
A normalizing precompensator for the design of eŒective and reliable commutative controllers
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Sensitivity to parameter perturbation represents the main caution regarding the use of the characteristic locus method on
the design of multivariable control systems. The method is not e� ective when the condition number of the plant
eigenvector matrix is high or, equivalently, when the plant transfer matrix di� ers a great deal from normality. With
the view to coping with this problem, it is proposed in this paper a precompensator structure and, in the sequel, two
optimization problems are formulated and solved: the ® rst one, for 2 £ 2 systems, aims at minimizing the eigenvector
matrix condition number; the second one, for the general m £ m case, is intended to make the precompensated system as
normal as possible by minimizing a de® ned measure of normality. Once the precompensated system matrix has been
made close to a normal one, the characteristic locus method can then be applied e� ectively, leading to reliable control
systems, as far as stability in face of uncertainty is concerned.

1. Introduction

The characteristic locus method (CLM), introduced
by MacFarlane and Belletruti (1970), is a powerful tool
for the design of multivariable linear control systems. It
is based on the generalized Nyquist stability criterion
(MacFarlane 1970, MacFarlane and Postlethwaite
1977) , which extends the Nyquist criterion to multivari-
able systems. Since Nyquist diagrams combine gain and
phase characteristics in one single plot, it provides vital
information about relative stability of multivariable
systems. However, the CLM has been seriously criti-
cized on account to eigenvalue sensitivity to model per-
turbation (Doyle and Stein 1981) , i.e. it is possible for
the characteristic loci of the perturbed system to di� er a
great deal from those of the nominal system, even for a
small perturbation in the parameters of the plant trans-
fer function. The reason for that lies on the fact that the
design of commutative controllers is based on the eigen-
functions of the open loop transfer function, and it is
well known that the eigenvalues are only upper bounds
for the minimum singular value, which is the true indi-
cator of stability robustness. Therefore, the CLM can
only prove e� ective and reliable, from the robustness
viewpoint, when the plant transfer function is approxi-
mately normal in the necessary frequency range since, in

that case, the eigenvalues and singular values are
coincidents.

Two attempts have been made to deal with par-
ameter uncertainty within the CLM. The ® rst one
(Daniel and Kouvaritakis 1983, 1984) consists in
approximating the plant nominal transfer matrix by a
normal one. The CLM can then be applied to the nor-
mal system obtained after approximation. The second
attempt is a more indirect approach and leads to the so
called reversed-frame-normalizing-controller s (RFNC)
(Hung and MacFarlane 1982, Basilio and
Kouvaritakis 1997) . Both approaches have the same
drawback, namely the possibility of ampli® cation of
the radii of the characteristic locus bands.

In this paper we present a precompensation scheme
with the view to making the precompensated plant as
normal as possible (according to an optimization cri-
terion) in the necessary frequency range. It is worth
remarking that, unlike the previous strategies (Hung
and MacFarlane 1982, Daniel and Kouvaritakis 1983,
1984, Basilio and Kouvaritakis 1997), the precompensa-
tor proposed here does not widen the characteristic
locus bands since its in® nity norm is made approxi-
mately equal to 1.

The paper is structured as follows. Section 2 presents
a brief review on the CLM and the e� ects of plant uncer-
tainties. The problem of normalization of the plant
transfer function is tackled in } 3. It is initially proposed
a precompensator structure for 2 £ 2 systems and, in the
sequel, this structure is generalized for the m £ m case.
The methodology is illustrated by means of two numer-
ical examples taken from literature in } 4: the ® rst one
corresponds to a 2 £ 2 system with badly skewed eigen-
vector (Doyle and Stein 1981) and the second one, a
3 £ 3 system has been taken from Hung and
MacFarlane (1982) and represents a linearized model
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of the vertical-plane dynamics of an aircraft. Finally,
conclusions are drawn in } 5.

2. Brief review

According to the generalized Nyquist criterion, the
feedback system of ® gure 1 will be stable if and only if
the net sum of anticlockwise encirclements of the
¡1 ‡ j0 point by the characteristic loci of the open
loop transfer function equals the number of unstable
poles of the plant and the controller. The characteristic
loci of a general transfer function Q…s† are de® ned as the
frequency responses of the eigenfunctions q…s†, which
are the solutions of the algebraic equation

det ‰q…s†I ¡ Q…s†Š ˆ 0 …1†
where det …¢† denotes determinant.

Let us now assume that G…s† and K…s† denote, re-
spectively, the plant and controller transfer functions. In
order to apply the CLM to the design of the multivari-
able control system of ® gure 1, the ® rst step is to obtain
the characteristic value decomposition of G…s†. To do so,
assume that d…s† denotes the least commom multiple of
the denominator polynomials of all entries of G…s†. Thus
the characteristic value decomposition of G…s† is given
by

G…s† ˆ 1
d…s†N…s† ˆ 1

d…s†W …s†LN…s†V …s† …2†

where LN…s† ˆ diag …n1…s†;n2…s†; . . . ;nm…s†† is a diagonal
matrix whose diagonal elements are the eigenfunctions
of N…s†, W …s† ˆ ‰w1…s† w2…s† ¢ ¢ ¢ wn…s†Š is the eigenvec-
tor matrix whose ith column wi…s† is the eigenvector
function associated to the ith eigenfunction ni…s† and
V …s† ˆ W ¡1…s† is the dual-eigenvector matrix. In
accordance with the CLM, the controller transfer func-
tion shares with the plant the same eigenvector and
dual-eigenvector matrices, having the form

K…s† ˆ W …s†LK…s†V …s† …3†
where LK…s† ˆ diag ‰k1…s†;k2…s†; . . . ;km…s†Š, with ki…s†,
i ˆ 1 ; . . . ;m, being chosen in such a way that
Q…s† ˆ G…s†K…s† satis® es the generalized Nyquist cri-
terion with good gain and phase margins. Note that
K…s†, de® ned in (3), commutes with G…s† with respect
to multiplication, namely, G…s†K…s† ˆ K…s†G…s†, and,
for this reason, K…s† has been called a commutative
controller.

However, in general, ni…s† is not a rational function
in s and therefore wi…s† will not be a rational function as
well. This implies that the de® nition of K…s† given in (3),
although theoretically convenient has some practical dif-
® culties, since it may lead to irrational controllers which
are di� cult to implement. It is necessary therefore to
® nd ways to construct K…s† in order for the resulting
controller to be rational. This can be done in the follow-
ing ways: (i) approximate commutative controllers
(ACC) (MacFarlane and Kouvaritakis 1977) ; (ii)
approximately exact commutative controllers (AECC)
(Cloud and Kouvaritakis 1987) ; (iii) causal commutative
controllers (CCC) (Kouvaritakis and Basilio 1994) or
(iv) rational commutative controllers (RCC) (Basilio
and Kouvaritakis 1995) .

Since the design of commutative controllers is based
on the choice of its eigenfunctions, the CLM can only be
e� ectiveÐ from the robust stability point of viewÐ when
the plant transfer function is approximately normal
(Doyle and Stein 1981) . This can be easily seen, for ex-
ample, with the help of Bauer± Fike’s theorem (Bauer
and Fike 1960) . (Similar conclusions could be drawn if
the small gain theorem (Doyle and Stein 1981) were
used.) Let us asume additive perturbation to describe
the plant model, namely

GP…s† ˆ G…s†‡ DG…s† …4†

where -¼‰DG… j!†Š µ ¯G…w†, ¯G…w† being a non-negative
real function of the variable ! and represents an upper
bound on the size of perturbation at each frequency.
Bauer± Fike’s theorem states that at a given frequency
!0, the eigenvalues of GP… j!0† are inside discs centred
at the eigenvalues of G… j!0† and radii equal
C‰W … j!0†Š¯G…w0†, where C…:† denotes condition number,
namely

jgP… j!0† ¡ g… j!0†j µ C‰W … j!0†Š¯G…w0† …5†

where gP… j!0† and g… j!0† are, respectively, the eigen-
values of GP… j!0† and G… j!0† and j ¢ j denotes the
modulus of a complex number. It can be seen from (5)
that when G… j!0† is normal, its eigenvector matrix has
condition number equal to 1, which implies that the
eigenvalues of the perturbed matrix lie inside discs of
radii equal to the perturbation magnitude. As the matrix
G… j!0† departures from normality, C‰W … j!0†Š becomes
larger, giving wider regions for the eigenvalues of the
perturbed matrix. It is important to remark that
Bauer± Fike’s theorem gives a condition which is only
su� cient, and therefore the upper bound given in (5)
is clearly conservative. Despite this, it is possible to see
from (5) that when G…s† has skew eigenvectors the char-
acteristic loci of QP…s† ˆ GP…s†K…s† (K…s† designed in
accordance with the CLM) and those of Q…s† may di� er
a great deal even for small values of ¯G…!†. The conse-
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Figure 1. Block diagram of a feedback control system.



quence of this fact is that the CLM is not e� ective for
plants with skew eigenvectors.

In dealing with plants with skew eigenvectors in the
CLM environment, the following approaches can be
followed:

(i) ® nd a normal approximation …GN…s†† for G…s†
(Daniel and Kouvaritakis 1983, 1984) and then
apply the CLM to GN…s†;

(ii) design RFNCs K…s† (Hung and MacFarlane
1982, Basilio and Kouvaritakis 1997) for G…s†;

(iii) ® nd a precompensator KP…s† which makes the
precompensated system ~G…s† ˆ G…s†KP…s† as
normal as possible and then apply the CLM
to ~G…s†.

Approach (i), although e� ective in some cases, does
not solve the CLM sensitivity problem since the radii of
the discs containing the eigenvalues of GP…s† can be as
large as before, due to error in approximating a matrix
with skew eigenvector by a normal one. RFNCs, as
suggested in (ii), indeed makes the compensated system
free from sensitivity problems but a dilation on the per-
turbation magnitude may occur if -¼‰K…j!†Š is made too
high. Therefore, the design of a normalizing precompen-
sator (iii) seems to be the best option.

3. A normalizing precompensator

3.1. Problem formulation

Let us assume additive perturbation to describe the
model as in (4). Therefore after the introduction of
a precompensator KP…s†, the model with parameter
perturbation of the precompensated plant ~G…s† ˆ
G…s†KP…s† will be given as

~GP…s† ˆ GP…s†KP…s† ˆ ~G…s†‡ D ~G…s† …6†
where -¼‰ D ~G… j!†Š µ -¼‰ D G… j!†Š -¼‰KP… j!†Š. Consider the
foIlowing problem: ® nd a precompensator KP…s† such
that ~G…s† ˆ G…s†KP…s† be as normal as possible in the
necessary frequency range. It can be seen immediately
from (6) that such a precompensator must not only
make ~G…s† ˆ G…s†KP…s† as normal as possible but also
should have the largest singular value approximately
equal to 1 in the necessary frequency range in order
not to widen the perturbation size.

The problem of ® nding KP…s† which makes ~G…s† as
normal as possible can be addressed either by forcing
the condition number of the eigenvector matrix of ~G…s†
to be as closely as possible to 1 or by using the de® nition
of normal matrix (a matrix ~N is said to be normal if and
only if it commutes with its associate, i.e. ~N ~N¤ ˆ ~N¤ ~N).
With this de® nition in mind it is then possible to de® ne
measures of normality of a given matrix (see Hung and
MacFarlane 1982, p. 41). The minimization of the eigen-
vector matrix condition number approach can be

applied only to 2 £ 2 systems, because in that case it is
possible to obtain expressions for the eigenvectors, while
the minimization of a measure of normality is suitable
for the general m £ m case.

At this stage it is important to remark that, since
the CLM is a well established design methodology
(MacFarlane and Kouvaritakis 1977, Cloud and
Kouvaritakis 1987, Kouvaritakis and Basilio 1994,
Basilio and Kouvaritakis 1995), there is no need to be
concerned with the controller design for the precompen-
sated system. Therefore, although this paper does not
deal with the whole controller design, the results to be
presented here will show that in applying the CLM to
the design of multivariable control systems the ® rst step
is the design of a normalizing precompensator as the one
to be proposed in this paper.

3.2. Normalization by minimization of the condition
number of the eigenvector matrix (2 £ 2 case)

Let us write the plant transfer function G…s† as

G…s† ˆ 1
d…s†N…s† ˆ 1

d…s†
n11…s† n12…s†
n21…s† n22…s†

" #
…7†

where d…s† denotes the least common multiple of the
denominator polynomials of all entries of G…s† and
nij…s†, i ; j ˆ 1 ;2 are polynomials in s. Assume now that
for a given frequency !, N… j!† is

N ˆ
n11 n12

n21 n22

" #
…8†

where nij 2 C , i ; j ˆ 1 ;2. The problem here is to
® nd a precompensator (KP…s†) that makes ~G… j!† ˆ
G… j!†KP… jw† as closely as possible to a normal matrix
at each frequency !. This is equivalent to requiring that
the eigenvector matrix of ~G… j!†, at each frequency !,
has a condition number as closely as possible to 1.
However, since G… j!† and N… jw† share the same eigen-
vectors, the computation of KP… j!† can be performed by
considering N… j!† instead of G… j!†. For 2 £ 2 systems it
is not di� cult to derive an expression for the eigenvector
matrix of N… j!† which depends solely on the elements
of N, as

W ˆ

n11 ¡ n22 ‡
����
D

p

a
n11 ¡ n22 ¡

����
D

p

b
2n21

a
2n21

b

2
664

3
775 …9†

where

a2 ˆ jn11 ¡ n22 ‡
����
D

p
j2 ‡ 4jn21j2

b2 ˆ jn11 ¡ n22 ¡
����
D

p
j2 ‡ 4jn21j2

9
=

; …10†

and
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D ˆ …n11 ¡ n22†2 ‡ 4n12n21 …11†
Note that the column vectors of W have all unity eucli-
dean norm. This is necessary since what is intended here
is to use the condition number of W as an indicator of
the normality of N. If the eigenvectors do not have unity
euclidean norm, W may have a huge condition number
even in the particular case when its column vectors are
approximately orthogonal.

Let us now de® ne the following structure for the
precompensator

KP… j!† ˆ
0 1

r… j!†e j³… j!† 0

" #
…12†

where ³… j!† 2 ‰0 ;2º† and r… j!† 2 …0 ;1Š, ³… j!† and r… j!†
are computed in order to make ~G… j!† ˆ G… j!†KP… j!† as
near as possible to a normal matrix at each frequency !.

The motivation for structure (12) comes from the
static precompensator

KH ˆ
0 1

¡1 0

" #
…13†

which is obtained when the ALIGN algorithm
(MacFarlane and Kouvaritakis 1977) is deployed to
design a precompensator with the view to reducing
interaction at high frequencies. The e� ect on G…s† of
such a precompensator is that G…s†KH has eigenvectors
which are nearly aligned with the standard basis vectors
at high frequencies (the frequencies where the algorithm
is employed), therefore reducing the condition number
of the eigenvector matrix of G…s†KH at those frequencies.
However, at low frequencies, the condition number of
the eigenvector matrix, in general, increases. With the
view to overcome this limitations we propose the pre-
compensator structure (12) which is dynamic and conse-
quently has more degrees of freedom.

The normalization problem can then be stated as
follows: for a given frequency !, compute r and ³
which minimizes the condition number of the eigenvec-
tor matrix ( ~W ) of ~N ˆ NKP. Remember that the com-
putation of the condition numbers of W and ~W requires
the knowledge of their maximum and minimum singular
values, which are, respectively, the largest and the smal-
lest roots of the equation

¶2 ¡ tr …W ¤W †¶ ‡ det …W ¤W † ˆ 0 …14†
where tr …:† denotes trace of a matrix. After some
straightforward manipulation we obtain

¶1;2 ˆ ab §
�������������������������������������
a2b2 ¡ 16jn21j2jD j

q
…15†

where a and b are given in (10). Therefore the condition
number of W , C2…W †, can be written as

C2…W † ˆ
ab ‡

�������������������������������������
a2b2 ¡ 16jn21j2j D j

q

ab ¡
�������������������������������������
a2b2 ¡ 16jn21j2j D j

q …16†

De® ning

X ˆ jn11 ¡ n22j2 ‡ 2…jn12j2 ‡ jn21j2† …17†
it is possible to re-write (16) as

C2…W † ˆ
�����������������
X‡ jD j

p
‡

�����������������
X ¡ j D j

p
�����������������
X‡ jD j

p
¡

�����������������
X ¡ j D j

p …18†

Once an expression for the square of the condition
number of W has been derived, the next step is to obtain
a similar expression for the eigenvector matrix of
~G ˆ GKP, which can be given as

~G ˆ GKP ˆ 1
d

NKP ˆ 1
d

n11 n12

n21 n22

" #
0 1

r e j³ 0

" #
…19†

and writing ~G ˆ …1=d† ~N, we obtain

~N ˆ
®n12 n11

®n22 n21

" #
…20†

where ® ˆ r e j³. In expressions (8)± (20), the dependence
on the frequency ! has been omitted, but it is important
to remark that the values of r and ³ are frequency depen-
dent. Note that ~N has the same structure as N and,
consequently its eigenvector matrix ( ~W ) has a similar
form to W , given in (9), but with n11 , n12 , n21 and n22
replaced, respectively, by ~n11 ˆ ®n12 , ~n12 ˆ n11 ,
~n21 ˆ ®n22 and ~n22 ˆ n21. Thus the following expression
for the square of the condition number of ~W can be
immediately written

C2… ~W † ˆ

�����������������
~X‡ j ~D j

q
‡

�����������������
~X ¡ j ~D j

q

�����������������
~X‡ j ~D j

q
¡

�����������������
~X ¡ j ~D j

q …21†

where

~X ˆ j®n12 ¡ n21j2 ‡ 2…jn11j2 ‡ j®n22j2† …22†
~D ˆ …®n12 ¡ n21†2 ‡ 4®n11n22 …23†

The problem of designing KP requires then the com-
putation of r (0 < r µ 1) and ³ (0 µ ³ < 2º) for which
the matrix ~G ˆ GKP has an eigenvector matrix whose
condition number is as closely as possible to one. Such
a pair …r;³† does not necessarily exist, as shown in the
following lemma.

Lemma 1: The condition number of ~W is smaller than
that of W , i.e. C… ~W † < C…W †, if and only if for a given
pair …r;³†, »…r;³† < 1, where

»…r;³† ˆ
~X…r;³† jD j
j ~D …r; ³†j X

…24†
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Proof : Since the condition number of a matrix is al-
ways greater or equal 1, we may write

C… ~W † < C…W † () C2… ~W † < C2…W † …25†
and substituting (18) and (21) in (25), we obtain

�����������������
~X‡ j ~D j

q
‡

�����������������
~X ¡ j ~D j

q

�����������������
~X‡ j ~D j

q
¡

�����������������
~X ¡ j ~D j

q <

�����������������
X ‡ jD j

p
‡

�����������������
X ¡ jD j

p
�����������������
X ‡ jD j

p
¡

�����������������
X ¡ jD j

p

…26†
After some straightforward calculation, inequality (26)
can be written as

�����������������
~X ¡ j ~D j

q �����������������
X‡ j D j

p
¡

�����������������
~X ‡ j ~D j

q �����������������
X ¡ jD j

p
< 0 …27†

or, equivalently

~XjD j
Xj ~D j

< 1 …28†

Finally, de® ning » ˆ ~XjD j=…Xj ~D j†, completes the proof
of the lemma. &

Lemma 1 provides more than a simple test to check
if a pair …r;³† 2 R, where R ˆ …0;1Š £ ‰0 ;2º† makes the
matrix ~G closer than G to a normal matrix. As we are
going to see in the sequel, the problem of ® nding KP that
makes the condition number of ~W smaller than that of
W turns out to be the one of ® nding …r;³† 2 R that
minimizes »…r;³†. In order to do so, let us ® rst de® ne

¬ ˆ jD j
X

and ~¬…r;³† ˆ j ~D …r;³†j
~X…r;³† …29†

We may then state the following result.

Lemma 2: W has in® nite condition number if and only
if ¬ is approximately zero.

Proof : Substituting ¬, given in (29), in (18) we obtain

C2…W † ˆ 1 ‡
��������������
1 ¡ ¬2

p

¬
…30†

( )̂) ¬ ! 0 )̂C2…W † ! ‡1.
((̂ ) For ¬ 6ˆ 0, equation (30) may be written as

¬‰…C4…W †‡ 1†¬ ¡ 2C2…W †Š ˆ 0 …31†
Thus

¬ ˆ 2C2…W †
1 ‡ C4…W † …32†

is the unique solution to (31). It is immediate to see that
¬ ! 0 when C…W † ! ‡1. &

The result presented in Lemma 2 can be interpreted
with the help of (29) as follows: in order for ¬ to
approach zero either X has to go to in® nity when jD j

is kept ® nite, or the opposite, i.e. for X ® nite, jD j is
made arbitrarily small. In order for X to approach
zero, the following conditions should be met:
n11 º n22 , n12 ! 0 and n21 ! 0. However if this happens
then D also approaches zero since N becomes a diagonal
matrix. It is not hard to check that in this case ¬ ! 1,
which implies that ¬ cannot approach zero when X ! 0.
On the other hand, when jD … j!†j approaches zero, the
eigenvalues become approximately equal which ulti-
mately implies that the eigenvectors are getting nearly
parallel, giving rise to a nearly singular eigenvector
matrix, or equivalently, a matrix with a huge condition
number. This is the worst case for the application of
the CLM since the resulting compensated system will
be very sensitive to parameter perturbation at that
frequency, as predicted by Bauer± Fike’ s theorem.
However, as the following result shows, the use of pre-
compensator (12) can actually turn the precompensated
system into one whose eigenvector matrix condition
number is approximately 1, which represents the best
starting point for the design of commutative controllers,
as far as sensitivity to parameter perturbation is con-
cerned.

Theorem 1: L et N be such that its eigenvector matrix
W has in® nite condition number, i.e. , C…W † ! ‡1. If
for a pair …r; ³† 2 R, »…r;³† ! 0 then the condition
number of ~W will be approximately equal to 1, i.e.
C… ~W † ! 1.

Proof : Substituting (29) in (21) we obtain

C2… ~W † ˆ 1 ‡
������������������������
1 ¡ ~¬2…r; ³†

p

~¬…r;³† …33†

and from equations (30) and (33) we may conclude that

0 < ¬ µ 1 and 0 < ~¬…r;³† µ 1 …34†
Since ~¬…r;³† is always smaller or equal to 1, then

»…r;³† ˆ ¬

~¬
¶ ¬ …35†

From lemma 2, we know that C…W † ! ‡1 if and
only if ¬ ! 0. Therefore, if there exists a pair …r;³† 2 R
such that »…r; ³† ! 0, then by (35), »…r;³† ! ¬ or
equivalently, ~¬…r;³† ! 1. Finally, the result of the the-
orem is obtained by taking the limit of C2… ~W † when ~¬
approaches 1. &

Theorem 1 shows that in order to make, at a fre-
quency !, the condition number of the eigenvector
matrix of the precompensated system as closely as poss-
ible to 1, it is necessary to ® nd a pair …r;³† which mini-
mizes »…r; ³†, or equivalently, maximizes ~¬…r;³†. This
leads to the following optimization problem.

Problem 1: max…r;³†2R ~¬…r;³†, where, according to
equations (22), (23) and (29), ~¬…r;³† is given as
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~¬…r ;³† ˆ j…r e j³n12 ¡ n21†2 ‡ 4®n11n22j
jr e j³n12 ¡ n21j2 ‡ 2…jn11j2 ‡ r2jn22j2†

…36†

We can now derive an algorithm for the computa-
tion of a precompensator KP…s† such that the eigenvector
matrix of ~G…s† has a condition number which is smaller
or equal to that of the eigenvector matrix of G…s† and is
as closely as possible to 1 in all the necessary frequency
ranges.

Algorithm 1:
Step 1. Select a ® nite number of frequencies !k,

k ˆ 0 ;1 ; . . . ;q.

Step 2. For each frequency !k, k ˆ 0;1; . . . ;q compute
N… j!k†, ¬… j!k† and employing any numerical
optimization method ® nd a pair …r… j!k†;
³… j!k†† 2 R that maximizes ~¬‰r… j!k†;³… j!k†Š.

Step 3. Compute

»…r… j!k†;³… j!k†† ˆ ¬… j!k†=~¬‰… j!k†;³… j!k†Š …37†
Step 4. If »…r… j!k†;³… j!k†† ¶ 1 then

KP… j!k† ˆ
1 0

0 1

" #
…38†

else, i.e. if »…r… j!k†;³… j!k†† < 1, then

KP… j!k† ˆ
0 1

r… j!k†e j³… j!k† 0

" #
…39†

Step 5. Obtain stable and minimum phase transfer
functions for each entry of KP…s† in such a
way that the frequency responses of its elements
approximately match those obtained in Step 4
and are smooth at the discontinuity points of
the frequency responses obtained in Step 4.

3.3. Normalization by minimization of the deviation
from normality

3.3.1. Generalization of the precompensator structure
for the m £ m case. The precompensator structure (12)
for the 2 £ 2 case is derived as follows: (1) start from
the 2 £ 2 identity matrix; (2) multiply the second col-
umn by r e j³ ; (3) swap the columns of the resulting
matrix. A generalization of this structure for the gen-
eral m £ m case can be carried out as follows: (1) start
from the identity matrix of order m ; (2) multiply col-
umn l by r… j!†e j³… j!† ; (3) swap columns k and l of the
matrix obtained in step (2) . Denoting KPkl… j!† the
matrix generated after step (3) , we have

KPkl
… j!†

ˆ ‰ e1 . . . ek¡1 r… j!† e j³… j!†el ek‡1 . . . el¡1 ek el‡1 . . . em Š
…40†

where the columns e1 . . . ek¡1, ek‡1 . . . el¡1 and
el‡1 . . . em will appear in KPkl

… j!† only when k ¶ 2,
l ¶ k ‡ 2 or l µ m ¡ 1, respectively. Note that, in the
general m £ m case, there are several ways to obtain
KPkl

… j!†, depending on the column that is multiplied
by r e j³ and on those which are swapped. It is well
known from the combinatorial analysis that if a set
has m elements, then the total number of its subsets
consisting of p elements each is equal

m
p… †ˆ m!

p!…m ¡ p†!
…41†

Therefore the number of structures (similar to (12)) for

the general case is
m
2… †.

3.3.2. A measure of normality. Let us now de® ne a
measure of how close to normality a given matrix is. It
is well known that a matrix ~G : m £ m is normal if and
only if it commutes with its associate ~G¤ ; i.e. if and
only if ~G¤ ~G ˆ ~G ~G¤. Therefore the following expression
can be used to measure the deviation of a matrix from
normality

¯… ~G† ˆ k ~Ek2
F

k ~G¤ ~Gk2
F

ˆ k ~Ek2
F

k ~G ~G¤k2
F

…42†

where ~E ˆ ~G¤ ~G ¡ ~G ~G¤ and k ~EkF denotes the Frobenius
norm of ~E, which is de® ned as

k ~Ek2
F ˆ

Xm

i ;jˆ1

j~eijj
2 ˆ tr … ~E¤ ~E† …43†

with eij denoting the …i ; j† element of ~E. Note that the
closer to 0 ¯… ~G† is the nearer to a normal matrix ~G will
be. It is also important to remark on the use of k ~G¤ ~Gk2

F
or k ~G ~G¤k2

F in the denominator of (42) in order to
account for the size of the elements of ~G.

3.3.3. A minimization problem. Let C2 denote the set
whose elements are the pairs …k ; l† formed with all the
combinations of the elements of f1 ;2 ; . . . ;mg taken
two at a time (m denoting the order of G…s†). The
problem of ® nding a precompensator KPkl… j!† which
makes the matrix ~Gkl… j!† ˆ G… j!†KPkl… j!† as closely
as possible to a normal matrix, according to the meas-
ure de® ned in (42), can be stated as follows:

Problem 2: min…k ;l†2C2
min…r… j!†;³… j!††2R Jkl…r;³†, for each

! in the necessary frequency range, where

Jkl…r;³† ˆ k ~Eklk2
F

k ~G¤
kl

~Gklk2
F

…44†

and ~Ekl… j!† ˆ ~G¤
kl

~Gkl ¡ ~Gkl
~G¤

kl .
Using trace properties, it is possible to re-write (44)

as
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1
2 Jkl…r ;³† ˆ 1 ¡ tr … ~G¤

kl ~Gkl ~Gkl ~G¤
kl†

tr ‰… ~G¤
kl

~Gkl†2Š
ˆ 1 ¡ ~Jkl…r;³† …45†

where

~Jkl…r;³† ˆ tr … ~G¤
kl ~Gkl ~Gkl ~G¤

kl†
tr ‰… ~G¤

kl
~Gkl†2Š

…46†

and since Jkl…r;³† ¶ 0 then ~Jkl…r;³† µ 1. Thus, Problem
2 is equivalent to:

Problem 3: max…k ;l†2C2
max…r;³†2R ~Jkl…r;³†, for each !

in the frequency range. &

The ® rst step towards the solution of Problem 3 is to
obtain an expression for ~Jkl that depends uniquely on r
and ³. Such an expression may be derived if we note that
~Gkl ˆ GKPkl

can be written as

~Gkl ˆ Pkl ‡ Qklr e j³ …47†

where Pkl is a matrix whose columns are the same as
those of G, except columns k, which is identically zero
and column l which is identical to column k of G and Qkl
is a matrix whose unique non-zero column is column k,
which is equal to column l of G, as

Pkl ˆ g1 . . . gk¡1 0 gk‡1 . . . gl¡1 gk gl‡1 . . . gm‰ Š

…48†

Qkl ˆ gle
t
k ˆ 0 . . . 0|‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚}

k¡1

gl 0 . . . 0|‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚}
m¡k

…49†

Substituting ~Gkl , as given by (47), in (46) and using the
easily veri® ed fact that QklP

¤
kl ˆ 0, then equation (46)

turns out to be

~Jkl…r; ³† ˆ b…r;³†
a…r† ˆ b0r

4 ‡ b1…³†r3 ‡ b2r
2 ‡ b3…³†r ‡ b4

a0r4 ‡ a2r2 ‡ a4

…50†

where

b0 ˆ tr …Q¤QQQ¤† ˆ kglk
2
2jgkl j2 …51†

b1…³† ˆ v1cos ³ ¡ u1sin ³ …52†
b2 ˆ tr …P¤PQQ¤†‡ tr …PP¤Q ¤Q†

ˆ …kzklk2
2 ‡ kglk

2
2kpt

kk2
2† …53†

b3…³† ˆ v3 cos ³ ¡ u3 sin ³ …54†
b4 ˆ tr …P¤PPP¤† …55†

a0 ˆ tr ‰…Q ¤Q†2Š ˆ kglk
4
2 …56†

a2 ˆ 2
Xm

iˆ1;i 6ˆl

jg¤
l gij

2 …57†

a4 ˆ tr ‰…P¤P†2Š …58†

u1 ˆ 2 Im ‰ -gklg
¤
l P¤glŠ …59†

v1 ˆ 2 Re ‰ -gklg
¤
l P¤glŠ …60†

zkl ˆ
Xm

iˆ1;i 6ˆk ;l

gilgi ‡ gllgk …61†

u3 ˆ 2 Im g¤
kgl

Xm

iˆ1;i 6ˆl

gki
-gli ‡

Xm

jˆ1 ;j 6ˆk ;l

g¤
j gl

Xm

iˆ1 ;i 6ˆl

gki
-gji

" #

…62†

v3 ˆ 2 Re g¤
kgl

Xm

iˆ1;i 6ˆl

gki
-gli ‡

Xm

jˆ1 ;j 6ˆk ;l

g¤
j gl

Xm

iˆ1 ;i 6ˆl

gki
-gji

" #

…63†

In the formulae above pt
k denotes the kth row of P, gi ,

i ˆ 1 ; . . . ;m denotes the ith column of G, gij stands for
element …i ; j† of G and -gij stands for the complex con-
jugate of gij . Minimization problem 3 can then be solved
in accordance with the following theorem.

Theorem 2: The maximum value of ~Jk ;l…r;³† is always
achieved by a pair …r; ³† belonging to the non-empty set
P, which is given by

P ˆ P1 [ P2 [ P3 [ f…1 ;0†g

where

P1 ˆ f…1 ;³1†;…1 ;³1 ‡ º†:

³1 ˆ arctan …¡…u1 ‡ u3†=…v1 ‡ v3†g

P2 ˆ f…ri ;0†: ri is a solution of a0v1r6 ‡ 2…a0b2 ¡ a2b0†r5

‡ …3a0v3 ¡ a2v1†r4 ‡ 4…a0b4 ¡ a4b0†r3

‡ …a2v3 ¡ 3a4v1†r2 ‡ 2…a2b4 ¡ a4b2†r ¡ a4v3 ˆ 0

and 0 < ri < 1g

P3 ˆ f…rji ;³i†; for i ˆ 1 ;2: rji is a solution of ­ 1r5
ji

‡ ­ 2…³i†r4
ji ‡ ­ 3r

3
ji ‡ ­ 4…³i†r2

ji ‡ ­ 5rji ‡ ­ 6…³i† ˆ 0

and 0 < rji < 1 ; with ³1 ˆ arctan …¡…u3=v3††

and ³2 ˆ ³1 ¡ ºg ; when uv ˆ v1 ˆ 0 and either

v3 6ˆ 0 or u3 6ˆ 0;
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ˆ f…rji ; ³i†; for i ˆ 1;2: rji is a solution of ­ 0…³i†r5
ji

‡ ­ 1r4
ji ‡ ­ 2…³i†r3

ji ‡ ­ 3…³i†r2
ji ‡ ­ 4…³i†rji ‡ ­ 5 ˆ 0;

with ³1 ˆ arctan …¡…u1=v1††;³2 ˆ ³1 ¡ ºg ;

when u3 ˆ v3 ˆ 0 and either v1 6ˆ 0 or u1 6ˆ 0

ˆ f…r1i ;³i†;…r1i ;³i ¡ º†;…r2i ;º ¡ ³i†and …r2i ;³i†;

where ³i ˆ arccos xi ˆ arcsin yi ; xi ˆ
������������
1 ¡ ti

p

and yi ˆ ���
ti

p
;ti is a solution of ½0t8 ‡ ½1t7 ‡ ½2t

6

‡ ½3t5 ‡ ½4t4 ‡ ½5t
3 ‡ ½6t2 ‡ ½7t ‡ ½8 ˆ 0 in the

interval …0 ;1Šand r1i ˆ r…xi ;yi†;r2i ˆ r…¡xi ;yi†;

with r…x ;y† ˆ
�������������������������������������������������������
¡…u3x ‡ v3y†=…u1x ‡ v1y†g

p
;

when either v1 6ˆ 0 or u1 6ˆ 0 and either v3 6ˆ 0 or u3 6ˆ 0;

ˆ 1; when u1 ˆ v1 ˆ u3 ˆ v3

where expressions for ­ 0 ; . . . ; ­ 6 and ½0 ; . . . ;½8 are given in
the Appendix.

Proof : See the Appendix.

Remark: It is important to stress that Theorem 2
above not only shows that the optimization problem
max …r;³†2R ~Jk ;l…r;³† always has a solution but also pro-
vides the means to compute it. In addition note that
since the pairs …r;³† which form the set P2 come from
the solution of a six degree polynomial equation, and
the elements of P3 are solutions of a polynomial equa-
tion of degree not higher than eight then it is straight-
forward to see that P has at most 17 elements.
Therefore the pair …r;³† for which ~Jk ;l…r;³† attains its
maximum can be obtained by direct evaluation of (50)
for all elements of P .

Based on Theorem 2 and on the de® nition of KPkl
…s†

we may derive the following algorithm for the computa-
tion of KP…s† which makes ~G…s† ˆ G…s†KP…s† as closely as
possible to a normal matrix according to measure (42).

Algorithm 2:

Step 1. Select a ® nite number of frequency points !i ,
i ˆ 0 ;1 ; . . . ;q in the necessary frequency range.

Step 2. For each frequency !i , i ˆ 0 ;1 ; . . . ;q, compute
G… j!i†.

Step 3. Form m
2… † possible precompensators KPkl

… j!i†
and for each one ® nd the pair …rkl… j!i†,
³kl… j!i†† which maximizes ~Jkl…rkl… j!i†;³kl… j!i††
in accordance with Theorem 2. After that,
choose the pair …k ; l† which gives the smallest
value for Jkl…rkl… j!i†;³kl… j!i††. Let Jkl be such
value.

Step 4. Compute

JI ˆ kE… j!i†k2
F

kG¤… j!i†G… j!i†k2
F

…64†

where

E… j!i† ˆ G¤… j!i†G… j!i† ¡ G… j!i†G¤… j!i†

Step 5. If JI < Jkl then

KP… j!i† ˆ Im …65†
where Im denotes the identity matrix of order m.
Else, i.e. if JI ¶ Jkl , then

KP… j!i† ˆ KPkl …j!i†
ˆ e1 . . . ek¡1 rkl…j!i†e j³kl …j!i†el ek‡1 . . . el¡1 ek el‡1 . . . em

…66†
Step 6. Find stable and minimum phase transfer func-

tions for each entry of KP…s† in such a way that
the frequency response of each element is
smooth at the discontinuity points of the fre-
quency responses obtained in step 5.

4. Examples

In this section the precompensation scheme pre-
sented in the paper is illustrated by means of two numer-
ical examples: the ® rst one represents the nominal
transfer function of a 2 £ 2 system and was introduced
by Doyle and Stein (1981) in order to bring to light the
CLM sensitivity problems; the second one (Hung and
MacFarlane 1982) corresponds to a 3 £ 3 system and
represents a linearized model of the vertical plane
dynamics of an aircraft.

4.1. Example 1

Let

G…s† ˆ 1
d…s†N…s† …67†

where d…s† ˆ …s ‡ 1†…s ‡ 2† and

N…s† ˆ
¡47s ‡ 2 56s

¡42s 50s ‡ 2

" #
…68†

The main feature of this plant is the huge condition
number of the eigenvector matrix (approximately 196)
for all frequencies except at DC, as shown in ® gure 2(a).
Note that for ! ˆ 0 then G…0† ˆ 2I2 (I2 denoting the
identity matrix of order 2) which represents a normal
matrix. Hence if the condition number of W …0† had
been plotted in the same graph there would be a jump
from 1 to 196 at the neighbourhood of ! ˆ 0. Similar
conclusions can be drawn by considering the measure of
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normality (¯) de® ned in equation (42). It can be seen
from ® gure 3(a) that ¯…!† is approximately zero for fre-
quencies near 0 and increases to 2 as ! goes to in® nity.
This behaviour can be explained by noting that ¯…!† is a
continuous function of ! and thus cannot change
abruptly. These facts suggest that in order to draw any
conclusion about the normality of a matrix the two
measures should be considered together since the con-
dition number shows the normality of the matrix for
those frequencies represented in the graph whereas the
measure ‰̄G… j!†Š provides information on the normality

at DC, at in® nity and also at the frequency points where
there are jumps on the condition number of the eigen-
vector matrix. Therefore, from ® gures 2(a) and 3(a), we
may conclude that G… j!† is far from normal for all
! 6ˆ 0, which implies that the CLM cannot be applied
directly to G…s†, in which case the system would be extre-
mely sensitive to parameter perturbation, as shown in
Doyle and Stein (1981). Thus normalization is the
unique way to overcome this problem. Notice that,
according to Algorithms 1 and 2, the precompensator,
at each frequency w, will either be equal to the identity
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Figure 2. (a) Condition number of the eigenvector matrix of N… j!†; (b) Condition number of the eigenvector matrix of ~N… j!† for
r… j!† and ³… j!† ( Ð ) and kp21

… j!† ˆ ¡0:97 (± ¢ ± ).

Figure 3. (a) ¯‰G…j!†Š; (b) ¯‰ ~G…j!†Š for kp21
…j!† ˆ ®…j!†; (c) kp21

…s† ˆ ¡0:97:



matrix (when the values of r and ³ in ® ˆ r e j³ are such
that KP does not reduce the condition number of G) or
its elements will be given by

kp11
ˆ 0 ; kp12

ˆ 1 ; kp21
ˆ ®… j!† and kp22

ˆ 0

…69†
The values of r… j!† and ³… j!† which minimize the con-
dition number of the eigenvector matrix ~W of ~G and
¯… ~G† are shown in ® gure 4 (solid and dash± dotted
lines, respectively) . These values have been obtained in
accordance with Algorithms 1 and 2 and correspond to
the points of R for which ~¬…r;³† and ~J…r; ³† attain their
maximum. It is worth noting that both methods have
produced approximately the same values for r… j!† but,
at the very low frequencies, ³… j!†, obtained via maximi-
zation of ~¬…r; ³† di� ers slightly from those which maxi-
mize ~J…r; ³† (the curve for the latter is signi® cantly
smoother) . For these values of r… j!† and ³… j!†, C… ~W †
gets very close to 1 and ¯… ~G† becomes approximately
equal 0 (as shown in ® gures 2(b) (solid line) and 3(b)).
This results show that the minimization problem
together with the proposed precompensator have indeed
turned a system with a badly skewed eigenvector matrix
into one which is approximately normal for the whole
frequency range, as was stated in Theorem 1. This is an
important result since without using this precompensa-
tor the CLM could not be applied to the system. More
importantly the designer now has a system with the best
features for applying the CLM.

Once the frequency response for ® has been
obtained, the next step is to ® nd a stable and minimum
phase transfer function for element …2 ;1† of KP…s† whose

frequency response matches that of ®… j!† as closely as
possible. However, a close look at ® gure 4 reveals that
between ! ˆ 10¡3 and ! ˆ 3 £ 10¡2, ³… j!† increases
from 180 to approximately 180:23 while r… j!† decreases
from 1 to 0.94. This implies that the polar plot of ®… j!†
will have an anticlockwise winding, and according to
Horowitz and Ben-Adam (1989) there does not exist a
stable transfer function whose frequency response
matches that of ®… j!†. However, due to the near ¯ atness
of r… j!† and ³… j!† it is enough to approximate kp21

…s† by
a static transfer function kp21

…s† ˆ ¡0:97, which has
been chosen since it corresponds to the arithmetic
mean between the largest and the smallest values of
r… j!†. The precompensator transfer function is therefore

KP…s† ˆ
0 1

¡0:97 0

" #
…70†

The condition number of ~W … j!† and the measure of
normality ‰̄ ~G… j!†Š for the system precompensated
with KP…s† given in (70) are depicted in ® gures 2(b)
(dash± dotted line) and 3(c), respectively. They show
that even for the precompensator whose frequency
response of its …2 ;1† element only approximates the
one which actually minimizes C‰W … j!†Š and ‰̄ ~G… j!†Š,
the precompensation scheme proposed here has proved
very e� ective.

4.2. Example 2

The transfer function of a linearized model of a
vertical plane dynamics of an aircraft (Hung and
MacFarlane 1982) is given by
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G…s† ˆ 1
d…s†

n11…s† n12…s† n13…s†
n21…s† n22…s† n23…s†
n31…s† n32…s† n33…s†

2
664

3
775 …71†

where

d…s† ˆ s5 ‡ 1:5953s4 ‡ 1:7572s3 ‡ 0:1112s2 ‡ 0:0561s

n11…s† ˆ ¡1:5750s3 ¡ 1:1190s2 ‡ 1:5409s ¡ 0:0816

n12…s† ˆ 0:2909s2 ‡ 0:2527s ‡ 0:3712

n13…s† ˆ 0:0732s3 ¡ 0:0646s2 ¡ 1:2125s ¡ 0:0204

n21…s† ˆ ¡0:12s4 ¡ 0:0739s3 ¡ 0:5319s2 ¡ 0:2458s

n22…s† ˆ s4 ‡ 1:5415s3 ‡ 1:6537s2

n23…s† ˆ ¡0:0052s3 ‡ 0:1570s2 ‡ 0:1828s

n31…s† ˆ 4:419s3 ‡ 1:6674s2 ‡ 0:1339s

n32…s† ˆ 0:0485s2 ‡ 0:3279s

n33…s† ˆ ¡1:6650s3 ¡ 1:1574s2 ¡ 0:0918s

In order for the CLM to be e� ective, it is ® rst necess-
ary to check if G…s† is close to normal in the necessary
frequency range. From ® gures 5 and 6 (dashed lines) it
can be seen that, at low and high frequencies, G…s† is far
from normal, which shows the need for normalization.
Note also that, ‰̄G… j!†Š ! 0 when ! ! 1. This calls
our attention to the fact that at the very high frequency
G… j!† becomes normal. Note that this actually the case,
since G… j!† ! O when ! ! 1.

Since we are dealing now with a 3 £ 3 system,
Algorithm 1 cannot be applied. In accordance with

Algorithm 2, there are
3
2… † pairs …k ; l† that can be

formed (…1 ;2†, …1;3† and …2 ;3†), which implies that
there are three possibilities of generating KPkl

… j!†. The
next step is to ® nd, for each pair …k ; l†, the values of
rkl… j!† and ³kl… j!† which maximize ~Jkl… j!†.
Figure 7(a± c) shows ‰̄G… j!†KPkl

… j!†Š for …k ; l† equal
…1 ;2†, …1 ;3† and …2 ;3†, respectively, and also
‰̄G… j!†I3Š ( ® gure 7(d)). The desired frequency response

for KP…s† can then be obtained by choosing, for each
frequency, the values of kpij

… j!†, i ; j ˆ 1 ;2 ;3 which
make (among the four possibilities depicted in ® gure 7)
~G… j!† closest to normal. Indeed, according to ® gure 7
the frequency response of KP…s† must be that of KP12

… j!†
for frequencies below 0.21 rad/s and of KP13

… j!† for fre-
quencies above 0.48 rad/s. In the narrow band from 0.21
to 0.48 rad/s a closer look of the values of ‰̄GKPkl

… j!†Š
reveals that the frequency response of KP…s† must
approximate that of KP23

… j!†. The magnitudes and
phase of kpij

… j!†, i ; j ˆ 1 ;2 ;3 for an ideal frequency
response of KP…s† are shown, respectively, in ® gures 8
and 9 (+ + ). Note that, for such a KP… j!† the eigenvec-
tor matrix condition number is smaller than 1.3 for most
of the frequency range, being slightly greater than 2 for
frequencies between 0:2 and 0:6 rad/s, as can be seen
from ® gure 5 (dash± dotted line). This represents a sig-
ni® cant improvement on the normality of G… j!†. Similar
conclusions could be drawn from the analysis of
‰̄ ~G… j!†Š according to ® gure 6 (dash± dotted line).
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The ® nal step of algorithm 2 is to ® nd stable
transfer functions for the elements of KP…s† in such a
way that their frequency responses closely match those
obtained after Step 5. This can be done in a variety of
ways, e.g. by designing Butterworth ® lters or simply by
choosing appropriate poles and zeros. For example, a
stable transfer function for element (1,2) can be
obtained as follows: from ® gure 8, kp12

… j!† is either 1
for ! µ 0:187 rad/s and 0 for ! ¶ 0:187 rad/s and from
® gure 9 the phase of kp12

… j!† is zero for the whole
frequency range. These facts imply that the magnitude
and phase requirements cannot be met simultaneously
if one is sought a stable transfer function approxi-
mation for kp12

… j!†. However, in trying to satisfy
magnitude requirement, a closer look at ® gure 8 sug-
gests the need for a pole at the proximity of 0:187
whose multiplicity will de® ne the agreement between
the magnitude of kp12

… j!† given in ® gure 8 and the mag-
nitude of the frequency response of kp12

…s†. For the sake
of simplicity, a second order transfer function has been
chosen, whose poles are ¡0:172 and ¡0:162, being
therefore very close to the breakdown frequency
! ˆ 0:187 rad/s. The other transfer functions can be
obtained in a similar way, leading to the following trans-
fer matrix for KP…s†

KP…s† ˆ

0:1s
s2‡0:1062s‡0:0705

0:0278
s2‡0:3336s‡0:0278

s
s‡1:5129

¡0:6250s
s3‡1:5807s2‡0:6259s‡0:0010

s
s‡3:8358

0:3826 s
s2‡0:3806 s‡0:1789

s
s‡1:0673

0:2s
s2‡0:2984s‡0:0890

0:0292
s‡0:0292

2
66664

3
77775

…72†

The frequency responses of each element of KP…s† are
represented in ® gures 8 and 9 (solid lines). It is clear
from ® gure 8 that there is a close agreement in the mag-
nitudes but the target and the actual phases for the ele-
ments of KP…s† do not match quite well. The reasons for
that are: (i) anticlockwise winding of the target fre-
quency responses (elements (2,1) and (3,1)) and (ii) dis-
continuity of the target frequency responses. Despite
these problems, it can been seen, from ® gures 5 and 6
(solid line), that the precompensator (72) has actually
reduced drastically the condition number of the eigen-
vector matrix or equivalently has made the matrix ~G…s†
approximately normal. More importantly to say is that
this has been achieved with a precompensator whose
in® nity norm is approximately 1Ð note from ® gure 10
that the largest singular values of KP… j!† varies from
0.87 to 1.42, being larger than 1.1 in a narrow frequency
band (1:6 £ 10¡1 and 6 £ 10¡1 rad/s). It must be empha-
sized that precompensators with largest singular values
closer to 1 in the frequency band above could probably
be obtained at the expenses of an increase in the order of
the transfer function of its elements.

4.3. Comments

In order to highlight the results presented in this
section, the following comments are opportune:

(1) The precompensator given in (70) is very close to
that given in (13), for which r ˆ 1 and ³ ˆ º.
Therefore the reader could argue whether it is
actually necessary to go through all the steps of
Algorithms 1 and 2 if similar results could have
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Figure 6. Measure of normality ¯‰G… j!†Š ( ± ± ), ¯‰ ~G… j!†Š obtained after Step 5 of Algorithm 2 (± ¢ ± ) and after frequency response ® t
of KP…s† (Ð ).



been obtained with a simpler precompensator.
The answer to this question is given in Step 4
of Algorithm 1 and Step 5 of Algorithm 2,
namely that, if for some frequency the plant is
already close to normal then the precompensator
frequency response should be close to an identity
matrix at that frequency and therefore precom-
pensator (13) would not be appropriate for this
frequency. An example where this happens is
the chemical reactor used in MacFarlane and
Kouvaritakis (1977). The plant transfer matrix
for the reactor is already close to normal for all

the frequency range, but precompensator (13)
was used to reduce interaction at high frequen-
cies. Indeed the precompensator succeeded in
reducing high frequency interaction but that
was achieved at the expenses of an increase of
the eigenvector matrix condition number at low
frequencies (from 1.4 to approximately 10). It is
important to note that this would be avoided if
test (24) of Lemma 1 had been perfomed since
»…1;º† < 1 for ! > 10 and »…1 ;º† > 1 and ! <
10 rad/s, being approximately 42.5 for the very
low frequencies, showing the need for a dynamic
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Figure 7. Measure of normality; (a) ¯‰GKP12
…j!†Š; (b) ¯‰GKP13

…j!†Š ; (c) ¯‰GKP23
…j!†Š; (d) ¯‰G…j!†Š.

Figure 8. Magnitudes of kpij
… j!†, i; j ˆ 1; 2; 3, for KP…s† obtained after Step 5 of Algorithm 2 (+ + ) and after frequency response

® t (Ð ).



precompensator. This explains the problems of
the use of the CLM on the design of a controller
for the reactor plant.

(2) The impressive results obtained by precompen-
sator (72) in Example 2 in spite of the poor
agreement between the target and the actual
phases of the frequency responses of the ele-
ments of KP…s† could lead the reader to conclude
that the phase does not play an important role in
the precompensator design proposed in this
paper. That this is not necessarily true can be

seen with the help of Example 1. In this case
the phase of element kp12

…s† is always 1808 since
kp12

…s† ˆ ¡0:97, being therefore very close to the
target frequency response phase which varies
from approximately 180 to 180:23 (® gure 4(b)).
It is important to remark that if the frequency
response of element …2 ;1† had been chosen to be
0:97 (phase equal to 0), then the eigenvector con-
dition number would be reduced to approxi-
mately 15 for most of the frequency range,
which is much larger than that achieved by pre-
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Figure 9. Phases of kpij
… j!†, i; j ˆ 1; 2; 3, for KP…s† obtained after Step 5 of Algorithm 2 (+ + ) and after frequency response ® t

(Ð ).

Figure 10. Maximum singular value of KP…j!† after response ® t.



compensator (70). The importance of phase in a
particular design can be viewed by plotting ~J…³†,
at each frequency, for the value of r for which
~J…r ;³† achieves its maximum. The amount of
variation of ~J…³† provides information on the
need for phase adjustment as well. In doing so
for Example 2 above, the reader can see that ~J…³†
is indeed nearly ¯ at, explaining the low import-
ance of phase adjustment for that case.

5. Conclusion

In this paper the problem of precompensation of a
multivariable plant with the view to making the precom-
pensated system as normal as possible has been tackled.
A precompensator structure has been proposed and the
values of the frequency responses of its elements were
calculated through the solution of two minimization
problems: (i) the ® rst one, suitable only for 2 £ 2
systems aimed at reducing the condition number of the
eigenvector matrix and (ii) the second one, which can be
applied to any m £ m system, had as cost a measure of
normality. The proposed scheme has proved very e� -
cient in both cases, as illustrated by two numerical ex-
amples taken from the literature.
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Appendix: proof of Theorem 2

Since ~Jkl…r;³† given in (50) is continuously di� erenti-
able inside the region R, it either attains its maximum at
those pairs …r;³† for which

@

@r
~Jkl…r;³† ˆ 0 and

@

@³
~Jkl…r;³† ˆ 0 …A1†

or occurs on the border of R. The pairs on the border
form the sets f…1 ;0†g, P1 and P2 while the pairs inside R
form the set P3.

Let us consider initially the points on the border
of R :

(i) For ³ ˆ 0, ~Jkl…r;³† becomes

~Jkl…r† ˆ b0r4 ‡ v1r3 ‡ b2r
2 ‡ v3r ‡ b4

a0r4 ‡ a2r2 ‡ a4
…A2†

Compute the derivative of ~J…r† with respect to r, make it
equal zero and since r 2 …0 ;1Š, we should select only
those roots which are inside the interval, as stated in
the de® nition of P1.

(ii) For the border r ˆ 1, ~Jkl…r;³† turns out to be

~Jkl…³† ˆ …v1 ‡ v3†cos ³ ¡ …u1 ‡ u3† sin ³ ‡ b0 ‡ b2 ‡ b4

a0 ‡ a2 ‡ a4

…A3†
Proceeding as in (i) leads to P2.

(iii) The last point on the border of R which can
make ~J…r;³† attain its maximum is …1;0†.

Let us now consider the interior points of R.
Computing @ ~Jkl…r;³†=@r ˆ 0, we obtain

­ 0…³†r6 ‡ ­ 1r5 ‡ ­ 2…³†r4 ‡ ­ 3r3 ‡ ­ 4…³†r2

‡ ­ 5r ‡ ­ 6…³† ˆ 0 …A4†
where

­ 0…³† ˆ a0b1…³†

­ 1 ˆ 2…a0b2 ¡ a2b0†

­ 2…³† ˆ 3a0b3…³† ¡ a2b1…³†

­ 3 ˆ 4…a0b4 ¡ a4b0†

­ 4…³† ˆ a2b3…³† ¡ 3a4b1…³†

­ 5 ˆ 2…a2b4 ¡ a4b2†

­ 6…³† ˆ ¡a4b3…³†

9
>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

…A5†

Let us now consider @ ~J…r;³†=@³ ˆ 0. It is straightfor-
ward to check that

r‰b 0
1…³†r2 ‡ b 0

3…³†Š ˆ 0 …A6†
where b 0

3…³† and b 0
1…³† denote, respectively, the deriva-

tives of b3…³† and b1…³† with respect to ³.

(a) For v1 ˆ u1 ˆ 0 and either v3 6ˆ 0 or u3 6ˆ 0,
then b 0

3…³† ˆ ¡ v3 sin …³†‡ u3 cos …³†‰ Š ˆ 0 is the
unique solution to equation (A6) in the interval
…0 ;1†. Therefore if v3 ˆ 0 then the values of ³
which satisfy (A6) will be §º=2. On the other
hand, if v3 6ˆ 0 then ³ ˆ arc tg ¡u3=v3… †‡ kº,
k 2 Z .

(b) When v3 ˆ u3 ˆ 0 and either v1 6ˆ 0 or u1 6ˆ 0,
then b 0

1…³† ˆ ¡ v1 sin …³†‡ u1 cos …³†‰ Š ˆ 0 is the
unique solution to equation (A6) in the interval
…0 ;1†. This implies that when v1 ˆ 0 then
³ ˆ §º=2 and otherwise ³ ˆ arc tg ¡u1=v1… †‡
kº; k 2 Z .

(c) If v1 ˆ u1 ˆ v3 ˆ u3 ˆ 0, then (A6) has an in-
® nite number of solutions in the interval …0 ;1†.

(d) Under the assumption that either v1 6ˆ 0 or
u1 6ˆ 0 and either v3 6ˆ 0 or u3 6ˆ 0, then
b 0

1…³† 6ˆ 0 and b 0
3…³† 6ˆ 0 and therefore according

to (A6) a value of r in the interval …0 ;1† must
satisfy

1294 J. C. Basilio and J. A. Sahate



r2 ˆ ¡ b 0
3…³†

b 0
1…³†

ˆ ¡ u3 cos ³ ‡ v3 sin ³

u1cos ³‡ v1 sin ³
…A7†

De® ning y ˆ sin ³ and x ˆ cos ³, it is possible to
write (A7) in terms of x and y as

r ˆ
������������������������
¡ u3x ‡ v3y

u1x ‡ v1y

s
…A8†

Substituting now (A8) in (A4) we obtain

¿0x
8 ‡ ¿1x7y ‡ ¿2x6y2 ‡ ¿3x5y3 ‡ ¿4x4y4 ‡ ¿5x3y5

‡ ¿6x2y6 ‡ ¿7xy7 ‡ ¿8y8 ‡ Á0x6 ‡ Á1x5y ‡ Á2x4y2

‡ Á3x
3y3 ‡ Á4x

2y4 ‡ Á5xy5 ‡ Á6y6 ˆ 0 …A9†

where ¿i, i ˆ 0 ; . . . ;8 are calculated as follows.

¿0 ˆ …z14†2 …A10†
¿1 ˆ ¡2z14…¡3v3u2

3v0 ‡ u0u3
3 ‡ u2

3v2v1 ¡ u2
3u1u2

‡ 2u3u1v2v3 ¡ 2u3v1u1v4 ‡ u3u2
1u4 ¡ u3

1u6 ¡ u2
1v3v4

‡ 3v1u2
1v6† …A11†

¿2 ˆ u2
0u6

3 ¡ 12u0v0v3u5
3 ‡ 15v2

0v2
3u4

3 ‡ …¡20v0v2v2
3u3

3

¡ 2u0u2u5
3 ‡ 5z1v3u

4
3†u1 ‡ …z1u5

3 ¡ 10v0v2v3u4
3†v1

‡ …z4u
4
3 ¡ 4z3v3u3

3 ‡ 6z2v
2
3u2

3†u2
1 ¡ 2…z3u4

3 ¡ 4z2v3u3
3†

£ v1u1 ‡ z2u4
3v

2
1 ‡ …3z7v3u

2
3 ¡ z6u3

3 ¡ 3z5v2
3u3†u3

1

‡ 3…z7u3
3 ¡ 3z5v3u

2
3†v1u2

1 ¡ 3z5u
3
3v2

1u1

‡ …z10u2
3 ¡ 2z11v3u3 ‡ z9v

2
3†u4

1 ‡ 6z9u2
3v

2
1u

2
1

¡ 4…z11u2
3 ¡ 2z9v3u3†v1u

3
1 ¡ 20v4v6u3v2

1u3
1 ¡ z12u5

1

‡ 5z13v1u
4
1 ‡ u2

6u6
1 ¡ 12u6v6v1u

5
1 ‡ 15v2

6v2
1u4

1 …A12†
¿3 ˆ 6u2

0v3u5
3 ‡ 20v2

0v3
3u3

3 ¡ 30u0v0v2
3u

4
3 ‡ …10z1v2

3u
3
3

¡ 20v0v2v3
3u

2
3 ¡ 10u0u2v3u4

3†u1 ‡ …4z4v3u3
3 ¡ 6z3v

2
3u2

3

‡ 4z2v3
3u3†u2

1 ¡ …20v0v2v
2
3u

3
3 ‡ 2u0u2u5

3 ¡ 5z1v3u
4
3†v1

‡ 2…z4u4
3 ¡ 4z3v3u

3
3 ‡ 6z2v2

3u2
3†v1u1

¡ …z3u
4
3 ¡ 4z2v3u3

3†v2
1 ‡ 20v2

6v3
1u3

1 ¡ 3…¡3z7v3u2
3

‡ z6u3
3 ‡ 3z5v2

3u3†v1u2
1 ‡ 3…z7u3

3 ¡ 3z5v3u2
3†v2

1u1

¡ 30u6v6v2
1u4

1 ‡ …2z10v3u3 ¡ z11v2
3†u4

1 ‡ 4…z10u2
3

¡ 2z11v3u3 ‡ z9v
2
3†v1u3

1 ¡ z5u3
3v

3
1 ¡ 4z9u2

3v
3
1u1

¡ 5z12v1u
4
1 ¡ 10z13v2

1u
3
1 ¡ 20v4v6u3v3

1u2
1 ¡ 2u4u6v3u5

1

‡ 6u2
6v1u5

1 ‡ 6…z11u2
3 ¡ 2z9v3u3†v2

1u
2
1 ‡ …3z7v2

3u3

¡ 3z6v3u2
3 ¡ z5v3

3†u3
1 …A13†

¿4 ˆ 15u2
0v

2
3u

4
3 ¡ 40u0v0v3

3u3
3 ‡ 15v2

0v
4
3u2

3 ‡ …¡10v0v2v
4
3u3

¡ 20u0u2v2
3u3

3 ‡ 10z1v3
3u2

3†u1 ‡ …10z1v2
3u

3
3

¡ 20v0v2v3
3u

2
3 ¡ 10u0u2v3u4

3†v1 ‡ …6z4v2
3u2

3 ¡ 4z3v
3
3u3

‡ z2v4
3†u2

1 ‡ 2…4z4v3u
3
3 ¡ 6z3v2

3u2
3 ‡ 4z2v3

3u3†v1u1

‡ …z4u
4
3 ¡ 4z3v3u3

3 ‡ 6z2v2
3u2

3†v2
1 ‡ …z7v3

3 ¡ 3z6v2
3u3†u3

1

¡ 3…3z6v3u2
3 ¡ 3z7v2

3u3 ‡ z5v3
3†v1u2

1 ¡ 10z13v3
1u

2
1

¡ 10z12v2
1u3

1 ¡ 3…z6u3
3 ¡ 3z7v3u2

3 ‡ 3z5v2
3u3†v2

1u1

‡ …z7u
3
3 ¡ 3z5v3u2

3†v3
1 ‡ 15u2

6v2
1u

4
1 ‡ 15v2

6v4
1u

2
1

‡ z10v2
3u4

1 ‡ 4…2z10v3u3 ¡ z11v2
3†v1u

3
1 ‡ 6…z10u2

3

¡ 2z11v3u3 ‡ z9v2
3†v2

1u2
1 ‡ z9u2

3v4
1 ¡ 4…z11u2

3

¡ 2z9v3u3†v3
1u1 ¡ 10v4v6u3v4

1u1 ¡ 10u4u6v3v1u4
1

¡ 40u6v6v3
1u3

1 …A14†

¿5 ˆ 20u2
0v

3
3u

3
3 ¡ 30u0v0v4

3u2
3 ‡ 6v2

0v
5
3u3 ‡ …5z1v4

3u3

¡ 2v0v2v5
3 ¡ 20u0u2v

3
3u

2
3†u1 ¡ 5z13v4

1u1 ¡ …10v0v2v4
3u3

‡ 20u0u2v2
3u3

3 ¡ 10z1v3
3u2

3†v1 ‡ …4z4v
3
3u3 ¡ z3v4

3†u2
1

‡ 2…6z4v2
3u2

3 ¡ 4z3v3
3u3 ‡ z2v4

3†v1u1 ‡ …4z4v3u3
3

¡ 6z3v2
3u2

3 ‡ 4z2v
3
3u3†v2

1 ¡ 20u4u6v3v
2
1u3

1 ¡ z6v3
3u3

1

¡ 3…3z6v2
3u3 ¡ z7v

3
3†v1u2

1 ¡ …z11u2
3 ¡ 2z9v3u3†v4

1

¡ 3…¡3z7v2
3u3 ‡ 3z6v3u2

3 ‡ z5v3
3†v2

1u1 ¡ …¡3z7v3u2
3

‡ z6u3
3 ‡ 3z5v2

3u3†v3
1 ‡ 4z10v2

3v1u
3
1 ‡ 6…2z10v3u3

¡ z11v2
3†v2

1u
2
1 ¡ 2v4v6u3v

5
1 ¡ 10z12v3

1u
2
1 ‡ …z10u2

3

¡ 42z11v3u3 ‡ z9v2
3†v3

1u1 ¡ 30u6v6v4
1u2

1 ‡ 20u2
6v3

1u3
1

‡ 6v2
6v5

1u1 …A15†

¿6 ˆ 15u2
0v

4
3u

2
3 ¡ 12u0v0v5

3u3 ‡ …¡10u0u2v
4
3u3 ‡ z1v5

3†u1

‡ 2…4z4v3
3u3 ¡ z3v

4
3†v1u1 ‡ …5z1v4

3u3 ¡ 2v0v2v5
3

¡ 20u0u2v3
3u2

3†v1 ‡ z4v
4
3u2

1 ‡ …6z4v2
3u

2
3 ¡ 4z3v3

3u3

‡ z2v4
3†v2

1 ¡ 3z6v3
3v1u

2
1 ¡ 3…3z6v2

3u3 ¡ z7v3
3†v2

1u1

¡ …¡3z7v2
3u3 ‡ 3z6v3u

2
3 ‡ z5v3

3†v3
1 ‡ v2

0v6
3

‡ 6z10v2
3v

2
1u

2
1 ‡ 4…2z10v3u3 ¡ z11v2

3†v3
1u1 ‡ …z10u2

3

¡ 2z11v3u3 ‡ z9v2
3†v4

1 ¡ 5z12v4
1u1 ¡ z13v5

1

¡ 20u4u6v3v3
1u

2
1 ‡ 15u2

6v4
1u

2
1 ¡ 12u6v6v5

1u1 ‡ v2
6v6

1

…A16†
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¿7 ˆ 2…¡v1v
2
3u2 ¡ v3

1u6 ‡ v2
1v3u4 ‡ v3

3u0†…3v2
3u3u0 ¡ v0v

3
3

¡ v2
3u2u1 ‡ v2

3v1v2 ¡ v3v2
1v4 ¡ 2v3v1u2u3 ‡ 2v3u4v1u1

¡ 3u6v2
1u1 ‡ v2

1u3u4 ‡ v3
1v6† …A17†

¿8 ˆ …v3
3u0 ¡ v2

3u2v1 ‡ v3u4v
2
1 ¡ u6v3

1†2 …A18†
and Áj , j ˆ 0 ; . . . ;6 are given by

Á0 ˆ u3u1…u2
3­ 1 ¡ u3­ 3u1 ‡ u2

1­ 5†2 …A19†

Á1 ˆ …u2
3­ 1 ¡ u3­ 3u1 ‡ u2

1­ 5†…­ 1v1u
3
3 ‡ 5­ 1v3u1u2

3

¡ 3­ 3v1u1u2
3 ¡ 3u3­ 3v3u2

1 ‡ 5u3v1u2
1­ 5 ‡ v3u

3
1­ 5†

…A20†

Á2 ˆ …3z8u
3
3u1 ¡ 12­ 3­ 5u

2
3u2

1 ‡ 10­ 2
5u3u3

1 ¡ 2­ 1­ 3u4
3†v2

1

‡ 10­ 2
1v2

3u
3
3u1 ‡ 3z8v

2
3u3u

3
1 ‡ …¡16­ 1­ 3v3u3

3u1

‡ 5­ 2
1v3u

4
3 ‡ 9z8v3u2

3u
2
1 ‡ 5­ 2

5v3u
4
1 ¡ 16­ 3­ 5v3u3u3

1†v1

¡ 12­ 1­ 3v
2
3u2

3u2
1 ¡ 2­ 3­ 5v

2
3u4

1 …A21†

Á3 ˆ …¡8­ 3­ 5u2
3u1 ‡ z8u3

3 ‡ 10­ 2
5u3u

2
1†v3

1 ‡ 10­ 2
1v3

3u2
3u1

‡ z8v
3
3u

3
1 ‡ …¡8­ 1­ 3v3u3

3 ‡ 9z8v3u
2
3u1 ‡ 10­ 2

5v3u
3
1

¡ 24­ 3­ 5v3u3u2
1†v2

1 ‡ …¡24­ 1­ 3v2
3u2

3u1 ‡ 10­ 2
1v2

3u3
3

‡ 9z8v
2
3u3u

2
1 ¡ 8­ 3­ 5v

2
3u

3
1†v1 ¡ 8­ 1­ 3v3

3u3u2
1 …A22†

Á4 ˆ …¡2­ 3­ 5u2
3 ‡ 5­ 2

5u3u1†v4
1 ‡ …3z8v3u

2
3 ¡ 16­ 3­ 5v3u3u1

‡ 10­ 2
5v3u

2
1†v3

1 ‡ 5­ 2
1v4

3u3u1 ‡ …¡12­ 1­ 3v2
3u2

3

‡ 9z8v
2
3u3u1 ¡ 12­ 3­ 5v2

3u2
1†v2

1 ‡ …10­ 2
1v3

3u
2
3

¡ 16­ 1­ 3v
3
3u3u1 ‡ 3z8v3

3u2
1†v1 ¡ 2­ 1­ 3v4

3u
2
1 …A23†

Á5 ˆ …­ 1v3
3u1 ‡ 5­ 1v1u3v2

3 ¡ 3v2
3­ 3v1u1 ‡ 5v3v2

1u1­ 5

¡ 3v3­ 3u3v2
1 ‡ u3v

3
1­ 5†…v2

3­ 1 ¡ ­ 3v1v3 ‡ ­ 5v2
1† …A24†

Á6 ˆ v3v1…v2
3­ 1 ¡ v3­ 3v1 ‡ v2

1­ 5†2 …A25†

Note that the expressions for ¿i, i ˆ 0 ; . . . ;8 and Áj ,
j ˆ 0 ; . . . ;6 above depend on the variables zk,
k ˆ 1 ; . . . ;14 and ul and vl , l ˆ 0 ;2 ;4 ;6, which are
given as

z1 ˆ 2…u0v2 ‡ v0u2† …A26†

z2 ˆ 2v0v4 ‡ v2
2 …A27†

z3 ˆ 2…u2v2 ‡ u0v4 ‡ v0u4† …A28†

z4 ˆ u2
2 ‡ 2u0u4 …A29†

z5 ˆ 2…v0v6 ‡ v2v4† …A30†

z6 ˆ 2…u0u6 ‡ u2u4† …A31†

z7 ˆ 2…u0v6 ‡ v0u6 ‡ u2u4 ‡ v2u4† …A32†

z8 ˆ ­ 2
3 ‡ 2­ 1­ 5 …A33†

z9 ˆ 2v2v6 ‡ v2
4 …A34†

z10 ˆ u2
4 ‡ 2u2u6 …A35†

z11 ˆ 2…u4v4 ‡ u2v6 ‡ v2u6† …A36†

z12 ˆ 2u4u6u3 ¡ 2…u4v6 ‡ v4u6†v3 …A37†

z13 ˆ 2v4v6v3 ¡ 2…u4v6 ‡ v4u6†u3 …A38†

z14 ˆ u3
3v0 ¡ u2

3v2u1 ¡ v6u3
1 ‡ u3v4u

2
1 …A39†

v0 ˆ a0v1 ; v2 ˆ 3a0v3 ¡ a2v1 ; v4 ˆ a2v3 ¡ 3a4v1

and v6 ˆ ¡a4v3 …A40†

u0 ˆ a0u1 ; u2 ˆ 3a0u3 ¡ a2u1 ; u4 ˆ a2u3 ¡ 3a4u1

and u6 ˆ ¡a4u3 …A41†
with u1, v1, u3 and v3 being given by equations (59), (60),
(62) and (63).

The de® nition of x and y implies that x2 ˆ 1 ¡ y2.
Thus, substituting x in x2 ˆ 1 ¡ y2 in (A9) leads to the
equation

½0y
16 ‡ ½1y

14 ‡ ½2y
12 ‡ ½3y10 ‡ ½4y8 ‡ ½5y

6 ‡ ½6y4

‡ ½7y2 ‡ ½8 ˆ 0 …A42†
where

½0 ˆ …¿0 ¡ ¿2 ‡ ¿4 ¡ ¿6 ‡ ¿8†2 ‡ …¿3 ¡ ¿1 ¡ ¿5 ‡ ¿7†2

…A43†
½1 ˆ …¿3 ¡ ¿1 ¡ ¿5 ‡ ¿7†…7¿1 ¡ 5¿3 ‡ 3¿5 ¡ ¿7 ‡ 2Á1

¡ 2Á3 ‡ 2Á5†‡ 2…Á2 ‡ ¿6 ¡ 2¿4 ¡ 4¿0 ¡ Á0 ‡ Á6

‡ 3¿2 ¡ Á4†…¿0 ¡ ¿2 ‡ ¿4 ¡ ¿6 ‡ ¿8† …A44†
½2 ˆ 2…Á2 ‡ ¿6 ¡ 2¿4 ¡ 4¿0 ¡ Á0 ‡ Á6 ‡ 3¿2 ¡ Á4†2

‡ 2…¡3¿1 ¡ 2Á1 ‡ ¿3 ‡ Á3†…¿3 ¡ ¿1 ¡ ¿5 ‡ ¿7†
‡ …3¿1 ‡ ¿5 ‡ Á1 ¡ 2¿3 ¡ Á3 ‡ Á5†…5¿1 ¡ 4¿3

‡ 3¿5 ¡ 2¿7 ‡ Á1 ¡ Á3 ‡ Á5†‡ 2…3Á0 ¡ 2Á2 ‡ ¿4

‡ Á4 ‡ 6¿0 ¡ 3¿2†…¿0 ¡ ¿2 ‡ ¿4 ¡ ¿6 ‡ ¿8† …A45†
½3 ˆ 2…3Á0 ¡ 2Á2 ‡ ¿4 ‡ Á4 ‡ 6¿0 ¡ 3¿2†…Á2 ‡ ¿6

¡ 2¿4 ¡ 4¿0 ¡ Á0 ‡ Á6 ‡ 3¿2 ¡ Á4†‡ 2…¿1 ‡ Á1†
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£ …¿3 ¡ ¿1 ¡ ¿5 ‡ ¿7†‡ 2…¡4¿0 ¡ 3Á0 ‡ ¿2 ‡ Á2†
£ …¿0 ¡ ¿2 ‡ ¿4 ¡ ¿6 ‡ ¿8† ¡ 2…3¿1 ‡ 2Á1 ¡ ¿3

¡ Á3†…4¿1 ¡ 3¿3 ‡ 2¿5 ¡ ¿7 ‡ Á1Á3 ‡ Á5†
¡ …3¿1 ‡ ¿5 ‡ Á1 ¡ 2¿3 ¡ Á3 ‡ Á5†2 …A46†

½4 ˆ …3Á0 ¡ 2Á2 ‡ ¿4 ‡ Á4 ‡ 6¿0 ¡ 3¿2†2

‡ …¡3¿1 ¡ 2Á1 ‡ ¿3 ‡ Á3†2 ‡ 2…¿1 ‡ Á1†
£ …4¿1 ¡ 3¿3 ‡ 2¿5 ¡ ¿7 ‡ Á1 ¡ Á3 ‡ Á5†
¡ 2…¡3¿1 ¡ 2Á1 ‡ ¿3 ‡ Á3†…3¿1 ‡ ¿5 ‡ Á1 ¡ 2¿3

¡ Á3 ‡ Á5†‡ 2…¿0 ‡ Á0†…¿0 ¡ ¿2 ‡ ¿4 ¡ ¿6 ‡ ¿8†
‡ 2…¡4¿0 ¡ 3Á0 ‡ ¿2 ‡ Á2†…Á2 ‡ ¿6 ¡ 2¿4 ¡ 4¿0

¡ Á0 ‡ Á6 ‡ 3¿2 ¡ Á4† …A47†
½5 ˆ 2…¿0 ‡ Á0†…Á2 ‡ ¿6 ¡ 2¿4 ¡ 4¿0 ¡ Á0 ‡ Á6 ‡ 3¿2

¡ Á4†‡ 2…¡4¿0 ¡ 3Á0 ‡ ¿2 ‡ Á2†…3Á0 ¡ 2Á2 ‡ ¿4

‡ Á4 ‡ 6¿0 ¡ 3¿2† ¡ 2…¿1 ‡ Á1†…6¿1 ¡ 3¿3 ‡ ¿5

‡ 3Á1 ¡ 2Á3 ‡ Á5† ¡ …¡3¿1 ¡ 2Á1 ‡ ¿3 ‡ Á3†2

…A48†
½6 ˆ 2…¿0 ‡ Á0†…3Á0 ¡ 2Á2 ‡ ¿4 ‡ Á4 ‡ 6¿0 ¡ 3¿2†

‡ …¡4¿0 ¡ 3Á0 ‡ ¿2 ‡ Á2†2 ‡ …¿1 ‡ Á1†
£ …7¿1 ¡ 2¿3 ‡ 5Á1 ¡ 2Á3† …A49†

½7 ˆ 2…¿0 ‡ Á0†…¡4¿0 ¡ 3Á0 ‡ ¿2 ‡ Á2† ¡ …¿1 ‡ Á1†2

…A50†
½8 ˆ …¿0 ‡ Á0†2 …A51†

It is worth noting that equation (A42) has
only even powers of y. This allows us to reduce the
equation degree providing we carry out the substitution
t ˆ y2, leading to the de® ning equation of set P3 (third
possibility) . Finally notice that the real roots of
(A42) between 0 and 1 are the only ones that can
actually be points of the domain for which ~J…r;³† may
attain its maximum since y ˆ sin ³ ˆ §

��
t

p
and

x ˆ cos ³ ˆ §
����������
1 ¡ t

p
. This completes the proof of

Theorem 2. &
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