INT. J. CONTROL, 1994, voL. 59, No. 5, 1173-1189

Bi-causal eigenvector sequences and the design of causal
commutative controllers

B. KOUVARITAKISY and J. C. BASILIOt

The use of Laurent power series expansions of the eigenvector matrix of a
linear multivariable transfer function matrix G(z) holds the key to the physical
realization of commutative controllers. [n general, however, such controllers
would be anti-causal. It is the purpose of this paper to show that there are
enough degrees of freedom in the choice of the controller eigenfunctions both
to effect gain/phase compensation of the frequency response of the eigenfunc-
tions of G(z), and to force the resulting control law to be causal. The results of
the paper are shown to be superior to those possible through the use of
approximate commutative controllers proposed earlier.

1. Introduction

In accordance with the generalized Nyquist criterion (MacFarlane and
Postlethwaite 1977), a multivariable discrete-time system with open-loop transfer
function matrix G(z) will be stable under unity feedback if and only if the
generalized Nyquist diagram of G(z) gives the prerequisite number of critical
point encirciements. The generalized Nyquist diagram comprises a set of plots,
the ‘characteristic loci’, defined as the frequency response plots of the eigenfunc-
tions of G(z), gfz). i=1, 2, ..., m; m denotes the number of system inputs
(assumed to be equal to the number of outputs). Over and above their use in
assessing absolute stability margins, the characteristic loci can also be used to
assess relative stability margins. The arguments underpinning this property are
based on analyticity/conformality and are exactly the same as the arguments
used in the case of scalar systems. It is not surprising therefore that, in this
context, the ability to adjust the gain/phase characteristics of the characteristic
loci has a key role to play in design.

From the theory of algebraic functions of a complex variable it is known that
gi(z) for i=1, 2, ..., m, viewed as the branches of the characteristic gain
function g(z) which satisfies the equation det[g{z)! — G(z)] =0, are analytic
and locally distinct everywhere except at branch points. Thus, everywhere
except at branch points, G(z) will have a complete set of m linearly independ-
ent right eigenvectors w;(z) and dual left eigenvectors pj(z), for i=1,2, ..., m
so that

G(z) = T gil@)wl2)ui(z) = W(2)Ag(2)V(2) ey
i=1
where W(z) denotes the eigenvector matrix of G(z) comprising w;(z) as its

column vectors, and V(z) = W™!(z) is the matrix comprising p}(z) as its row
vectors; implicit in the above is the assumption that the eigenvectors have been
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scaled appropriately so that pi(z)w;(z) = 1. Equation (1) suggests an elegant
approach (MacFarlane and Belletrutti 1973) to the design problem, namely the
determination of a pre-compensator K(z) that enables the systematic adjustment
of eigenfunctions:

m

K(2) = D ki(2)wi(2)ui(z) = W(2)Ax(2)V(z) ()

i=1

where ki{(z), i=1, 2, ..., m, denote the eigenfunctions of K(z). It is easy to
show that the eigenfunctions ¢{z) of the compensated open-loop transfer
function matrix Q(z) = G(z)K(z) are those of G(z) multiplied by the cor-
responding eigenfunctions of K(z), namely that ¢(z) = gi(z)ki(z); it is assumed
that g{z) and k;(z) share the eigenvector w;(z) in common. This controller is
called a commutative controller because it commutes under multiplication with
G(z). Despite its theoretical convenience this approach presents some practical
difficulties: (i) for /m > 2, in all but very special cases W(z) and V(z) will not be
known explicitly; (ii) in general W{z) and V(z) are irrational functions of z.

To circumvent these difficulties, earlier work (MacFarlane and Kouvaritakis
1977) proposed the use of approximate commutative controllers (ACC), which
have the structure shown in (2) but with W{z) and V(z) replaced by W, and
V., respectively; W, and V, are two matrices of real constants chosen to
approximate, in a suitable sense, W(z) and V(z) at some prescribed frequency
wo. This scheme yields controllers that are easy to implement; however,
commutativity is now only approximate and is limited to a range of frequencies
about wy. As a result g;(z) is only approximately equal to gi{z)k,(z) for
frequencies close to wy.

Subsequent work (Cloud and Kouvaritakis 1987) tackled this problem by
introducing causal power series approximations W, (z) and V,(z) in place of W,
and V,. It can be shown that, if all branch points of the characteristic gain
function g(z) are stable, then the sequences of the matrix coefficients of such
power series are convergent, and hence the resulting approximate commutative
controller can be made to commute with G(z} (on the unit circle) to within any
desired degree of accuracy simply by including higher powers of z™' in W,(z)
and V,(z); for this reason, the controllers derived in this manner are referred to
as approximately exact commutative controllers (AECC). In the case of unstable
branch points, however, the sequences of coefficients diverge and truncation
becomes necessary. The theory of asymptotic expansions (Murray 1974, Kou-
varitakis er al. 1990} can be invoked in order to determine the optimal level of
truncation, and to stipulate upper bounds on the error of approximation. The
commutative controllers derived in this way, though no longer approximately
exact, are much superior to the approximately commutative controller; they give
a higher degree of commutativity over a wider range of frequencies.

To obtain (nearly) exact commutativity in the case of unstable branch points,
it is necessary to use bi-causal power series representations Wy.(z) and Vy,{z)
for W(z) and V(z). It can be shown (Kouvaritakis and Rossiter 1991) that so
long as no branch point of G(z) lies on the unit circle and that no branch cut
crosses the unit circle, the sequence of matrix coefficients, both for the causal
and anti-causal part of the eigenvector representation, are convergent; therefore,
the controller indicated by (2) with Wy.(z) and Vy.(z) in place of W, and V,
can be made to commute with G(z) (on the unit circle} to within any desired
degree of accuracy. This type of controller will be referred to as a nearly exactly
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commutative controller (NECC). In general, such a controller would be anti-
causal and could not be implemented in real life. It is the purpose of the present
paper to show that this need not be so, even if Ag(z) itself is chosen to be an
anti-causal operator. This counter-intuitive innovation introduces extra degrees
of freedom which can be given up in order to ensure that the overall controller
both (i) is causal; and (ii} can be used for the systematic gain/phase adjustment
of the characteristic loci of G(z) over all frequencies.

A brief review of the mathematical background to the power series represen-
tations of eigenfunctions and eigenvector functions is given in § 2, and necessary
and sufficient conditions for the causality of commutative controllers are
derived; this is done for the 2 X 2 case first, and is subsequently extended to the
general m X m case. The implied characterization of the degrees of freedom of
commutative controllers is exploited in § 3, where an algorithm is given for the
systematic adjustment of the gain/phase characteristics of generalized Nyquist
diagrams. The superiority of the results of the paper over those possible through
the use of other forms of commutative controllers is illustrated, by means of a
design study, in § 4. Finally, the conclusions of the paper are drawn in § 5.

2, The conditions for commutativity and causality
2.1. Mathematical preliminaries

Multiplication of a matrix by a scalar does not affect the eigenvectors of the
matrix. It is convenient here to multiply G{z) by the least common denominator
of all the elements of G(z) in order to get N(z) = d(z)G(z) and examine the
eigen-properties of the numerator polynomial matrix N(z) instead of G(z). The
main advantage of this is that the only singular points of n(z), the characteristic
gain function of N(z), are branch points; the same observation therefore applies
to the eigenvector functions of N(z) (which of course are also eigenvecter
functions of G(z}) as well. Then by an appropriate application of Laurent’s
theorem and a suitable form of the inverse sampling theorem we may state
{Kouvaritakis and Rossiter 1991) the following theorem.

Theorem 2.1:  [f the unit circle (centred at the origin of the z-plane) does not go
through any branch points of n(z) and does not cross any branch cuts, then each
branch n(z), i=1, 2, ..., m, has a distinct Laurent expansion for which the
sequence of coefficients {ng, ny, na, ...} of powers of z7! and the sequence of
coefficients {n_;, n_3, ...} of powers of z, both taken in ascending order, will
converge to zero. Furthermore if i) denotes the vector of the sampled frequency
response of niz), whose kth element is nj(exp (jk2r/2u+ 1)) for k=0, 1, 2,
..., 2H, then to within aliasing errors the causal and anti-causal sequences of
coefficients are defined by

B = T__ 1 %50

n' =lng, my, .., N, Ry By e ey Bq]t = ———F*id 3
[ 0 1 u u p+l 1] 2” 1 ( )

where F is the (Qu+ 1) X 2u+ 1) matrix whose p+1, g+ 1 element is

exp(—jpq2n/(2u+ 1)) and where (-)* denotes transposition and complex conju-

gation. The aliasing error in the inverse sampling process described in (3) tends

to zero as u becomes arbitrarily large.



1176 B. Kouvaritakis and J. C. Basilio

Proof: See Kouvaritakis and Rossiter {1991). O

Over and above the convergence of the causal and anti-causal sequences of
coefficients in the Laurent expansion of n)(z), the theorem above prescribes an
efficient means for the computation of these sequences: sample n{)(z) at 2u + 1
equispaced points around the unit circle, introduce the vector of sampled values
into (3} to get a vector whose elements initially assume some finite (non-zero)
values, then tend to zero and then rise to some finite non-zero values. For
convenience, implicit in the theorem above is the assumption that the number of
significant terms in the strictly causal (i.e. n;, n;, ..., n,) and anti-causal
sequences are the same. In practice this will differ depending on the proximity
of the stable and unstable branch points to the unit circle. So, for example, if
the unstable branch points are much further away from the unit circle than the
stable ones, then the anti-causal sequence will converge to zero much faster than
the causal sequence. As a result the tail of the anti-causal sequence, say the last
v terms, will be negligibly small. In such an instance, therefore, one need only
sample at 2u + 1 — v points around the unit circle and then use (3) to obtain the
causal sequence by considering the first u+ 1 elements of n{?, and use the
remaining elements to form the anti-causal sequence. For clarity of exposition,
and without loss of generality, in what follows all causal sequences will be taken
to be p + 1 long and all strictly anti-causal sequences will be taken to be u long.

The eigenvectors of N(z) share the same branch points and branch cuts with
the eigenfunctions n(z) (and indeed are defined on the same Riemman
surface}. Therefore, the convergence properties of Theorem 1 can also be
asserted with respect to W(z) and V(z), whereas the inverse sampling pro-
cedure for computing the causal and anti-causal sequences of coefficients could
be applied to the individual elements of W(z) and V(z). As a result, the
eigenvector matrices of N(z) can be represented in terms of the bi-causal power
series.

H 7
Wee(z) = > Wiz™* and Vi(z) = 3 Viz™* 4
k=—p : k==p

Unlike eigenfunctions, which are unique, eigenvector functions are subject to an
arbitrary scaling factor. It is possible to choose this with the view to minimizing
and balancing the length of the anti-causal component in w;(z) and the
corresponding v (2); algorithms for achieving this can be found in Kouvaritakis
et al. (1990), and Rossiter and Kouvaritakis (1991). For our purposes here, the
choice of scaling factors is not of particular interest; we will however assume
that, whatever the eigenvector scaling used is, it results in continuous and
smooth frequency response plots for the elements of W(z) (and hence those of
V(z)). Under such circumstances, u can be chosen to be large enough so that
the controller

K(z) = Wp(2)Ak(2)Vie(2) (5)

can be made to commute, to within any degree of accuracy, with G(z) anywhere
on the unit circle; this, after all, is the justification for the term nearly exact
commutative controller (NECC).

The problem with (5), however, is that in general, for an arbitrary choice of
Ag(2), the implied NECC would be anti-causal. Yet if Ax(z) where chosen to
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be, say [Ag(z))', with i any positive integer, then the NECC would be (to
within truncation errors) equal to G'(z) and hence would be causal. Indeed,
taking the eigenfunctions of K(z) to be f(gi(z)), where f(:) is any function that
is analytic inside the unit disc, would result in a causal NECC. Thus, there exists
a whole family of Ag(z) for which K(z) is causal and for the purposes of
design, therefore, what is needed is a characterization of the available degrees of
freedom in the choice of the controller eigenfunctions. We begin by considering
the 2 x 2 case first. This is done for two reasons: (a) clarity of exposition; (b) in
the 2 x 2 case it is possible to state the conditions for causality directly in terms
of the individual elements of N(z}).

2.2. The characterization of causal exact commutative controllers for the 2 X 2
case
Let ny for i, j=1, 2 denote the elements of N(z), and let D denote the
discriminant of the characteristic equation of N(z). Then it is easy to show that
the eigenvector and dual eigenvector matrices of N(z) can be written as
_|nu—nn+VD ny-—np-VD |
W(Z) - H
2n21 2)121

V(z) =

2”121 —Ny + L) + \/B] (6)

1
anyVD |:_2"21 nn - nyp + VD

so that with k,(z) and k,(z) as eigenfunctions, the corresponding commutative
controller could be written as

ki(z) + Ja(2)

K(z) = 5 -
+ k1(z) = ka(2) [nyy(2) — nylz) 2n5(z)
2D 2ny,(z) —(n1(z) = nn(2))

Thus we may state the following result.

Lemma2.1: A 2 X2 commutative controller with eigenvalues k,(2) and ky(2)

will be causal if and only if [ki(z) + k2(2)] and [k((z) — ko{2))/V D are both
analytic outside the unit disc.

Proof: The requirement for causality is equivalent to insisting that K(z) should
have a Maclaurin expansion in negative powers of z, namely that K(z) be
analytic outside the unit disc. Therefore, consideration of the off-diagonal
elements implies that [k,(z) — k(z)]/V' D must be analytic outside the unit disc
and, subsequently, consideration of the diagonal elements implies that
[%,{z) + ko(z)] must also be analytic outside the unit disc. The sufficiency of
these conditions for the causality of K(z) is obvious. ]

In the special case when the characteristic function n(z) of N(z) has only
stable branch points, the conditions of Lemma 2.1 would be satisfied for any
ki(z) and k,(z) which are analytic outside the unit disc. In such a case, as
explained earlier, the commutative controller of (7) can be implemented as an
approximately exact commutative controller using the power series eigenvector
approximations W,(z) and V,(z). In the general case, however, there will
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be a number of unstable branch points, say 2y.; this number will be even
because of the assumption made that no branch cuts of n(z) should cross the
unit circle. Thus, for this case the discriminant D will factorize as
D = [D_(2)][z~®* D, (z)], with the zeros of D_(z) all lying inside the unit
disc and all the 2y, roots of D.(z) lying outside the unit circle. Accordingly,
the 1/VD term in (7) will be given by the product [1/VD_(2)]|[z"*/V D (2)]
whose first and second factors admit, respectively, a causal and anti-causal
power series expansion. Furthermore, the term 1/VD,(z) itself admits an
anti-causal expansion and hence we are led to the following result.

Lemma2.2: A 2 X2 commutative controller will be causal if, and only if, its
eigenfunctions k\(z) and k,(z) can be written as

ki(z) = fi{z) + ()27 VDL(2); kr = filz) — ()27 VD (2) (8)

where f(2) and f3(z) are any two function which are analytic outside the unit
disc. :

Proof: The sufficiency of the result is obvious from (7), whereas the necessity
follows from the fact that k;(z) — k;(z) must have VD,(z)/(z?*) as a factor
and the fact that k(z) + k,(z) must be analytic outside the unit disc. O

For the purposes of implementation, rather than use (8) it is possible to use
power series representations in terms of negative powers of z for f(z) and f>(z)
and positive powers of z for VD, (z):

fizy=ag+a;z7t + -+ a,27% fH(2)=bog+ bz + - 4 bgzF }
27V DL(z) = d_“z“*d_,,Hz"_' + o +djz+dy+dizV -+ d, 277
9a,b,c)

and then perform the convolutions implied by (8); as explained earlier, u can be
chosen to be large enough so that (9 ¢) holds with an equality sign to within any
desired degree of accuracy, whereas the positive integers « and § can be chosen
to be large enough so that fi(z) and f;(z) represent any general functions
analytic outside the unit disc (to within any desired accuracy). Note that the
coefficients d_;, i =1, 2, ..., u, can be obtained by an inverse discrete Fourier
transformation, similar to that used in Theorem 2.1. These observations com-
bine to give the following result.

Theorem 2.2: Consider Laurent expansions of the eigenfunctions k,(z) and ky(z)
which are truncated after the z! and z7* term, and let k| and k, be the vectors
formed out of the coefficients (taken in descending order of powers of z) of the
Laurent expansions of ki(z) and k,(z). Then, to within truncation errors, in the
2 x 2 case the NECC defined by eqns. 4 and 5 will be causal if, and only if

L _[E Cp, 8 )
&, | E ~Cp,

Oll
E = el and 8 = h
___Ip+l.,u+l iz ]

where (10)
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The vectors fi and f; comprise the coefficients (taken in descending order) of the
expansions for fi(z) and f>(z) given in (9a), (9 b); without loss of generality it
has been assumed that o=y, and f=pu—y,. The matrix Cp_ is a lower
triangular striped Toeplitz matrix of dimension (2u+ 1) X (u+ 1) formed out of
the coefficients d;, i = —p, —u+1, ...0,1, ..., v, of the Maclaurin expansion
for z7*)VD (z) of (9¢).

Proof: This result is a restatement of Lemma 2.2 with convolutional sums being
replaced by ‘matrix-by-vector’ multiplications. O

Corallary 2.1:  The block matrix in (10 a) is full rank and hence the dimension,
2(u+ 1) — v, of the vector 8 of Theorem 2.2 defines the number of degrees of
freedom in the choice of the eigenfunctions of causal NECCs.

Proof: Let C; and C, be the matrices formed, respectively, out of the first u
and the last g + 1 columns of Cp_ . Then it is easy to show that the block matrix
in (10 a) can only be rank deficient if two non-zero vectors, u; and K, exist
such that Cyu; =0, u; = —Cyu; and u; = Cyu,. But these conditions can only
hold true if u, = y; = @, because by construction C, has an upper triangular
striped form and is full rank. |

Theorem 2.2 gives a complete characterization of the class of 2 X 2 causal
NECC and the section below gives a numerical illustration of the salient features
of the theorem.

2.3, A 2 X 2 numerical example

To facilitate comparisons between the present NECC work, and the earlier
AECC work we shall base our numerical illustrations on the same transfer
function matrix, G(z) = N(z)/d(z) considered by Cloud and Kouvaritakis
(1987). This is given in terms of the vectors n,,, Az, H2i, Hy, and d of the
coefficients of the numerator and common denominator polynomials of G(z) as:

ny = [0,0-768, —2-222,1-129, 2.308, -2-464, —0-5, 1-:371, —-0-174, —0:315,
0-079, 0-03, —0-009, —0-001, 0-0002, 0-000003]

#ay; = [0,0-111, —0-083, —0-431, 0-447, 0-429, —0-607, —0-09, ¢-304, —-0-037,
-0-06, 0-013, 0-004, —0-001, —0-0001, 0-00002]

mn = [0, -0-126,0-376, —0-015, —0:815, 0-445, 0-628, —0-463, —0-222, 0-189,
0-037, —0-0328, —0-0022, 0-002, —0-0001]

an = [0,0:499, —1-287,0-415, 1-42, —1-092, —0-477, 0-635, 0-006, —0-156,
0-024, 0-018, —0-004, —0-001, 0-0001]

d = [1, —4-546,7-249, —2-8381, —4-825, 5-628, —0-629, —1-914, 0-86,

-0-158, —0:17, 0-017, 0-009, ~0-002, 0-0001]

For this example, the discriminant of the characteristic equation of N(z) has two
unstable branch points (i.e. y, = 1) which are given by the roots of

D.(2) = (z — 11-986)(z — 1-7682)

and the corresponding expansion for z-"")V/D_(z) is given as
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—0-0001z° — 0-0003z% — 0-0006z7 — 0-0012z° — 0-0028z° — 0-0065z*
— 0-016z° — 0-0434z2 — 0-1338z — 1-4938 + 4.60377"!

Note that we have implicitly chosen u = 9; this choice is dictated by the lengths
of the causal and anti-causal components of the Laurent expansions of the
eigenvectors and dual eigenvectors of N(z) shown in Fig. 1.

The purpose of this example is to show that it is possible to use the results of
Theorem 2.2 in order to get controllers that are both commutative and causal; at
this stage we are not interested in the use of these controllers for the
purpose of compensating the characteristic loci of G(z). Hence fi(z) and f>(z)
can be chosen arbitrarily and here we select these to be the polynomials (in z~')
formed out of the first u=9 and p — y,. = 8 terms of the Maclaurin expansions
of 1/(1 —0-4z7") and 1/(1 — 0-2z 1), respectively. For this choice, the sequences
of the coefficients for the controller eigenfunctions k,(z) and k,(z), as com-
puted from (10} of Theorem 2.2 are shown in Fig. 2. The sequences of the
coefficients of the elements of the resulting NECC, K(z), are shown in Fig. 3,
from which it can be seen clearly that K(z) is causal; the coefficients with a

1
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Figure 1. Coefficients of the bi-causal expansions of the elements of W(z) and V(z).
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Figure 2. Coefficients of the bi-causal expansions of k,(z) and ka(z).
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Coefficients of the elements of K{z)

23 10 5 0 s 19 15

The ndex of the cocfficicnts of the elcments of K{i)

Figure 3. Coefficients of the bi-causal expansions of the elements of K(z).

negative index (i.e. the coefficients of positive powers of z) are all zero. That
the controller is also (nearly) commutative can be checked by evaluating
the percentage commutativity index 1= 1000,,[G(z)K(z) — K(2)G(z)]/
Omax] G(2)K(z)] for all values of z on the unit circle. For u=9, detailed
calculation shows that # ranges from 0-53% to 2-14%. These values are small
and therefore very satisfactory, but can be made smaller still for larger values of
w; 1 =30 for example leads to values of n which are of the order of 1073%!

In conclusion, therefore, for the particular choice of fi(z) and f(z),
Theorem 2.2 produced a controller that is both causal and commutative. Our
choice of f1(z) and f,(z) was arbitrary, but in a design situation the coefficients
of these two polynomials would characterize the available degrees of freedom
for the 2 x 2 case. The section below considers the extension of Theorem 2.2 to
the general m X m case.

2.4. The characterization of causal exact commutative controllers for the m X m
case

In §2.1 it was argued that if the eigenfunctions of a commutative controller
were chosen to be f(gi(z)), where f(-) is any function which is analytic inside
the unit disc, then such a controller would be causal. This observation is not
restricted to the 2 X 2 case; thus we know that the class of causal NECCs is not
empty for the 2 X 2 as well as the general m X m case. However, unlike the
2 X 2 case where it is possible to give a characterization of the whole class of
causal NECCs in terms of the individual elements of N(z}, in the general case
one has to adopt a more indirect approach. In particular, it is easy to show that
the p, g element of a commutative controller with eigenfunctions k;(z), i =1, 2,

.., m is given by

Kp,q(z) = Ewp.i(Z)Vi,q(z)ki(Z) (11)
i=1

where W, (z) and V, ,(z) denote the p, i and i, g elements of W(z) and V(z),
respectively. Hence, using the bi-causal series expansions for W(z) and V(z) of
(4), and defining finite Laurent expansions for k;(z) in a manner analoguous to
that done for 4,(z) and k,(z) in Theorem 2.2, it is possible to derive a bi-causal
expansion for K, (z), by performing the convolutional sums implied by the
right-hand side of (11). In more compact form, this can be summarized by
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writing, K, .. the vector of coefficients of the expansion of K, ;(z) as

Kpq = 3Cu,Cr ki (12)

where £; is the vector of coefficients of the expansion of ki(z), and Cy  and
Cy, are both lower triangular striped Toephtz matrices formed out of the
coefficients of the bi-causal expansions for W,(z) and V,(z), respectively. For
simplicity and without loss of generality it is assumed that all the bi-causal
expansions involved in the above have u anti-causal terms and u+ 1 causal
terms. As a consequence, the dimensions of k;, Cw .» and qu are 2u+ 1) x 1,
(du+ 1) x u+1), and (6p+ 1) x (4pe+ 1). C]early, the first 3u elements of
K, , correspond to the coefficients of positive powers in the expansion of
K, ;(z) and thus we are led to the following characterization of causal NECCs
for the general m X m case.

Theorem 2.3: Let C* Wy, denote the matrix formed out of the first 3u rows of
Cw,Cv, and let k = [1&1,&2, .. k,]'y where k; denotes the vector of coeffi-
cients o}” the bi-causal expansion of k; (z) Then, (to within truncation errors) the
NECC with eigenfunction k,(z), i = 1,2, ..., m will be causal if, and only if

+ + +
valll. valzi e CWVlml
+ + +
CWVzn CWV:ZL e CWV:ml
Mk = : with M =| Cj Ch pA 13
k= 0sn2 wit = WV, wv,, - Cwyv,, (13)
+ + +
CWVnz CWVuz ce CWVum:
+ + +
L_C"vaim vamlm st vamm_l

Proof: Partition the vector Mk into m blocks of u elements each, starting with
the first u elements and finishing with the last ¢ elements. Then, by construc-

tion, the 1st, 2nd, ..., mth, (m + 1)th, ..., m°th blocks define the vectors of
anti-causal coefficients of K(z), K3 (2), ..., Km(2), K12(2), ..., Kum(2),
respectively. Clearly if K(z) is to be causal, all these blocks must be zero. The
sufficiency is obvious. O

It is possible to show that (13 a) will have non-trivial solutions as stated in
the corollary below.

Corollary 2.2: To within truncation errors, the matrix M of Theorem 2.2 is
always rank deficient, and its nullity v is greater than or equal to p+ 1.
Therefore, there exists a matrix Y° of dimension (2u+ 1}m X v such that

MY® = 03,2, and [Y°]*Y° =1, (14)

Furthermore, if k denotes the vector of coefficients of bi-causal power series
expansions of some functions k(z), i =1, 2, ..., m, then (to within truncation
errors) the NECC with ki(z) as eigenfunctions will be causal if, and only if,

k=Y6 (15)

Proof: The p, g element of the commutative controller with eigenfunctions
kiz)=z"/,i=1,2,...,mand j=0,1, ..., pis given as
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Ky q(2) = 3 Woi(2)Vig()z7 = 27/4,, (16)
i=1

where &, , is one for p = q and zero otherwise. This follows directly from the
fact that W(z)V(z) = I. Thus such a controller would clearly be causal and
would therefore lead to a vector k, formed out of the coefficients of the ki(z),
which would lie (to within truncation errors) in the kernel of M. The vector
block that corresponds to each k;(z) would have the form of the (j + 1)th
column vector of the matrix £ of (10) and would thus, for j =0, 1, ..., y, lead
to a set of linearly independent vectors, each of which would lie in the kernel of
M. Clearly, then, the kernel of M is non-empty and has a rank defect, v, which
is at teast u + 1. [In fact numerical experimentation shows that the dimension of
the kernel is of order m(u + 1) — y,. This is consistent with Corollary 2.1 which
states that, for the 2 X 2 case, the rank of the block matrix in (10), and hence,
equivalently, the rank of Y°, is 2(u + 1) — y,]. Thus, given the singular value
decomposition of M, M = XZY*, then v of the input principal directions,
namely the column vectors of Y, will correspond to zero singular values and
hence will form the matrix Y which satisfies the conditions of the theorem. O

Theorem 2.3 gives a complete characterization of the degrees of freedom
available in the choice of NECC which are causal. The next section gives a brief
description of how these degrees of freedom can be given up for the purposes of
design.

3. The design algorithn

Under commutativity, the eigenvalues of G(z) and K(z) that share a
common eigenvector, w;(z), will multiply to give the -eigenvalues of

Q(z2) = G(2)K(z) as
qi(z) = g(D)ki(2) = g(D)P"(2)k; where @(z) = [z", z*", ..., z7HT

(17)
where use has been made of the bi-causal expansion of k,(z}. The above will be
true for every i =1, 2, ..., m and thus collecting all the g;(z) as elements of a
vector g(z) we may write

q(z) = Ag(2)P(2)k = Ag(z)P(2)Y°8 a8
P(z) = diag[¢'(2), 9"(2), ..., #" ()]

where @(z) is an m X (2u + 1)m matrix. Equation (18) can be applied at any
desired set of values of z on the unit circle, say zy, 22, ..., Z, to give the
overall equation

Giarget — o |
where

q(z1) Ac(z)P(z)Y ] (19 a, b)
=] 9@ |,y | Aa(z2)P(z)Y°

glargel - : :
7'(zn) Ag(z,)P(2,) YO
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So, in theory, one can specify any arbitrary target vector g and then solve for
the vector of degrees of freedom, 8, that will attain this target. However, in
general (19 @) implies 2mn real simultaneous equations in the v elements of 8,
and this imposes a limit on the number of frequency points n, if an exact
solution for @ were to exist. Too small a value for n, on the other hand, would
in general cause aliasing difficulties, which would manifest themselves in
inter-frequency errors: g(z) would assume the correct values at the preselected
frequencies z;, i =1, 2, ..., n, but would be in error for other points on the
unit circle. To avoid this situation, # must be chosen to be greater than, or
equal to L, the maximum number of causal or anti-causal terms in the Laurent
expansions of g;(z) for i=1, 2, ..., m; although the ¢;{z) may not be known
explicitly, the coefficients of their Laurent expansions can be computed from the
knowledge of the frequency responses of g;(z), using an inverse discrete Fourier
transform procedure (as that described in Theorem 2.1). Therefore there will
exist 2myu, linear simultanecus equations in p variables, and since v is of the
order of my, in general for an arbitrary set of target frequency responses g,(z;)
there will not exist enough degrees of freedom. A practical solution to this
problem is proposed in the theorem below.

Theorem 3.1: The vector k of coefficients of bi-causal expansions of the
eigenfunctions ki(z), i =1, 2, ..., m of the causal NECC, K(z), that minimizes
the Ly-norm of the error between the frequency response of the eigenfunctions of
G(2)K(z) and the frequency response of a prescribed set of characteristic
transfer functions q{(z) is given by

k=7 8= (R¥*V)T'RIV*gumge] (20)
where W and G are as defined in equation (19) for z; = exp Gin/(n = 1)),
i=0,1,...,n—1, and n=u,, where p, denotes the maximum number of

causal or anti-causal coefficients in the Laurent expansions of the target qz)
over all i.

Proof: Under the assumption that n=y,, to within truncation errors, the
frequency sampled at the points z; of the theorem uniquely define the Laurent
expansion, and therefore the frequency response itself of the prespecified targets
¢i(z). Then the minimization of the L,-norm of the error between the targets
g,(z) and the eigenfunctions of G(z)}K{z) given by gi{z)k;(z) is equivalent to
the minimization of the cost

J = ”ﬂtarget - l‘UQ“2 (21)
Setting the derivative of J2 with respect to 8 equal to zero, readily leads to the
optimal choice of & given in {20). |

The implied design procedure will lead to controllers that are commutative
(to within truncation errors) at all frequencies but which cannot exactly attain
any arbitrary target frequency responses. Despite this limitation, it will be shown
in the next section, by means of a design study, Example 4.1, that the NECCs
of Theorem 3.1 offer a significant improvement on the approximately exact
commutative controllers proposed earlier by Cloud and Kouvaritakis (1987).
How close the NECC of the theorem above can get to the target frequency
responses depends on the choice of these targets. From a design point of view
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the overall aim is to adjust the gain/phase characteristics of the characteristic loci
of G(z) so as to improve the compensated system’s relative stability margins. It
follows therefore that the definition of target frequency responses is by no
means unique, and that there exists freedom which can be exploited in such a
manner that the NECC of Theorem 3.1 will lead to insignificantly small optimal
cost values J. That this can be done is also illustrated in §4, where a small
modification of the targets of Example 4.1 (which does not affect the relative
stability margins) results in a very accurate NECC; the relevant controller
attains the targets to within an accuracy of better than 2% over all frequencies.
The choice of attainable targets falls beyond the scope of this paper. Here we
simply point out that, normally, achieving certain gain/phase characteristics is
critical over a limited range of frequencies (the frequencies over which the
characteristic loci come close to the critical point) and therefore weighting
factors can be introduced into the cost of (21) in order to improve the NECC’s
accuracy over the desired frequency range at the expense of frequencies where
the choice of targets is rather arbitrary.

4. Design studies

AECCs offer a very significant advantage over ACCs, as was illustrated by
means of a design study by Cloud and Kouvaritakis (1987). To illustrate the
superiority of NECCs over AECCs here, we use the same design study. The
model under consideration is that described in § 2.3. The characteristic loci of
this model are shown in Fig. 4 from which it can be seen that the relative
stability margins due to the second locus are poor; in fact, the uncompensated
system clearly would be unstable under unity feedback. With a view to
improving the gain/phase characteristics of g2(z) and decreasing the disparity
between the d.c. gains of the two loci, Cloud and Kouvaritakis (1987) proposed
as targets

1-36(1 — 0-63z7Y)

q1(z)} = ki(2)81(2) = 0-81g1(2); g2(z) = ka(2)g2(2) = -
1+ 0-0855z~!

82(2)
(22)

The resulting target frequency responses are shown in Fig. 5 (as solid curves)
and can be seen to have satisfactory relative stability margins.

of- LI . . - ' . g v
U nz) ‘ /
-5t i d . ;

H "”“y;(:) =

.28 i
-10 -5 [} k] 0 (M) 20 23 30 a5 40

Figure 4. Characteristic loci of G(z).
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2 - . :
.- Atl;unl chn;rncteristi: loci (NECC i | ! i
— Desired characteristic loci: i H !

é 18
Figure 5. Characteristic loci of Q(z).

For this example the discriminant of the characteristic equation of N(z) has
two unstable roots (one at 11-99, the other at 1-76) so that the given G(z) has
unstable branch points. As a consequence, the resulting AECC with the k,(2)
and ky(z) implied by (22) cannot be exactly commutative with G(z) so that the
gain/phase adjustments of g;(z) and g,(z) are not expected to be exact. This
indeed is shown to be the case by the dashed curves of Fig. 6, which depict the
percentage error in the attainment of the target frequency responses when
z = exp (j¢), as ¢ varies from 0 to 7.

To overcome this difficulty, we now propose to use an NECC which deploys
near exact eigenvector approximations through the use of bi-causal expansions.
The sequence of coefficients for the elements of W(z) and V(z) are shown in
Figs 1(a), 1(b} and from these it is seen that there are at the most nine causal
and anti-causal terms in both W(z) and V(z); thus u is chosen to be nine. To
ensure the causality of the resulting NECC we need to constrain the vector £ of
the coefficients of the expansion of the eigenfunctions k(z) and k,(z) to lie in
the kernel of the matrix M of (13) which, for this example, has 3um? = 108
rows and (2p + 1)m = 38 columns. Figure 7 shows the singular values of M and
confirms that the dimension of the kernel of M is 2(u+ 1) — y, =19. The

o0
Loy | - akce
— NECC

40

20}

0 0 40 & 80 . 100 120 140 160 180
Frequency, wT (degrees)

0 v . . —_—— .

5
-3
L,—lfl%
ot )40

0 20 40 60 80 100 120 140 160 150
Frequency, wT {degrees)

Figure 6, Comparison between NECC and AECC.
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o 5 10 15 w 25 30 35 40

Figure 7. Singular values of M.

matrix representation of the kernel Y° can be formed out of all the input
principal directions of M that correspond to the nearly zero singular values and
k then is constrained to lie in the linear span of Y°. The degrees of freedom in
the choice of & are then given up with a view to minimizing the cost of Theorem
3.1, formed using the same target gq;(z) as those used in Cloud and Kouvaritakis
(1987), which targets were sampled at n = 90 points; as required, n was taken to
be greater than (or equal to) the number of significant causal/anti-causal terms
in the Laurent expansions of g,(z), which for this example is given by u, = 75.
(It is noted that the large value of u, is due to the position of the transfer
function poles—namely the roots of the common least denominator of G(z),
d(z). Had we used d(z)g{z) as targets for the eigenfunctions of N(z)K(z),
then the corresponding value of u would have been py, = 13). The characteristic
loci of G(z)K(z), where K(z) denotes the resulting NECC, are shown (dashed
lines) together with the target frequency responses (solid curves) in Fig. 5.
Although the targets have not been attained exactly, the NECC has in fact
effected the desired improvement of the relative stability margins of the
characteristic loci. More importantly, the percentage error of this operation
which is depicted in Fig. 6 (in solid lines) can be seen to be considerably better
than that achieved through an AECC; indeed the NECC accuracy is at least
twice as good over all frequencies and about three to five times as good at high
frequencies.

As explained in § 3, the accuracy of an NECC can be improved arbitrarily by
an appropriate modification of the targets. To illustrate this claim, here we
replace the ¢,(z) of (22) by

-0 -1
01(z) = k1(2)g:(2) = 0-887u682—_1)g1(2)
(1-022z7Y
and r (23)
0-883(1 — 0-63z7")(1 + 0-5122z7")

(1 + 0-0855z1)(1 + 0-22z7")

q2(2) = ka(2)g2{z) =

82(2)

The overall gain/phase characteristic of the new target characteristic loci, shown
in Fig. 8, are similar to those of Fig. 5, and display almost identical relative
stability margins; thus, from a design point of view, the targets of (23) would be
as acceptable as those of (22). However for this set of targets the resulting
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NECC (designed following the procedure described above) produce character-
istic loci which are virtually indistinguishable from the frequency response of the
targets; for this reason they have not been superimposed on the plots of Fig. 8.
A more meaningful measure of the controller accuracy is the percentage error
between desired and achieved frequency responses shown in Fig. 9; for the
purposes of comparison, the figure depicts the results for both an NECC (solid
curves) and the corresponding AECC (dashed curves). Clearly, the redefinition
of targets had a beneficial effect on the accuracy of the AECC as well as on the
NECC, but the NECC results now are a factor of about 10 or more better than
those achieved by the AECC.

5. Conclusions

Commutativity provides a convenient means for the systematic adjustment of
the generalized Nyquist diagrams of a multivariable linear transfer function,
G(z). However, the practical implementation of commutative controllers is
problematic due to the irrational nature of eigenvector functions. Earlier work
proposed a simple but inexact solution which was based on real constant
approximations to the frequency response of the eigenvector matrix of G(z).

Figure 8. New targets for the characteristic loci of Q{(z).

15
Lauliw) | .. AEGC
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[ 20 40 60 80 100 120 14D 160 180
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0 20 40 (1] 80 100 120 140 160 180
Frequency, w7’ (degrees)

Figure 9. Comparison between NECC and AECC.
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More recent work improved upon this by deploying causal power series
eigenvector approximations, and yielded nearly exact results for the case of
stable branch points. To handle the general case, in this paper we proposed a
procedure which uses bi-causal approximations for the eigenvector matrix of
G(z) and thus results in controllers which can be made to commute (under
multiplication) with G(z) over all frequencies to within any desired degree of
accuracy. For an arbitrary choice of controller eigenfunctions, the resulting
commutative controllers would be anti-causal. In this paper we have shown that
it is possible to achieve causality be constraining the choice of controller
eigenfunctions. Furthermore it was proved that there still remain enough
degrees of freedom to be exploited for the purposes of adjusting the gain/phase
characteristics of the characteristic loci of G{(z). Finally, we demonstrated by
means of a design study that the results obtained by such commutative
controllers are far superior to those possible through the use of the forms of
approximately commutative controllers proposed earlier.
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