynomial matrix, say H(s) (i.e. T(s)H(s)¼O).
Then, all solutions to equation (23) should be of the
following form:

nqðsÞ
dqðsÞ

� �
¼ HðsÞ ðsÞ, ð33Þ

where  ðsÞ is a polynomial vector. Partitioning H(s) as

HðsÞ ¼
HtðsÞ
htbðsÞ

� �
, ð34Þ

then dq(s) can be written as:

dqðsÞ ¼
X��þ1

i¼1

hbi ðsÞ iðsÞ, ð35Þ

which is a Diophantine equation. Thus equation (18) has
a stable solution if and only if there exist polynomials
 iðsÞ, i ¼ 1, 2, . . . , ��þ 1, such that dq(s) is a Hurwitz
polynomial. However, such a solution, if it exists,
may not lead to a proper controller since no constraints
have been imposed on the degrees of hbi ðsÞ and
the corresponding column vector of Ht(s). Thus,
the problem of finding a rational stabilising
commutative controller for a given plant G(s) turns
out to be that of finding a Hurwitz polynomial dq(s) such
that Q(s) is proper. The following definition will be
needed.

Definition 6: The degree of a polynomial vector hðsÞ,
denoted by deg½hðsÞ�, is equal to the largest degree of the
polynomials of hðsÞ.

The proof for the existence of RSCC will be carried
out in two steps: first it will be shown that it is always
possible to find  iðsÞ, i ¼ 1, 2, . . . , ��þ 1, such that the
degree of dq(s) is greater than or equal to the degree of
nqðsÞ and that a Hurwitz dq(s) can always be obtained;
then necessary and sufficient conditions on G(s) for
the existence of  iðsÞ, such that QðsÞ 2 RH1, will be
given.

Consider first the problem of guaranteeing the
existence of a proper Q(s).

Lemma 3: Let B(s) denote a polynomial matrix with
linearly independent columns, and, for a polynomial
vector  ðsÞ, define

pðsÞ ¼ BðsÞ ðsÞ: ð36Þ

Then, B(s) is column reduced if and only if

deg½pðsÞ� ¼ max
i: iðsÞ6¼0

fdeg½biðsÞ� þ deg½ iðsÞ�g ð37Þ

Rational stabilising commutative controllers 1605



where  iðsÞ and biðsÞ denote, respectively, the ith element
of  ðsÞ and the ith column of B(s).

Proof: See Kailath (1980, p. 387). œ

Notice that, since H(s) is a minimal polynomial basis
for the right null space of T(s), it is a column reduced
matrix. This leads to the following result.

Lemma 4: Let H(s) be a minimal polynomial basis for
the right null space of T(s), defined according to
equations (23) and (24). Then, at least one of the
columns of H(s), hk(s), is such that
deg½htkðsÞ� � deg½hbkðsÞ�, for some k 2 f1, 2, . . . , ��þ 1g.

Proof: From equation (33), it can be seen that
nqðsÞ and dq(s) are obtained from a linear
combination of the columns of H(s). Thus, according
to lemma 3,

deg
nqðsÞ

dqðsÞ

� �� �
¼ max

i: iðsÞ6¼0
fdeg½hiðsÞ� þ deg½ iðsÞ�g: ð38Þ

Assume that each element of hbðsÞ has degree smaller
than the degree of the corresponding column of Ht(s),
i.e. deg½hbiðsÞ� < deg½htiðsÞ�, for i ¼ 1, 2, . . . , ��þ 1. Then,
deg½hiðsÞ� ¼ deg½htiðsÞ�, which implies that equation (38)
can be re-written as:

deg
nqðsÞ

dqðsÞ

� �� �
¼ max

i: iðsÞ6¼0
fdeg½htiðsÞ� þ deg½ iðsÞ�g: ð39Þ

On the other hand, it is immediate to see that

deg½dqðsÞ� � max
j: jðsÞ6¼0

fdeg½hbjðsÞ� þ deg½ jðsÞ�g: ð40Þ

According to equation (39), in order for Q(s) to be
proper, the degree of dq(s) must be given as:

deg½dqðsÞ� ¼ max
i: iðsÞ6¼0

fdeg½hti ðsÞ� þ deg½ iðsÞ�g: ð41Þ

Equations (40) and (41) lead to the following
inequality:

max
j: jðsÞ6¼0

fdeg½hbj ðsÞ� þ deg½ jðsÞ�g

	 max
i: iðsÞ6¼0

fdeg½htiðsÞ� þ deg½ iðsÞ�g:
ð42Þ

Assume that the maximum of the left-hand side of (42)
has been attained for i¼ k so that:

deg½hbkðsÞ� þ deg½ kðsÞ�g 	 max
i: iðsÞ6¼0

fdeg½htiðsÞ�

þ deg½ iðsÞ�g 	 deg½htkðsÞ� þ deg½ kðsÞ�,

ð43Þ

or, equivalently, deg½hbkðsÞ� 	 deg½htkðsÞ�. Note that, this
inequality never holds true since, by assumption,
deg½hbi ðsÞ� < deg½htiðsÞ�, for i ¼ 1, 2, . . . , ��þ 1. Thus,
when deg½hbiðsÞ� < deg½htiðsÞ�, for i ¼ 1, 2, . . . , ��þ 1,

then all vectors ntqðsÞ dqðsÞ
� �t

that satisfy equation
(33), must be such that deg½dqðsÞ� < deg½nqðsÞ�, leading to
non-proper matrices Q(s). However, for any given G(s),
Qe(s) is proper and satisfies the commutativity condi-
tion (33) which contradicts the fact that
deg½hbiðsÞ� < deg½htiðsÞ�, for i ¼ 1, 2, . . . , ��þ 1.
Therefore, at least one column of H(s) must satisfy the
condition deg½hbkðsÞ� 	 deg½htk ðsÞ�. œ

The consequence of lemma 4, is that, it is always
possible to obtain a Hurwitz polynomial dq(s) such that
deg½nqðsÞ� � deg½dqðsÞ�, as follows.

Theorem 2: Let hb1ðsÞ, hb2 ðsÞ, . . . , hbvþ1
ðsÞ be the

polynomials of htbðsÞ, and assume, without loss of
generality, that they are coprime. In addition, assume
that deg½hbi ðsÞ� � deg½htiðsÞ� and that for some
k 2 f1, 2, . . . , ��þ 1g, deg½htkðsÞ� ¼ deg½hbkðsÞ�. Let
 1ðsÞ, 2ðsÞ, . . . , ��þ1ðsÞ be the polynomials to be
determined and let dq(s) be defined by the following
Diophantine equation:

dqðsÞ ¼ hb1 ðsÞ 1ðsÞ þ hb2 ðsÞ 2ðsÞ þ � � � þ hb�þ1
ðsÞ ��þ1ðsÞ:

ð44Þ

Then, if the degree of  kðsÞ is chosen such that
deg½dqðsÞ� ¼ deg½hbkðsÞ kðsÞ�, it is always possible to
find  iðsÞ, i ¼ 1, 2, . . . , ��þ 1, such that:

ðiÞ dqðsÞ is aHurwitz polynomial;

ðiiÞ deg
nqðsÞ

dqðsÞ

" #( )
¼ deg½dqðsÞ�:

Proof: Consider the Diophantine equation formed
with hbk ðsÞ and hbiðsÞ, i 6¼ k, given by:

dkiðsÞ ¼ hbkðsÞ
� kðsÞ þ hbi ðsÞ

� iðsÞ, ð45Þ

where � kðsÞ and � iðsÞ are polynomials such that
deg½ � kðsÞ� 	 deg½ � iðsÞ� and define:

hbk ðsÞ ¼ h
ð0Þ
bk
s�k þ h

ð1Þ
bk
s�k�1 þ � � � þ h

ð�kÞ
bk

hbi ðsÞ ¼ h
ð0Þ
bi
s�i þ h

ð1Þ
bi
s�i�1 þ � � � þ h

ð�iÞ
bi

� kðsÞ ¼ � ð0Þ
k s�k þ � ð1Þ

k s�k�1 þ � � � þ � ð�kÞ
k

� iðsÞ ¼ � ð0Þ
i s�i þ � ð1Þ

i s�i�1 þ � � � þ � ð�iÞ
i

8>>>>>><
>>>>>>:

: ð46Þ

It will be shown that it is always possible to choose �k
and �i (the degrees of � kðsÞ and � iðsÞ) such that
deg½dkiðsÞ� ¼ deg½hbkðsÞ

� kðsÞ� 	 deg½hbi ðsÞ
� iðsÞ� and dkiðsÞ

a Hurwitz polynomial. To do so, note that, for �k þ
�k 	 �i þ �i, then solving equation (45) is equivalent to
solving:

A � 
ki
¼ dki, ð47Þ
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where

A ¼

h
ð0Þ
bk

0 � � � 0 0 0 � � � 0

h
ð1Þ
bk

h
ð0Þ
bk

. .
.

0 0 0 . .
.

0

..

.
h
ð1Þ
bk

. .
. ..

.
h
ð0Þ
bi

0 . .
.

0

h
ð�kÞ
bk

..

. . .
.

h
ð0Þ
bk

h
ð1Þ
bi

h
ð0Þ
bi

. .
. ..

.

0 h
ð�kÞ
bk

. .
.

h
ð1Þ
bk

..

.
h
ð1Þ
bi

. .
.

0

0 0 . .
. ..

.
h
ð�iÞ
bi

..

. . .
.

h
ð0Þ
bi

0 0 . .
.

h
ð�k�2Þ
bk

0 h
ð�iÞ
bi

. .
.

h
ð1Þ
bi

..

. ..
. . .

.
h
ð�k�1Þ
bk

0 0 . .
. ..

.

0 0 � � � h
ð�kÞ
bk

0 0 � � � h
ð�iÞ
bi

2
666666666666666666666666666666664

3
777777777777777777777777777777775

,

� 
ki
¼

� ð0Þ
k

� ð1Þ
k

..

.

� ð�kÞ
k

� ð0Þ
i

� ð1Þ
i

..

.

� ð�iÞ
i

2
6666666666666666666664

3
7777777777777777777775

ð48Þ

and dki is the vector formed by the coefficients of the
polynomial dkiðsÞ. Since A has dimension ð�k þ �k þ 1Þ �
ð�k þ �i þ 2Þ, it will be a square matrix if and only if
�i ¼ �k � 1. Moreover, if the degree of � kðsÞ, �k,
is chosen to be greater than or equal to �i � 1, it can
be checked that A will be a square matrix with the
following structure:

A ¼
L O
B S

� �
, ð49Þ

where L is square triangular with diagonal elements
equal to h

ð0Þ
bk
, O the ð�k þ �k � �i � �iÞ � �k zero matrix,

and S is the Sylvester matrix formed with the coefficients
of the polynomials hbk ðsÞ and hbi ðsÞ. Since, by assump-
tion, hbkðsÞ and hbi ðsÞ are coprime, then A is non-
singular, which implies that any Hurwitz polynomial
with degree equal to the sum of the degrees of hbkðsÞ
and � kðsÞ can be chosen arbitrarily. However,
the properness of Q(s) has not been guaranteed yet.

To do so, note that the degree of � iðsÞ(�i) is fixed
(�i ¼ �k � 1), whereas the degree of � kðsÞ (�k) can be
any integer greater than or equal to �i � 1. Let
	l ¼ deg½htl ðsÞ�, l ¼ 1, 2, . . . , ��þ 1. Since, by assump-
tion, 	i 	 �i, choosing �k ¼ 	i � 1, it follows that:

deg½htiðsÞ
� iðsÞ þ htkðsÞ

� kðsÞ� � maxf	k þ �k, 	i þ �ig

¼ maxf	k þ 	i � 1, 	i þ �k � 1g ¼ 	k þ 	i � 1

deg½dkiðsÞ� ¼ �k þ �k ¼ 	k þ 	i � 1,

8><
>: ð50Þ

thus, leading to a QðsÞ 2 RHm�m
1 , formed by equa-

tion (33) from a linear combination of hiðsÞ and hkðsÞ.
To show that the dq(s) of (44) can always be Hurwitz,

note that for all j 6¼ k, j 6¼ i, one can form a new
Diophantine equation dkijðsÞ ¼ dkiðsÞ � kiðsÞ þ hbjðsÞ

� jðsÞ.
The procedure above can be repeated with dkiðsÞ
and hbj ðsÞ to guarantee that the degree of dkijðsÞ is
equal to the sum of the degrees of dkiðsÞ and � kiðsÞ,
leading to a Hurwitz polynomial dq(s) and to a proper
Q(s). Then

dkijðsÞ ¼ hbkðsÞ
� kðsÞ � kiðsÞ þ hbiðsÞ

� iðsÞ � kiðsÞ þ hbjðsÞ
� jðsÞ,

ð51Þ

and, by construction, deg½dkijðsÞ� ¼ deg½hbkðsÞ� þ
deg½ � kðsÞ� þ deg½ � kiðsÞ�. Repeating the procedure
above for all the elements of hbðsÞ, leads to the desired
result. œ

Remark 2: Theorem 2 above presents a systematic
manner to obtain a Hurwitz polynomial dq(s) such that

deg
nqðsÞ
dqðsÞ

� �� �
¼ deg½dqðsÞ�,

leading, therefore to a matrix QðsÞ 2 RHm�m
1 . In order

to illustrate this point, assume that �� ¼ 1 and that the
column degrees of Ht(s) and htbðsÞ are given as:

deg½ht1 ðsÞ� deg½ht2ðsÞ�
deg½hb1ðsÞ� deg½hb2 ðsÞ�

� �
¼

4 7
4 2

� �
, ð52Þ

where hb1ðsÞ, hb2ðsÞ are coprime. Proceeding as in
theorem 2, one has to choose deg½ 2ðsÞ� ¼
deg½hb1ðsÞ� � 1 ¼ 3, deg½ 1ðsÞ� 	 deg½hb2 ðsÞ� � 1 ¼ 1.
Thus, since deg½ht2 ðsÞ� > deg½hb2 ðsÞ�, choosing
deg½ 1ðsÞ� ¼deg½ht2 ðsÞ� � 1 ¼ 6, it is clear that
deg½nqðsÞ� � 10, and deg½dqðsÞ� ¼ 10.

A consequence of theorem 2 is that the problem of
finding a rational stabilising commutative controller for
a given plant G(s) turns out to be that of finding a
Hurwitz polynomial dq(s). Notice that, according to
equation (35), such a polynomial always exists if and
only if hbiðsÞ, i ¼ 1, 2, . . . , ��þ 1 do not have a common
unstable zero. An important result that relates the poles
of the plant TFM to the vector htbðsÞ, defined in equation
(34), is now presented. This result will be used in the
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sequel to obtain a necessary and sufficient condition for
the existence of RSCCs.

Lemma 5: If htbðs0Þ ¼ 0t, for some s0 2 C, then s0 must
be a pole of G(s).

Proof: If htbðs0Þ ¼ 0t for some s0 2 C, then s0 will be a
pole of any particular solution to equations (16) and (17).
Consider now the particular solution QeðsÞ ¼
�M�1ðsÞYðsÞ. It can be easily verified that Qe(s) has
the same poles as G(s), and thus, forming the vector
q
e
ðsÞ ¼ ð1=dqe ðsÞÞ nqe ðsÞ, in accordance with equation (21),

it can be concluded that the vector ½ntqe ðsÞ dqe ðsÞ�
t

satisfies equation (23) and thus dqe ðs0Þ ¼ 0, which
means that s0 must be a pole of G(s). œ

A necessary and sufficient condition for the existence
of RSCC follows from lemma 5.

Theorem 3: Let G(s) be the plant TFM. Then, there
exist RSCCs for G(s) if and only if htbðs0Þ 6¼ 0t, for all
s0 equal to an unstable pole of the plant.

Proof: Note that there does not exist  iðsÞ,
i ¼ 1, 2, . . . , ��þ 1, such that dq(s) is a Hurwitz poly-
nomial if and only if the greatest common divisor of
hbiðsÞ, for i ¼ 1, 2, . . . , ��þ 1, 
(s), is such that 
(s0)¼ 0
for s0 2 C

þ, where Cþ
¼ fs 2 C : ReðsÞ 	 0g. Thus there

does not exist any RSCC if and only if htbðs0Þ ¼ 0t and
s0 2 C

þ. According to lemma 5, if htbðs0Þ ¼ 0t then s0
must be a plant pole, and so an RSCC will not exist if
and only if htbðs0Þ ¼ 0t for an unstable pole s0 of
the plant. œ

Remark 3: Notice that when htbðs0Þ ¼ 0t, then all Q(s),
that satisfies the commutativity condition given by
equations (16) and (17), must have the unstable pole
of G(s), s0, as a pole.

The necessary and sufficient condition for the
existence of RSCCs of theorem 3 is based on hbðsÞ
which does not bear a direct relation to properties of the
plant. Furthermore, implementation is demanding: it is
necessary to compute a minimal polynomial basis for
the right null space of T(s) (H(s)), and then to check if
htbðs0Þ ¼ 0t for each unstable pole s0 of the plant.
Therefore, it would be more useful to find a condition
for the existence of RSCC, based solely on the plant
TFM and to achieve this, it is first necessary to present
the following result.

Lemma 6: Let s0 2 C
þ. Then s0 is a zero of the closed-

loop characteristic polynomial if and only if s0 is a pole
of Q(s), the free parameter of the Youla–Kucera
parameterisation given by equation (13), associated
with a non-stabilising controller K(s).

Proof: Let K(s) be the TFM of a non-stabilising
controller, andQ(s) the TFM associated (by equation 13)

with this K(s). It is know that the return difference
matrix and its determinant are given as:

FðsÞ ¼ Im þ GðsÞKðsÞ, det FðsÞ½ � ¼ �
pcðsÞ

poðsÞ
, ð53Þ

where � 2 R and pc(s) and po(s) denote, respectively, the
closed-loop and open-loop characteristic polynomials.
Let GðsÞ ¼ ~M�1ðsÞ ~NðsÞ be a left coprime factorisation of
G(s) in RHm�m

1 and let KðsÞ ¼ ÛðsÞV̂�1ðsÞ be obtained
according to equation (13). Thus,

det FðsÞ½ � ¼ det Im þ ~M�1ðsÞ ~NðsÞÛðsÞV̂�1ðsÞ
h i

¼ det ~M�1ðsÞ
� �

det ~MðsÞV̂ðsÞ þ ~NðsÞÛðsÞ
h i

� det V̂�1ðsÞ
h i

¼ det ~M�1ðsÞ
� �

det V̂�1ðsÞ
h i

: ð54Þ

Defining pG(s) and pK(s) as the pole polynomials of G(s)
and K(s), respectively, and p ~MðsÞ and pV̂ðsÞ as the pole
polynomials of ~MðsÞ and V̂ðsÞ, and combining equations
(54) and (53), yields:

pGðsÞpKðsÞ

p ~MðsÞpV̂ðsÞ
¼

poðsÞ

pcðsÞ
: ð55Þ

Assuming that G(s) and K(s) have no decoupled modes,
then equation (55) leads to

pcðsÞ ¼ p ~MðsÞpV̂ðsÞ: ð56Þ

Notice that, since ~MðsÞ 2 RHm�m
1 , then p ~MðsÞ is a

Hurwitz polynomial and thus, since by assumption the
closed-loop system is unstable, then the unstable zeros
of pc(s) must be zeros of pV̂ðsÞ, or equivalently, unstable
poles of V̂ðsÞ: According to equation (13),

V̂ðsÞ ¼ XðsÞ �NðsÞQðsÞ, ð57Þ

But since XðsÞ,NðsÞ 2 RHm�m
1 , all unstable poles of V̂ðsÞ

must also be poles of Q(s). Conversely, if Q(s) has
an unstable pole then the closed-loop system is unstable,
i.e. pc(s) is not Hurwitz. œ

Lemma 6 associates the non-existence of stabilising
controllers to the presence of unstable poles of Q(s) and
theorem 3 (see remark 3) relates the non-existence of
RSCC to unstable poles of G(s) which are also poles
of Q(s). The exact characterisation of such poles is
given below.

Theorem 4: No RSCC exist if and only if G(s), the
plant TFM, has at least one unstable fixed mode.

Proof: ð(Þ Suppose that G(s) has an unstable fixed
mode s0 and assume that K(s) commutes exactly
with G(s). Therefore, K(s) and G(s) share the same
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eigenvector matrix W(s), i.e. if GðsÞ ¼ WðsÞ�GðsÞVðsÞ,

VðsÞ ¼ W�1ðsÞ, is a spectral decomposition of G(s),

then KðsÞ ¼ WðsÞ�KðsÞVðsÞ is a spectral decomposition
of K(s). Consider the open-loop transfer matrix

To(s)¼G(s)K(s). Thus, a spectral decomposition of

To(s) is given by

ToðsÞ ¼ WðsÞ�GðsÞ�KðsÞVðsÞ, ð58Þ

which shows that the eigenfunctions of To(s) are the
product of the eigenfunctions of G(s) and K(s).

Therefore the poles of the eigenfunctions of To(s) are

the poles of the eigenfunctions of G(s) and K(s).

However, since s0 is a fixed mode of G(s), s0 is a pole
of G(s) that is not a pole of any of its eigenfunctions,

which implies that s0 cannot be a pole of the eigenfunc-

tions of To(s). Hence, there are two possibilities: (i) s0 is

a pole of To(s), i.e. s0 is a fixed mode of To(s) and, by
lemma 1, it is a zero of pc(s); (ii) s0 is not a pole of To(s),

which means that, since s0 is a pole of G(s), it must

be a decoupled mode of To(s), which ultimately implies
that s0 is a zero of pc(s).
ð)Þ Assume now that G(s) has no unstable fixed

modes and that there does not exist any RSCC for G(s).

According to theorem 3, there does not exist any RSCC

for G(s) if and only if an unstable pole of G(s) is
also a pole of all Q(s) that satisfies the commu-

tativity condition given by equations (16) and (17).

Furthermore, using lemma 6, it can be seen that there is
no RSCC for G(s) if an unstable pole of Q(s),

and consequently of G(s), is also a zero of pc(s). Let s0
be an unstable pole of the plant that is also a zero

of pc(s). Therefore, no matter what commutative
controller K(s) is obtained, the closed-loop system

will be unstable and will have s0 as a pole. Consider,

then, the following commutative controller: K(s)¼ kIm,

k 2 R. This controller also makes s0 unaltered and
thus, according to lemma 1, s0 is a fixed mode of G(s),

which contradicts the assumption that G(s) has no

unstable fixed modes. œ

3.3 General solution and characterisation of the degrees
of freedom

The general solution to the problem of finding a

polynomial matrix QðsÞ 2 RHm�m
1 , which leads to a

rational stabilising commutative controller K(s), is now
presented.

Theorem 5: Suppose that GðsÞ 2 R
m�m

ðsÞ satisfies the

conditions given by theorem 4 for the existence of
an RSCC. Then, the class of all RSCC can be

parameterised by a rational, proper and stable transfer

matrix Q(s) whose columns qi(s), i¼ 1, 2, . . . ,m,
are obtained as follows:

qðsÞ ¼

q
1
ðsÞ

q
2
ðsÞ

..

.

q
m
ðsÞ

2
666664

3
777775 ¼

1

dqðsÞ
HtðsÞ ðsÞ ð59Þ

where

(i) HðsÞ ¼ ½
HtðsÞ
htbðsÞ

� is a ðm2 þ 1Þ � ð ��þ 1Þ polynomial

matrix whose columns form a minimal polynomial
basis for the right null space of the matrix
TðsÞ ¼ PðsÞ �cðsÞ

� �
defined in equation (24);

(ii)  ðsÞ is a ð ��þ 1Þ-dimensional vector whose entries
are polynomials, being the degrees of freedom
available on the general solution, which are
deployed to obtain a Hurwitz polynomial dqðsÞ ¼
���þ1

i¼1 hbi ðsÞ iðsÞ, where hbiðsÞ, for i ¼ 1, . . . , ��þ 1,
are the entries of vector hbðsÞ.

4. Numerical example

The degrees of freedom in the parameterisation of the
RSCC, given in this paper, can be used to advantage
as will now be illustrated by means of an example.
Thus consider the TFM

GðsÞ ¼
1

dGðsÞ

�47sþ 2 56s

�42s 50sþ 2

" #
, ð60Þ

where dG(s)¼ (s� 1)(sþ 2), for which CLM is known to
have sensitivity problems (see Doyle and Stein (1981)).
To make the problem more challenging, here an
unstable pole has been added. The design specifi-
cations are: (S1) rise times of no more than 2.5 s for
each loop; (S2) low interactions between outputs;
(S3) good damping of step responses with peak
overshoot of no more than about 40%; (S4) zero
steady-state error for step reference input and distur-
bance; and (S5) the feedback system is required to
tolerate multiplicative uncertainty up to 1=

ffiffiffi
2

p
which

means that

TCk k1<
1

�G
¼

ffiffiffi
2

p
, ð61Þ

where TC(s) denote the closed-loop TFM of the system
shown in figure 1.

For all frequencies, except at !¼ 0 rad/s, the condi-
tion number of the eigenvector matrix of G(s) is
approximately 196, thereby indicating significant
CLM sensitivity problems. To avoid these, a
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normalising precompensator is designed (Moreira and
Basilio (2005)):

KP ¼
0 1
�1 0

� �
: ð62Þ

and the precompensated plant TFM becomes:

GPðsÞ ¼ GðsÞKP

¼
1

ðs� 1Þðsþ 2Þ

�56s �47sþ 2

�ð50sþ 2Þ �42s

" #
:

ð63Þ

The efficacy of this KP is illustrated by the condition
number of the eigenvector matrix of GP(s) which is
approximately equal to 1 for all frequencies.
According to theorem 4, an RSCC for GP(s) exists

if and only if GP(s) has no unstable fixed modes.
The Smith–McMillan form of GP(s) shows that GP(s)
has two unstable poles equal to 1. Since this pole is
not a zero of GP(s), then this unstable pole cannot be a
fixed mode. Therefore, the condition of theorem 4
is satisfied and the existence of RSCC for GP(s) is
guaranteed. To obtain a parameterisation of all
RSCC for GP(s), it is necessary to compute a doubly
coprime factorisation in RHm�m

1 for GP(s) and to form,
according to equation (19), the polynomial matrix
P(s) and the polynomial vector cðsÞ. From these
one can form the matrix TðsÞ ¼ PðsÞ �cðsÞ

� �
and

compute a minimal polynomial basis H(s) for the right
null space of T(s). Since GP(s) has two distinct
eigenfunctions, the nullity of P(s) is �� ¼ 2, and by
theorem 1, the nullity of T(s) is ��þ 1 ¼ 3, so the
computation of H(s) requires the determination of
3 polynomial vectors. Using the algorithm proposed
in Basilio and Moreira (2004) to compute H(s),
one obtains:

HðsÞ ¼

�0:4824 0:1552sþ 0:4077 0:3992s� 0:1471

0:5100 �0:1849s� 0:4824 �0:4753sþ 0:1758

0:4794 �0:1738s� 0:4423 �0:4467sþ 0:1805

�0:5712 0:2070sþ 0:5234 0:5322s� 0:2160

0:0148 0:0007s� 0:0011 �0:0107sþ 0:0090

2
66666666664

3
77777777775
:

ð64Þ

According to theorem 5, the class of all RSCCs for GP(s)
can be parameterised by the matrix Q(s), obtained
from H(s) and with the degrees of freedom,  ðsÞ, chosen
such that

dqðsÞ ¼ 0:0148 1ðsÞ þ ð0:0007s� 0:0011Þ 2ðsÞ

þ ð�0:0107sþ 0:0090Þ 3ðsÞ
ð65Þ

is a Hurwitz polynomial.
The next step is to deploy the degrees of freedom

given by  1ðsÞ,  2ðsÞ and  3ðsÞ to derive a particular
RSCC, KC(s), that meets the specifications S1–S5.
Note that S4 requires the use of integral action
and hence KC(s) will be replaced by KC(s)KI(s),
where KI ¼ ½kðsþ 1=�Þ=s�I and where (as is done in the
classical frequency response approach) � can be used
to reach a trade off between bandwidth and relative
stability margins. KC(s)KI(s) clearly commutes with
GP(s) and thus, provided that ToðsÞ ¼ GPðsÞKCðsÞKIðsÞ
satisfies the generalised Nyquist stability criterion,
KC(s)KI(s) itself will be an RSCC. Note next that
GP(s) is near normal and therefore (due to commu-
tativity) so will To(s) be, so that S5 will be met if
and only if the characteristic loci of To(s) do not
intersect M-circles with M 	

ffiffiffi
2

p
. This condition,

according to the rules of thumb used in classical
frequency response (which are generalised in a natural
way to the multivariable case through the use of the
characteristic loci), will also ensure satisfaction of S3.
Selecting dqðsÞ ¼ sþ � and using a simple trial-and-error
search over � shows that S4 and S5 are satisfied for
�¼ 15 and gives  1 ¼ 1064:8,  2 ¼ �109:5 and
 3 ¼ �100, and QðsÞ 2 RHm�m

1 :

QðsÞ ¼
1

sþ 15

�56:92s� 486:1 63:71sþ 540:8

67:78sþ 578:3 �75:9s� 644

" #
:

ð66Þ

Substituting Q(s), given by equation (66), in the
Youla–Kucera parameterisation (equation (13)), yields:

KCðsÞ ¼ NKC
ðsÞM�1

KC
ðsÞ ð67Þ

where

NKC
ðsÞ ¼

�19:72s2 � 184:24s� 505:12 6:68s3 þ 77:85s2 þ 307:84sþ 368:44
23:15s2 þ 209:45sþ 577:78 �7:75s3 � 85:82s2 � 341:60s� 414:28

� �
ð68Þ

MKC
ðsÞ ¼

16:88s2 þ 287:35sþ 324:54 �10:71s3 � 194:42s2 � 411:79s� 232:70
14:77s2 þ 251:96sþ 283:54 �9:46s3 � 172:04s2 � 365:42s� 206:81

� �
: ð69Þ
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The high degree of commutativity between GP(j!)
and KC(j!) (and hence KC(j!)KI(j!)) is established by
the very low values of the indicator:

eið!Þð%Þ ¼
loiðj!Þ � lGPi

ðj!ÞlKCi
ðj!Þ

�� ��
loi ðj!Þ
�� �� 100%, i ¼ 1, 2,

ð70Þ

which here, due to rounding, is non-zero but less than
0.1% over all frequencies.
The two characteristic loci for GPðsÞKCðsÞKIðsÞ for

k¼ 2 and �¼ 0.2 (both values chosen as in the classical
frequency approach) are shown in figure 2 and can be
seen to give the two anticlockwise encirclements
(required for closed-loop stability) and to intersect the
M¼ 1 circle (namely the straight line which is perpendi-
cular to the real axis and passes through �0.5þ j0) at
!¼ 2.6 and !¼ 3 rad/s thereby indicating closed-
loop rise times of about 0.3 and 0.4 (both of which are
within the specification S1). This is also confirmed
by the simulated closed-loop step responses shown in
figure 3 which also exhibit low interaction and well-
damped responses whose peak overshoot is about 40%.
The latter is a consequence of the fact that both
characteristic loci do not intersect M-circles with M
greater than about 1.46 (which by the classical frequency
approach approximation which generalizes exactly to

the multivariable case) would predict overshoots of

no more than 47%. It is known that closed-loop

low interaction is a consequence of any of three

conditions (MacFarlane and Kouvaritakis 1977): char-

acteristic loci of large moduli; low misalignment angles;
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Figure 2. Characteristic loci of the open-loop transfer matrix

G(s)K(s), (solid and dashed lines), and the M-circle for M¼ 1
(dash-dotted line).
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Figure 3. Step responses of the closed-loop system, where u0(t) denotes the unit step signal.
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approximately equal characteristic loci. Here, the latter
condition holds over most of the characteristic loci
bandwidths whereas at low frequencies, integral action
ensure the presence of large modulus characteristic loci.

5. Conclusions

In this paper a parameterisation of all rational stabilis-
ing commutative controllers for continuous time systems
is presented. In addition, a complete characterisation of
the degrees of freedom available in this parameterisation
is given. A necessary and sufficient condition for the
existence of rational stabilising commutative controllers
for unstable plants is also presented.
The example used in the paper to illustrate the

parameterisation of all stabilising commutative control-
lers suggests that there are sufficient degrees of freedom
in this parameterisation in order to consider, besides
stability, other control objectives concerning robustness
and dynamic behaviour.
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