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Design of causal reversed-frame-normalizing controllers using bicausal

expansions

J. C. BASILIO ‹ and B. KOUVARITAKIS ‹

Reverse-frame-normalizing controllers overcome the sensitivity problems of com-
mutative controllers and balance the tolerance of multivariable feedback systems to

input and output multiplicative unstructured uncertainty. They are, however, based

on the singular value decomposition of transfer function matrices and lead to
implementation di� culties on account of the irrational nature of the decomposition.

Realizable approximations can be derived through the use of least-squares frequency

response ® t algorithms, but these are either nonlinear or require an a priori de® nition
of the controller poles. In this paper we deploy a bicausal sequence representation for

the singular value decomposition and derive conditions that overcome anticausality

di� culties. This treatment leads to a characterization of the whole class of controllers
and proves that frequency response targets for the generalized Nyquist diagrams

cannot be de® ned arbitrarily. Finally we propose an algorithm for the systematic

trade-oŒbetween the objective of achieving normality and that of reaching speci® c
frequency response targets.

1. Introduction

The generalized Nyquist criterion (MacFarlane and Postlethwaite 1977) gives

necessary and su� cient conditions for the stability of linear multivariable systems and

provides the means for the analysis of multivariable closed-loop behaviour. A

corresponding approach to the design of multivariable controllers K(z) is made

possible through commutativity (MacFarlane and Belletrutti 1973) ; our interest in

this paper is in discrete time systems onlyÐ hence the use of z (rather than Laplace)

transforms. However, commutative controllers are based on eigenvector functions

which are irrational and therefore defy implementation. To overcome this di� culty it

is possible to use either constant approximations (MacFarlane and Kouvaritakis

1977), or causal power series approximations (Cloud and Kouvaritakis 1987). The

former leads to simple controllers but these are only approximately commutative and

are only useful over a limited range of frequencies, whereas the latter works well for the

case when eigenfunctions of the plant transfer function matrix G(z) have stable branch

points only. Recent work (Kouvaritakis and Basilio 1994) introduced the idea of an

eigenvector approximation by bicausal power series and thus proposed an eŒective

approach to the design of commutative controllers for the general case. These bicausal

series approximations are based on truncated Laurent series expansions of eigenvector

functions which are assumed to be analytic on an annulus including the unit circle

centred at the origin of the z plane. The advantage here is that, by increasing the length

of the truncated series, one can obtain approximations to the frequency response of

the eigenvector functions which are as accurate as desired.
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Eigenvalue sensitivity problems limit the practical value of commutative con-

trollers, especially in the case of skew eigenvectors. This problem does not arise if the

eigenvectors of G(z)K(z) are orthogonal, namely if G(z)K(z) is normal. Furthermore a

controller which achieved normality for G(z)K(z) and K(z)G(z) simultaneously would

have the eŒect of balancing the tolerance of the feedback system to both input and

output multiplicative unstructured uncertainty in G(z). These considerations form the

motivation behind the reverse-frame-normalizing controller (RFNC) design (Hung

and MacFarlane 1982).

RFNCs are based on singular values of vectors which, like eigenfunctions, lead to

implementation di� culties on account of their irrational nature. A possible way

around this is to derive the frequency response of an ideal (exact) RFNC and

approximate this in a suitable least-squares sense. The most general approach to this

approximation leads to a nonlinear algorithm which may run up against convergence

problems and may result in unstable controllers which do not satisfy the generalized

Nyquist criterion. These di� culties may be overcome if one is prepared to de® ne a

priori the controller poles, but this amounts to giving up design freedom which may be

needed for the attainment of the RFNC objectives : ® rstly normality and secondly

reaching pre-speci® ed frequency response targets for the generalized Nyquist diagrams

of G(z)K(z).

In this paper we introduce bicausal sequence representations for the singular

vector frames and derive conditions on the controller structure that overcomes

anticausality di� culties. On the basis of these we are able to design causal controllers

K(z) which achieve reverse frame alignment and hence ensure the normality of

G(z)K(z) and K(z)G(z). This analysis exposes some features of RFNC that were not

clear before, namely that frequency response targets for the generalized Nyquist

diagrams of G(z)K(z) cannot be de ® ned arbitrarily ; not all targets are achievable by an

exact or even approximate RFNC. We propose an algorithm which allows the

designer to reach a systematic comprise between the objective of achieving normality

and that of reaching particular frequency response targets. The superiority of the

proposed algorithm over the earlier algorithms (Hung and M acFarlane, 1982) is

illustrated by means of a numerical example.

2. Background

2.1. The quasi-Nyquist decomposition

We begin our exposition by introducing the quasi-Nyquist decomposition and to

start with we discuss the motivation behind ; for a somewhat diŒerent interpretation

the reader is referred to Hung and MacFarlane (1982). Let G ` Gm Ö m denote the value

of G(z) for some z ¯ exp ² i x T ´ , where T denotes the sampling interval and x is some

frequency and consider the eigenvalue and singular value decompositions of G given

as

G ¯ W K V ¯ W K (V Õ " ) Õ " (1 a)

(V Õ " ) Õ " W ¯ I
m

(1 b)

G ¯ X R Y * (2 a)

X *X ¯ I
m

(2 b)

Y * Y ¯ I
m

(2 c)

where ( \ )* denotes transposition and complex conjugation and in the case of unitary
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matrices, such as X and Y , is equivalent to inversion. Both decompositions have the

same structure in that G is expressed as the product of a matrix of column vectors, a

diagonal matrix and the inverse of a matrix of column vectors ; for convenience the

matrices of vectors will be referred to as frames and in particular W will be called the

eigenvector frame, whereas X and Y will be called the output and input singular vector

frames. There are two important diŒerences between these decompositions : ® rstly, the

input and output singular vectors form an orthonormal set of vectors, whereas the

eigenvectors do not ; secondly V Õ " is aligned with W (see (1 b)) whereas X and Y are not

since in general Y Õ " X ¯ Y * X 1 I
m

. On account of the alignment property the

eigenvalues of G contain information which determines closed-loop stability (through

the generalized Nyquist criterion), and on account of the orthogonality of X and Y the

singular value does not suŒer the sensitivity problems of eigenvalues. To put it another

way, R is not sensitive to perturbations on G but could be a long way away from K and

thus does not convey useful information about stability.

The ideal decomposition in this context then must retain the orthogonality

property but must at the same time optimize as far as possible the alignment property :

G ¯ P C Q* (3 a)

P*P ¯ I
m

(3 b)

Q*Q ¯ I
m

(3 c)

Q Õ " P ¯ Q*P E I
m

(3 d )

Equations (3 a), (3 b) and (3 c) combine with (2) to give

C C * ¯ [P*X ] R # [P*X ] Õ " (4 a)

C * C ¯ [(Y *Q)*] R # [(Y *Q)*] Õ " (4 b)

which therefore implies that

P ¯ X exp ² ® j U ´ , Q ¯ Y exp ² ® i W ´ , U ¯ diag ² u
i
´ , W ¯ diag ² w

i
´ , i ¯ 1, 2, ¼ , m

(5)

Introducing these into (3) we get
G ¯ X exp ² ® j H ´ C Y * (6 a)

Y *X exp ² ® j H ´ E I
m

(6 b)

where H ¯ U ® W .

Clearly H must be chosen so as to minimize the error in the alignment condition

(6 b) and an obvious way to choose it is to minimize the measure of `misalignment ’

de® ned below :

J
X ,Y

¯ min
H =diag ² h

i
´

s Y *X exp ² ® j H ´ ® I
m

s
#

(7)

where s \ s
#

denotes the spectral norm of a matrix. Rewriting (6) for the minimizing H ,

say H ! we derive the quasi-Nyquist decomposition :

G ¯ U C Y * (8 a)

U ¯ X exp ² ® j H ° ´ (8 b)

C ¯ exp ² j H ! ´ R (8 c)

It is interesting to note that, unlike R , C contains phase information and therefore is

suitable for use in a Nyquist type of approach ; this together with the arguments given

above justify the term quasi-Nyquist.
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2.2. The re Š ersed-frame-normalizing controller

The decomposition of (8) is written for one frequency only but can be written for a

general z on the unit circle as

G(z) ¯ U(z) C (z)Y *(z), C (z) ¯ diag ² c
i
(z) ´ , i ¯ 1, 2, ¼ , m (9)

Assume next that the input vector into G(z) is the output vector of a controller K(z)

such that the compensated transfer function matrix is Q(z) ¯ G(z)K(z), and let unity

feedback be applied around Q(z). To balance the tolerance of such a feedback system

to unstructured multiplicative input and output uncertainty on G(z), RFNCs seek to

equalize the singular values of [I
m

­ K(z)G(z)] Õ " and [I
m

­ G(z)K(z)] Õ " which can be

achieved if and only if G(z)K(z) and K(z)G(z) are both normal ; this in turn can be

achieved if and only if

K(z) ¯ Y(z) C
K

(z)U *(z) (10 a)

C
K

(z) ¯ diag ² k
i
(z) ´ , i ¯ 1, 2, ¼ , m (10 b)

where k
i
(z) are scalar transfer functions to be selected by the designer. The

decomposition of (10 a) is in fact a quasi-Nyquist decomposition because both Y and

U are unitary on the unit circle and at each frequency it is assumed that U ¯ X exp

² ® j H ! ´ where H ! is chosen so as to give the best possible alignment between Y and U .

Clearly K(z) results in a normal Q(z) ¯ U(z) C (z) C
K

(z)U *(z) ; this together with the fact

that the order in which Y and U appear in K(z) is the reverse of that of the quasi-

Nyquist decomposition of G(z) justify the term `reversed-frame-normalizing con-

troller ’ .

Y(z) can be shown to be the eigenvector matrix of G *(z)G(z) and hence in general

will be an irrational function of z ; furthermore, for m " 2, Y(z) will not be known

explicitly. Similarly U(z) depends on X(z) which can be shown to be the eigenvector

matrix of G(z)G *(z) and hence is subject to the same di� culties as Y(z) ; in addition to

this, H ! (z) depends on X(z) and Y(z) which are irrational and, for m " 2, H ° (z) will not

be known explicitly and can only be computed numerically at each frequency. Thus the

expression for K(z) in (10 a) de® es implementation. As a remedy to this Hung and

MacFarlane suggested that the ideal RFNC of (10 a) be computed at a suitably large

number of frequency points and a rational approximation K
a
(z) be found to give an

appropriate frequency response ® t. In particular let the K
a
(z) ¯ D Õ " (z)N(z) where D(z)

and N (z) are polynomial matrices and D (z) is given ; then the coe� cients of N(z) can

be computed so as to minimize a suitable measure of the error between the ideal

compensated Q
!
(z) ¯ U(z) C (z) C

K
(z)Y *(z) and G(z)K

a
(z) evaluated at a set of pre-

selected frequency points and added over such points :

J ¯ 3
n

i= "

s G(z
i
)D Õ " (z

i
)N(z

i
) ® Q

!
(z

i
) s #

F
(11)

where the subscript F denotes the Frobenius norm (with possible weighting) and z
i
¯

exp ² j x
i
T ´ with x

i
denoting the pre-selected frequencies. The above cost is quadratic

in each of the elements of the matrix coe� cients of N(z) and hence minimization can

be performed explicitly by solving stationarity conditions (which are linear).

The above algorithm presupposed knowledge of D(z). In general it is not obvious

how to best choose D(z), in which case it is necessary to include the coe� cients of D(z)
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into the minimization problem which now becomes nonlinear and therefore much

harder to solve and convergence to the global optimum may no longer be guaranteed.

More importantly one loses control over the position of the poles of K
a
(z).

3. Causal reversed-frame-normalizing controllers

3.1. Bicausal sequence representation of the quasi-Nyquist decomposition

Scaling G(z ) by d(z), the least-common-denominator polynomial de® nes the

numerator polynomial matrix N(z) ¯ d(z)G(z) but does not aŒect the vector frames

involved in the singular value and quasi-Nyquist decompositions :

N(z) ¯ X(z) R
N

(z)Y *(z) ¯ U(z) C
N

(z)Y *(z), R
N

(z) ¯ diag ² n
i
(z) ´ , C

N
(z) ¯ d(z) C (z)

(12)

where n
i
(z) denote the singular value functions of N(z) given by the square root of the

branches of the characteristic function, say c (z), of N *(z)N(z). It is noted that N(z)

does not have any poles and thus is more convenient for both analysis and the

computation of the frames X , Y and U .

Lemma 3.1 : Let x
i
(z) and y

i
(z) denote respecti Š ely the input and output principal

directions of N(z) associated with the ith singular Š alue n
i
(z). Then n

i
(z), x

i
(z) and y

i
(z)

admit bicausal expansions in terms of positi Š e and negati Š e powers of z of the form :

n
i
(z) ¯ 3

¢

k= !

n
ik

(zk ­ z Õ k), x
i
(z) ¯ 3

¢

k=Õ ¢
z

ik
z Õ k, y

i
(z) ¯ 3

¢

k=Õ ¢
y

ik
z Õ k (13)

which represents n
i
(z), x

i
(z) and y

i
(z) on the unit circle. Moreo Š er the sequences of

² 2n
i
!

n
i
"

, n
i
#

, ¼ ´ , ² x
i
!

, x
i
"

, ¼ ´ , ² x
i Õ "

, z
i Õ #

, ¼ ´ , ² y
i
!

, y
i Õ "

, ¼ ´ , ² y
i Õ "

, y
i Õ #

, ¼ ´ all con Š erge to zero.

Proof : This is as per Kouvaritakis et al. (1993, Theorem 3.2) except that here we have

removed the assumption that the characteristic function s (z) of N *(z)N (z) should have

no branch points on the unit circle and should not have any branch cuts that cross the

unit circle. The justi® cation for the latter is provided by Corollary 3 of Kouvaritakis

and Rossiter (1991) according to which no branch cut of s (z) can cross the unit circle

since the eigenvalues of N *(1)N(1) and N *( ® 1)N ( ® 1) are all real. Branch points, on

the other hand, are associated with non-simple Jordan forms (Cloud and Kouvaritakis

1987) and thus those of s (z) cannot exist on the unit circle because N *(z)N(z) is

hermitian for z ¯ exp ² j x T ´ , and hence has simple Jordan form. *

Lemma 3.2 : The ith column vector of the factor U(z) in the quasi-Nyquist

decomposition of N(z) (and hence G(z)) admits a bicausal expansion in terms of

positive and negative powers of z of the form

u
i
(z) ¯ 3

¢

k=Õ ¢
u

ik
z Õ k (14)

which represents u
i
(z) on the unit circle. Moreover the sequences of the coe� cients of

the causal and anticausal parts, ² u
i
!

, u
i
"

, ¼ ´ and ² u
i Õ "

, u
i Õ #

, ¼ ´ , converge to zero.

Proof : From (8 b) we have that u(z) ¯ x
i
(z) exp ² ® j h !

i
(z)] and by Lemma 3.1 we know

that x
i
(z) admits a bicausal expansion ; so it remains to show the same for f

i
(z) ¯
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exp ² ® j h %i
(z) ´ . By Laurent’ s theorem, f

i
(z) will have a bicausal representations whose

causal and anticausal sequences converge to zero if it is analytic inside an annulus

containing the unit circle. However, for z ¯ exp ² ® j x T ´ , f
i
(z) lies on the unit circles for

all x T ` [0, 2 p ) ; hence to prove analyticity all we need to do is to establish continuity,

but this is implied by the de ® nition of h ! and the continuity of X . *

The computation of the causal and anticausal sequences of Y(z) and U(z) can be

performed by a process of frequency sampling and inverse discrete Fourier

transformations as stated below.

Algorithm 3.1 :

Step 1. Let l ­ 1 and l denote the number of signi® cant elements in the sequence for

Y(z) and U(z) and assign a suitably large value to l .

Step 2. Let h(z) denote a particular element of either Y(z) or U(z) and evaluate h(z)

at points z
k

¯ exp ² ® j2 p k } (2 l ­ 1) ´ for k ¯ 0, 2, ¼ , 2 l and enter the results

in sequence as elements of a vector h# . Then obtain the inverse discrete

Fourier transform of h(z) by computing the vector

h ¯
1

2 l ­ 1
F *hW (15)

F is a (2 l ­ 1) ¬ (2 l ­ 1) matrix whose p ­ 1, q ­ 1 element is exp ² j2 p pq }
(2 l ­ 1)].

Step 3. Derive the anticausal sequence of h(z) by reversing the order of the last l

elements of h ; the causal sequence is given by the ® rst l ­ 1 elements (taken

in the order they appear).

Remark 3.1 : In theory l should be taken to be arbitrarily large, but in practice,

owing to the convergence to zero of both causal and anticausal sequences, this is not

necessary. As a consequence, however, this truncation will incur an error which of

course can be made as small as desired by increasing l . Henceforth all results stated for

® nite sequence will be true to within these truncation errors ; this fact will be assumed

and therefore will not be repeated in the sequel. *

The theoretical background and justi® cation for this algorithm are similar to those

given by Kouvaritakis and Rossiter (1991) for the computation of the bicausal

sequence representation of eigenvalue decomposition of transfer function matrices

and will not be repeated here.

3.2. Characterization of near causal re Š ersed-frame-normalizing controllers

From (10 a) it can be shown that the p, q element of the RFNC is given by

k
p , q

(z) ¯ 3
m

i= "

y
p , i

(z)u $i,q
(z)k

i
(z) (16)

where y
p , i

(z) and u
i,q

(z) denote the p, i and i, q elements of Y(z) and U(z) respectively.

Using the bicausal expansions of U(z) and Y(z) of Algorithm 3.1 and de® ning ® nite

Laurent expansions for k
i
(z), we may derive an expression for the bicausal expansion
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of k
p ,q

(z). Let k
p ,q

denote the vector of coe� cients of the bicausal expansion of k
p ,q

(z)

(taken in descending order of powers of z). Then (16) implies that

k
p ,q

¯ 3
m

i= "

C
ypi

C
u $iq

k
i

(17)

where k
i
is the vector of coe� cients in the bicausal expansion of k

i
(z) (again taken in

descending powers of z), and C
ypi

, C
u $iq

are lower triangular striped Toeplitz

convolution matrices formed out of the coe� cients of the bicausal expansions of

y
p , i

(z) and u $i,q
(z) respectively. In particular, assuming for simplicity and without loss

of generality that k
i
(z) share a common causal and anticausal length with U(z) and

Y(z), then C
ypi

` R ( ’
l + " )Ö ( %

l + " ), C
u $iq

` R ( %
l + " )Ö ( #

l + " ) and the i, j element ( j % i) of these

matrices is given by the (i ® j) ­ 1 element of the sequence of coe� cients in the

respective bicausal expansion of y
pi

(z) and u $iq
(z) (taken in order of descending powers

of z) or zero if (i ® j) ­ 1 " 2 l ­ 1. It is easy to show that the ® rst 3 l elements of k
p ,q

correspond to the coe� cients of the anticausal component in the Laurent expansion

of k
p ,q

(z), and this must be zero if k
p ,q

(z) is to be causal.

Theorem 3.1 : Let C +
yu $piq

denote the matrix formed out of the ® rst 3 l rows of C
ypi

C
u $iq

and let k ¯ [kT
"

, kT
#

, ¼ , kT
m

]T , then the RFNC of (10 a) will be causal if and only if

Mk ¯ 0
$

l m
(18 a)

M ¯

A

B

C+
yu $mll

]

C+
yu $

# " "

C+
yu $

" " "

C+
yu $

" " #

]
C+

yu $mlm

C+
yu $m # "

]

C+
yu D

# # "

C+
yu $

" # "

C+

yu d
" # #

]
C+

yu $m # m

I

I
I

I

I

C+
yu $mml

]

C+
yu $

# ml

C+
yu $ " ml

C+
yu $

" m #

]
C+

yu $mmm

C

D

(18 b)

Proof : This is a direct consequence of (17). *

Corollary 3.1 : The matrix M of Theorem 3.1 always possesses a kernel.

Proof : If G(z) is the minimum phase, then N Õ " (z) ¯ Y(z) C Õ "
N

(z)U *(z) will admit a

causal power series expansion. Thus choosing C
K

(z) ¯ C Õ "
N

(z) in (10 a) would result in

a causal RFNC ; clearly then the composite vector k of the coe� cients in the bicausal

expansions of the diagonal elements of C Õ "
N

(z) will satisfy (18 a) and will thus lie in the

kernel of M . The same arguments also apply in the general case (when G(z) may not

be the minimum phase) after N(z) has been scaled appropriately so as to ensure that

N Õ " (z) admits a causal expansion. *

The dimension of the kernel of M can be determined by the number of its zero

singular values ; however, in practice (owing to truncation errors) these will be small

but not exactly zero. Thus a practical way to de® ne a matrix representation Y
!

for the

kernel of M is as follows.

(i) Reorder the singular value decomposition of M such that its singular values

appear in non-increasing order.

(ii) Let m be the number of singular values which are less than or equal to a small

threshold value e .
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(iii) Form the matrix Y
!

comprising as its column vectors the last m input principal

directions of M .

Then any k written as a linear combination of the columns of Y
!

will satisfy the

condition

s M k s ¯ s X
!
R

!
a s % e s a s for k ¯ Y

!
a (19)

and so for su� ciently large l and su� ciently small e such k will provide a nearly exact

solution to (18 a) ; X
!

comprises the last m output principal directions of M whereas R
!

is the diagonal matrices whose diagonal elements are given by the last m singular values

of M .

Remark 3.2 : In practice, it is often the case that the singular values of M do not group

themselves naturally into two sets, according to whether their size is insigni® cant or

not ; the transition from signi® cant to insigni® cant singular values is not abrupt. Thus

the choice of the `correct ’ value for m can be ambiguous. It is noted that the larger the

value chosen for m , the more degrees of freedom are available for the choice of k ;

however, larger m imply larger e and this results in a larger (but hopefully still

insigni® cant) anticausal component in the RFNC of (10 a). For the purposes of

implementation, the anticausal component of K must be set equal to zero and the error

associated with this truncation will aŒect the degree of reversed-frame normalization

provided by K .

3.3. Design algorithm

Equations (9) and (10) combine to give

Q(z) ¯ G(z)K(z) ¯ U(z) C
Q
(z)U *(z), C

Q
(z) ¯ diag ² q

i
(z) ´ , q

i
(z) ¯ c

i
(z)k

i
(z),

i ¯ 1, ¼ , m (20)

where it is seen that the compensated transfer function matrix is normal (as intended)

and the q
i
(z) de® ne its eigenvalue functions since U *(z) ¯ U Õ " (z). Clearly then the

frequency response of the q
i
(z) de ® ne the characteristic loci of Q(z) and hence

determine the stability properties of the closed-loop system. The objective of K(z)

therefore, over and above the achievement of normality, is to shape the gain and phase

characteristics of q
i
(z).

To explore the relationship of q
i
(z) to k

i
(z) or indeed to the vector of degrees of

freedom a we may write

q
i
(z) ¯ c

i
(z) u (z)k

i
, u (z) ¯ [z l , z l Õ " , ¼ , z Õ t ] (21)

from which we have

q(z) ¯ C (z) U (z)k ¯ C (z) U (z)Y
!
a , U (z) ¯ diag ² u T (z), u T (z), ¼ , u T (z) ´ (22)

Then invoking this condition at pre-selected points z
i
, i ¯ 0, 1, ¼ , n ® 1, on the unit

circle, say z
i
¯ exp ² ji2 p } n ´ , we get

qW ¯ W a (23 a)

U ¯

A

B

C (z
"
) U (z

"
)Y

!

C (z
!
) U (z

!
)Y

!

]
C (z

n Õ "
) U (z

n Õ "
)Y

!

C

D

(23 b)
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Remark 3.3 : Equation (23) highlights the dependence of the achievable frequency

response for q
i
(z) on a and suggests a systematic approach for the design of a : choose

target transfer functions for the q
i
(z) and enforce (23) at the pre-selected set of

frequencies. Given that the dimension of a is m it follows that, in general, (23) cannot

hold true for n " m } 2, since a is real and q# is complex. However, to avoid aliasing, and

hence undesirable frequency intersample behaviour, n " l
q
­ 1, where l

q
is de® ned in

the same way as l but is based on the inverse Fourier transforms of the targets q
i
(z)

rather than the quasi-Nyquist decomposition of N(z). The implication of this is that

(23) should have more than 2m( l
q
­ 1) equations, and in general this will be larger than

the number of available degrees of freedom m ; hence, for a general set of q
i
(z), (23) will

not have an exact solution. An alternative statement of this aspect is that target

frequency responses for q
i
(z) cannot be de® ned arbitrarily and indeed the totality of

achievable frequency responses is de® ned by the range space of W . *

The relative error between achievable and desired frequency responses given by

g
i
(z

l
) ¯

q
i
(z

l
) ® c

i
(z

l
) u T (z

l
)Y

!
a

q
i
(z

l
)

¯ 1 ®
c

i
(z

l
) u T (z

l
)Y

!
a

q
i
(z

l
)

, l ¯ 0, 1, ¼ , n ® 1 (24)

suggests that a sensible way to choose a is oŒered by the following minimization

problem :

min
a

Ja ¯ min
a

s 1 ® N a s (25 a)

N ¯

A

B

C Õ "
Q

(z
"
) C (z

"
) U (z

"
)Y

!

C Õ "
Q

(z
!
) C (z

!
) U (z

!
)Y

!

]
C Õ "

Q
(z

n Õ "
) C (z

n Õ "
) U (z

n Õ "
)Y

!

C

D

(25 b)

where 1 is a vector of ones of conformal dimension, and C
Q
(z

l
) ¯ diag ² q

"
(z

l
), ¼ ,

q
m

(z
l
) ´ . Then the optimal choice of a is as given below.

Theorem 3.2 : The Š ector k of coe� cients for the bicausal expansions of the quasi-

Nyquist functions k
i
(z) of the RFNC K(z) of (10 a) which minimizes the euclidean norm

of the Š ector of relati Š e errors between desired characteristic loci for G(z)K(z) and

achie Š able frequency responses e Š aluated at z
i
¯ exp ² ji2 p } n ´ , i ¯ 0, 1, ¼ , n ® 1 is gi Š en

by

k ¯ Y
!
a ¯ Y

!
2 ( N * N ) 2 ( N * 1) (26)

where N is as de® ned in (25 b).

Proof : This follows from the stationarity conditions of the minimization problem

(25 a). *

Apart from suggesting an optimal solution for a , Theorem 3.2 also gives a measure

of the `achievability ’ of the chosen characteristic loci targets. The di� culty here lies in

the fact that K(z) must not only achieve these targets but also must aim at normality

of G(z)K(z) and K(z)G(z). Herein can be found the contribution of Theorems 3.1 and

3.2 ; the former characterizes the restrictions placed on K(z) on account of the

requirement for normality whereas the latter gives a measure of how close to targets

one can get, given the restrictions imposed on K(z). These two theorems suggest a

systematic way for reaching a compromise between the two con¯ icting objectives of
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normality and target attainment ; the size of the threshold value of e controls the

accuracy with which K(z) achieves normality, whereas the accuracy of target

attainment is controlled by how large m is chosen to be. The con¯ icting nature of the

two objectives is exposed by the fact that target attainment in general requires large m

whereas normality requires e to be small ; yet clearly small e normally implies small m .

Thus, for example, in cases where the uncertainty in G(z) is large and the requirement

for normality is paramount, Theorem 3.1 suggests that m must be chosen to be small,

and then Theorem 3.2 provides guidance with respect to the de ® nition of achievable

targets. Given that in general the choice of targets is by no means unique, guidance of

this sort is clearly of practical importance.

4. Design study

Consider the continuous-time linear model of an automobile gas turbine and the

target transfer functions studied in Hung and M acFarlane (1982) which through the

use of the bilinear transform s ¯ (z ® 1) } (z ­ 1) gives the frequency response equivalent

discrete-time model :

G(z) ¯
1

d(z)
N(z) ¯

1

d(z) 9 n " "
(z) n

" #
(z)

n
# "

(z) n
# #

(z) :
q

"
(z) ¯

5(1 ­ z Õ " )

1 ® z Õ "

q
#
(z) ¯

4 ± 5455(1 ­ z Õ " ) #

(1 ® z Õ " )(1 ­ 0 ± 8182z Õ " )

n
" "

¯ [1 ± 4652 4 ± 0590 2 ± 4925 ® 2 ± 6178 ® 4 ± 1190 ® 1 ± 4851 1 ± 0928 1 ± 4590 0 ± 2998

® 0 ± 3030 ® 0 ± 1104 0 ± 0087 ® 0 ± 0002]

n
" #

¯ [0 ± 2690 1 ± 1520 2 ± 0358 1 ± 4559 ® 0 ± 3837 ® 1 ± 2588 ® 0 ± 6696 ® 0 ± 0409 0 ± 1308

0 ± 1002 0 ± 0250 ® 0 ± 0021]

n
# "

¯ [0 ± 4100 1 ± 4219 2 ± 1296 1 ± 5818 0 ± 0118 ® 1 ± 1266 ® 0 ± 9928 ® 0 ± 2966 0 ± 1469

0 ± 1697 0 ± 0411 ® 0 ± 0034 0 ± 0001]

n
# #

¯ [2 ± 0165 6 ± 1789 7 ± 0692 3 ± 2754 ® 1 ± 2009 ® 3 ± 5151 ® 2 ± 7039 ® 0 ± 5543 0 ± 5359

0 ± 4359 0 ± 0955 ® 0 ± 0082 0 ± 0002]

d ¯ [1 1 ± 7084 ® 0 ± 0163 ® 1 ± 4869 ® 0 ± 9799 0 ± 0265 0 ± 5576 0 ± 2674 ® 0 ± 1067

® 0 ± 0600 0 ± 0069 ® 0 ± 0002 0 ± 000 003]

It is noted that the above targets are not analytic on the unit circle and thus cannot be

represented by the Laurent expansions proposed earlier ; to overcome this di� culty

the 1 ® z Õ " term present in q
"
(z) and q

#
(z) will be removed from the targets and will be

included in d(z) instead.

The bicausal expansions for the U(z) and Y(z) of this model, computed after

suitable diagonal unitary scaling, are shown in Figs. 1 and 2 and the 118 singular

values of the corresponding M matrix of (18) are shown in Fig. 3 from which it is seen

that m should be chosen to be 58 or less. If reversed-frame alignment and normality are

a high priority, however, then m should be chosen to be considerably less. Thus setting

e ¯ 0 ± 002 it is found that m ¯ 4 (the 114th and 115th singular values of M are 0 ± 0021



Re Š ersed-frame-normalizing controller design 11

Figure 1. Coe� cients of the bicausal expansion of U(z).

Figure 2. Coe� cients of the bicausal expansion of Y(z).

Figure 3. Singular values of M .
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Figure 4. Coe� cients of the polynomials of the numerator matrix of the controller transfer

function.

Figure 5. Percentage error between desired and achieved characteristic loci of Q(z) :
( ± [ ± ), from Hung and MacFarlane (1982) ; ( Ð Ð ), causal RFNC.

and 0 ± 0012) and for this m the optimal choice for a of Theorem 3.2 result in a RFNC

which gives a Q(z) ¯ G(z)K(z) with J
X ,Y

! 0 ± 008 (for all frequencies) and Ja is 7 ± 7428.

The implication of these ® gures is that such a K(z) attains near normality (as measured

by J
X ,Y

) but gives very poor target attainment. In order to improve the latter, m is

increased to 58 and K(z) is recomputed ; the causal sequence expansion of this K(z) is

shown in Fig. 4. As expected, the increase in m results in much better target attainment

(the new value for Ja is 0 ± 8984) but this is achieved at the cost of normality (the new

value for J
X ,Y

% 0 ± 15 and in fact J
X ,Y

! 0 ± 03 for all x such that x T ! 2 p } 3). It is

interesting to note that this controller outperforms the better of the two controllers

proposed by Hung and MacFarlane (obtained by the nonlinear optimization problem

described in � 2) in both respects (normality and target attainment) as illustrated in

Figs 5 and 6. For completeness, the design study is concluded by performing some

closed-loop time-response simulations, the results of which are shown in Fig. 7 ; Fig.

7 (a) shows the response of outputs 1 and 2 to a unit step demand on output 1, whereas
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Figure 6. Value of J
X ,Y

for Q(z) ¯ G(z)K(z) ; ( ± [ ± ), from Hung and MacFarlane (1982) ;

( Ð Ð ), causal RFNC.

Figure 7. Closed-loop step responses of outputs 1 and 2 to (a) the reference [1, 0] and (b) the

reference [0, 1], where calibration of the x axes corresponds to the number of sampling
instants.

Fig. 7 (b) shows the corresponding responses to a unit step demand on output 2.

Clearly the responses are satisfactory ; they are fast, displaying no steady-state error

and only a limited amount of overshoot, and they are largely non-interactive.
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