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Abstract: This study deals with the design of H1 controllers for speed control of rotor flux-oriented current-
controlled induction motors. The mixed sensitivity problem (robust stability and performance) is initially
revisited, and is shown, based on practical experiments, that when the rotor time constant is the uncertain
parameter, it is necessary to deploy conflicting weighting functions, therefore invaliding its application in the
design of current-fed induction motors. Two other H1 problems are addressed: (i) a one-block problem for
speed control with tracking and transient performance objectives; and (ii) a two-block problem for speed
control with tracking/transient performance and noise attenuation objectives. An important part of H1 design
is the model of the system to be controlled. In this study, the system composed of the inverter, estimator and
induction motor will be modelled as a first-order system, and experiments for the identification of the gain
and the time constant are proposed. It is also suggested how to properly correct an initial estimation of the
rotor time constant in order to make the actual plant (inverter-induction motor) behave as a first-order linear
system. The model accuracy and the efficiency of the H1 controllers are validated by experiments carried out
in a real system.
1 Introduction
Although induction motors are mathematically described
by non-linear models, the use of Blaschke
transformation [1] leads to an equivalent linear model,
the so-called field-oriented or vector-controlled
induction motors, which can be voltage- or current
controlled. The main advantage of using field-oriented
control of voltage-controlled induction motors is that
performance can be improved with exact input–output
decoupling and linearisation, and can be achieved via
non-linear state feedback [2]. On the other hand, field-
oriented control of current-controlled induction motors
has a first-order model whose input and output are,
respectively, the quadrature component of the stator
current and the angular velocity [3].
Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2491–2505
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Although appealing from the theoretical point of view,
controller design for either voltage- or current-fed vector-
controlled induction motors requires exact knowledge of
the rotor resistance and some information on flux. The
former requires the measurements of the a-b flux
components, which requires the introduction of flux
sensing coils or Hall effect transducers in the stator –
therefore being not realistic in general-purpose squirrel cage
machines – whereas the latter requires the knowledge of
the rotor flux angle. These limitations provide an ideal
scenario for the design of H1 controllers [4] to both
current- and voltage-controlled induction motors.
Although H1 controller theory has been criticised on
account of controller fragility [5], a recent paper has proved
it wrong [6], that is H1 controllers are also reliable as far as
fragility is concerned.
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The application of H1 control theory to current-fed
vector-controlled induction motor drives has received a
great deal of attention in the literature. The first application
appears in [7], where the so-called mixed sensitivity problem

min
K (s) stabilising

WSS
WT T

[ ]∥∥∥∥
∥∥∥∥

1

(1)

is considered. In (1), S(s) = [I + G(s)K (s)]−1 denotes the
sensitivity function and T(s) ¼ 1 2 S(s) ¼ G(s)K(s)S(s)
represents the closed-loop transfer function, with G(s) and K(s)
respectively, being, the plant and controller transfer functions.
The weights WS(s) and WT (s) were chosen in [7] based on the
assumption that W −1

S (s) and W −1
T (s) serve as upper bounds

for S(s) and T(s), respectively. Although the designed
controllers were tested in an experimental set-up, no practical
consideration has motivated the choice of WT (s); indeed no
practical issues such as the lack of exact knowledge of the rotor
time constant were taken into account in the choice of WT (s).
In a subsequent work [8], H1 control theory was applied to
design a state feedback static controller for speed control. The
solution to the problem proposed in [8] has been obtained
using the Doyle–Glover–Khargonekar–Francis (DGKF)
approach [9], which means that another control objective,
besides speed control, has been addressed; however, neither the
H1 problem that has been considered nor any consideration
on the definition of weights and their choices have been
explicitly given in [8]. More recently, using the degrees of
freedom available in the Youla–Kucera parametrisation for all
two-degree-of-freedom stabilising controllers. Gan and Qiu
[10] propose the design of a plug-in (additional) H1

compensator to improve the robustness of the closed-loop
system against the change in the rotor resistance. The use of
the two-degree-of-freedom structure has been supported only
by mathematical reasons, namely that the choice of the stable
proper rational free parameter of the Youla–Kucera
parametrisation does not affect the transfer function that relates
the reference signal and the output to be controlled. In none of
the works cited above, the problems of reducing the effect of
measurement noise in the control signal and the systematic
choice of weights WS(s) and WT (s) for flux-oriented current-
controlled induction motors have been addressed.

The design of H1 controllers for feedback-linearised
induction motor has been considered in [11–15]. A robust
speed control strategy has been proposed in [11]. An H1

disturbance attenuation approach has been presented in
[12]. H1 controllers for the mixed sensitivity problem (1)
have also been obtained in [13, 14]. In [15], the design of
an H1 robust controller for the automatic positioning of a
mechanical load connected to an induction motor via a
flexible joint is considered. H1 control theory has also been
applied to the design of a full-order observer for vector-
controlled induction motors using gain-scheduled H1

control and linear matrix inequality (LMI) [16].

The main objective of this paper is to bridge the gap
between theory and practice observed in [7, 8, 10]. The
2
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mixed sensitivity problem (1) is initially addressed and is
explained how weight WT (s) is obtained in practice to
account for the non-exact knowledge of the rotor time
constant. It is concluded, based on practical experiments,
that using the usual one-degree-of-freedom controller
structure, the mixed sensitivity problem cannot address
simultaneously the objectives of performance and
robustness with respect to uncertainty in the estimated
value of the rotor time constant. In the sequel, assuming
that the angular speed is the variable to be controlled and
measured, two other control objectives are considered: (i)
closed-loop system performance and (ii) attenuation of the
effects of noise measurement on the control signal (input
current to the induction motor). Problem (i) is addressed
by means of a one-block H1 problem and problem (ii) is
formulated as a two-block H1 problem. Their solutions are
synthesised in two design procedures, allowing easy
application of the theoretical results developed in the paper
by engineer practitioners.

An important part of H1 controller design is the model of
the system to be controlled. In this paper, the system
composed of the inverter, estimator and induction motor
will be modelled as a first-order system, and experiments
for the identification of the gain and the time constant are
proposed. It is also suggested how to properly correct an
initial estimation of the rotor time-constant in order to
make the actual plant (inverter-induction motor) behave as
a linear first-order system. The model accuracy and the
efficiency of the H1 design strategy are validated by
experiments carried out in a real system.

The paper is structured as follows. Section 2 presents a brief
theoretical background on rotor flux-oriented current-fed
induction motors, proposes an experimental procedure for the
identification of the model parameters, and applies the
proposed procedure to the identification of the parameters of a
real induction motor. Section 3 approaches three H1

problems: (i) the mixed sensitivity problem formulated
according to (1) (from a practical point of view); (ii) a one-
block H1 problem for speed control with tracking and
transient performance objectives and (iii) a two-block H1

problem for speed control with tracking/transient performance
and noise attenuation objectives. Section 4 presents
experimental results to validate the design strategies proposed
in the paper. Finally, conclusions are drawn in Section 5.

2 Linear model for rotor flux-
oriented control of current-fed
induction motors
2.1 Mathematical model

Assuming as inputs, the stator current vector components in
field coordinates, isd

(t) (the stator current component in the
direction of the magnetising current vector, usually referred
to as the direct component), and isq

(t) (the quadrature
IET Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2491–2505
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component of the stator current, which is perpendicular
to isd

(t)), then current-fed induction motors can be
modelled as [3]

TR

d

dt
imR

(t) + imR
(t) = isd

(t) (2)

d

dt
r(t) = v(t) +

isq
(t)

TRimR
(t)

(3)

and

J
d

dt
v(t) + f v(t) = kimR

(t)isq
(t) (4)

where TR = LR/RR denotes the rotor time constant, LR and
RR are, respectively, the rotor inductance and resistance,
imR

(t) is the magnetising current, r(t) is the rotor flux
angle with respect to the stator axis, J is the motor inertia, f
is the viscous friction, v(t) is the instantaneous angular
velocity of the rotor and k is the coupling factor, which is a
function of the total leakage factor of the motor and of the
stator inductance. Note that, if in (2), the direct
component of the stator current is made constant, that is,
isd

(t) = Isd
, then, after a brief transient, dictated by the

rotor time constant TR, imR
(t) becomes equal to Isd

.
When this happens, the electrical torque becomes a
function of isq

(t) only, and thus, the model of a current-fed
induction motor becomes analogous to that of a constant
field dc-motor controlled by the armature current. However,
isq

(t) and isd
(t), are not accessible, being functions of the

line currents is1
(t), is2

(t) and is3
(t), as follows

isd
(t)

isq
(t)

[ ]
= T

is1
(t)

is2
(t)

is3
(t)

⎡
⎣

⎤
⎦ (5)
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T =
3

2
cos r(t)

		
3

√

2
sin r(t) −

		
3

√

2
sin r(t)

− 3

2
sin r(t)

		
3

√

2
cos r(t) −

		
3

√

2
cos r(t)

⎡
⎢⎢⎣

⎤
⎥⎥⎦

The alternating currents is1
(t), is2

(t) and is3
(t) are obtained by

applying to isd
(t) and isq

(t) the inverse transformation

T † = T T(TT T)−1, where (·)T denotes matrix transposition.
This is done in practice with current-controlled inverters
[17, 18] (here simply referred to as inverter). The inverter
inputs are the desired values for the direct and quadrature
components of the stator current, here denoted as isdref

(t)

and isqref
and, its outputs are the line currents is1

(t), is2
(t)

and is3
(t) necessary to make isd

(t) and isq
(t) (the actual

values) equal to their reference values.

Assuming that isdref
(t) = Isdref

(constant), then the

transfer function for the system that consists of an ideal
inverter and a current-fed induction motor relating isqref

(t)
and v(t) is given by

G(s) = V(s)

Isqref
(s)

=
kIsdref

Js + f
=

kabsIsdref

ts + 1
(6)

where t ¼ J/f and kabs = k/f .

Although appealing from the theoretical point of view, this
approach has the following drawback: since the rotor flux
angle r(t) cannot be measured, it has to be estimated.
However, as shown in Fig. 1, its estimate (r̂(t)) depends
on the knowledge of the rotor time constant TR, whose
value cannot be determined precisely. If the estimated value
Figure 1 Block diagram of an ideal inverter in cascade with a current-fed induction motor, and with a rotor flux angle
estimator
2493
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of the rotor time constant (here denoted as T̂ R) is exactly equal
to TR, then the behaviour of the system that consists of the
estimator, inverter and induction motor is the same as that
described by (6). However, in general T̂ R = TR, and thus
(6) is no longer a reliable model for the system. Therefore the
idea of taking into account the uncertainty of TR in the
design of speed controller for induction motors arises
naturally. One of the most appropriate design techniques to
deal with model uncertainty is the H1 control theory. Its is
well known that H1 controller design relies on a
mathematical model of the system. Therefore before
addressing the design problem, experiments to obtain
nominal values for parameters kabs and t of (6) will be proposed.

2.2 Parameter identification

According to the model given in (6), the parameters to be
determined are kabs, Isdref

and t. In addition, as shown in

Fig. 1, it is also necessary to estimate TR. These parameters
can be estimated as follows:

1. The value of Isdref
can be obtained experimentally

by varying slowly Isdref
from 0A until the motor starts to

rotating.

2. An estimation of TR can be found in two steps: first, an
initial estimation of TR (here denoted as T̂ R0

) is obtained;
second, small corrections in this initial estimation are made
in order to obtain a new estimation T̂ R that is closer (than
T̂ R0

) to the actual value of TR. The initial estimation T̂ R0

can be obtained by either performing standard tests for
determining the parameters of the steady-state circuit model
[19], or by using online estimation techniques (see [20] and
the references therein). The correction in T̂ R0

is justified by
the fact that the system that consists of the inverter,
estimator and induction motor behaves as an ideal first-
order system only when the estimated value of the rotor time
constant is exactly equal to its actual value. Therefore as the
model given in (6) is that of a first-order system, T̂ R0

needs
correction whenever the system step response differs from
that of a first-order system. This suggests the following
experiment for the identification of kabs and t and to find an
estimated value T̂ R closer (than T̂ R0

) to TR.

Experiment procedure 1

Step 1: Apply a step input isqref
(t) = Isqref

, t ≥ 0, to the

induction motor and record the output w(t). Let (ti, w(ti)),
i ¼ 1, . . . , N denote all the ordered pairs for the recorded w(t).

Step 2: Using the points (ti, w(ti)), i ¼ 1, . . . , N obtained in step
1, find a first order model (using any identification method).

Step 3: Apply the same step input of step 1 to the model
obtained in step 2, and record the output (ti, ŵ(ti)); this
can be easily done using Matlab/Simulink.
4
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Step 4: Compute E =
�1

0
e2(t) dt, the square of the ℓ2 norm

of the error e(t) = w(t) − ŵ(t), using the points obtained in
steps 2 and 3; a good approximation for E can be calculated
using the Matlab function ‘trapz’.

Step 5: Define a threshold value Emax for E. If E . Emax

then, increase or decrease TR, appropriately, and repeat
steps 1 to 4, for the current value of Isdref

. If E ≤ Emax,

make the values of kabsIsdref
and t, defined in (6) equal to

the gain and the time constant of the model obtained in
step 4, and adopt the current value of TR as the estimation
for the rotor time constant T̂ R, and go to step 6.

Step 6: If there are larger values of Isqref
inside the desired

operation region of the induction motor, choose a larger
value for Isqref

, and go back to step 1. Otherwise, stop.

Remark 1: How close the value of T̂ R0
is to the real value

of TR determines the number of iterations needed in step
5 of experimental procedure 1. It is worth noting that once
the induction motor step response is close (up to a
threshold value) to the step response of an ideal first order
system, there is no need for additional changes in the
value of T̂ R. A

2.3 Model validation

A 30 V, 4.6 A, 130 W, 60 Hz, two-pole, delta-connected,
squirrel-cage induction motor with J = 0.00057 kg m2 has
been used for experimentation. All the control tasks are
implemented using Simulink real-time windows target
running under Windows XP on a Pentium IV, 2.6 GHz.
The sampling frequency is set to 5 kHz. The motor currents
are measured with Hall-effect transducers (LEM LA-55P,
with 0.65% of accuracy) and read by the control program
through a 12 bit A/D converter on a dedicated interface
board (Advantech PCI-1711). Current control is performed
by a synchronous on–off algorithm [3] that operates
independently for each leg of a three-phase insulated gate
bipolar transistor (IGBT) inverter bridge. Each IGBT in the
inverter bridge is driven by a separate digital signal, which is
directly issued by the control program at each sampling
period, through digital output ports on the interface board.
Dead times are properly inserted by an external circuit, to
prevent leg shoot-through. An incremental encoder with
10 bit resolution is used for the measurement of rotor angular
speed. An electronic circuit having a frequency–voltage
converter based on IC 2917 plus a logic that sets the algebraic
sign according to the rotation direction provides the interface
between the encoder and the analogue input of the board.

Following the directions for the determination of Isdref
,

it has been obtained Isdref
= 2.65 A, which will be used in

all experiments reported in the paper.

An initial estimate T̂ R0
= 0.0519 s has been obtained by

performing the experiments proposed in [19]; however, as
IET Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2491–2505
doi: 10.1049/iet-cta.2009.0377
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pointed out before, any online method for the estimation
of TR could be deployed. Following experimental
procedure 1, it has been found that T̂ R = 0.0493 s, which
is approximately 5% smaller than T̂ R0

.

Table 1 presents the gains and the time constants for the
first-order model obtained by applying step signals in isqref

(t)
with the amplitudes shown in the first column; it is worth
remarking that a step of amplitude 0.5 A was initially
applied to isqref

(t) to avoid the dead zone. Average values for
kabs and t have been adopted using the data of Table 1,
being given as kabs = 108.6936 A rad/s and t = 4.8703 s.
Fig. 2 shows the comparisons between results obtained
experimentally (solid lines) and from simulation (dashed
lines) by applying step signals of amplitudes 0.2 (top plot)
and 1.0 (bottom plot) to the real system and to a Simulink
model equivalent to the block diagram of Fig. 1 (with the
estimated values of kabs, t and TR = T̂ R). It is worth
remarking that the Simulink model used in the validation
process is not the same as that described at the beginning of

Table 1 Values of kabs and t calculated for each step
response experiment

Step amplitude kabs, rad/s/A t, s

0.2 111.3399 4.4073

0.4 103.1776 4.8545

0.6 107.2638 5.1912

0.8 110.5254 4.8258

1.0 111.1809 5.0728
Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2491–2505
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this section. Note that there is only a small difference
between simulated and real response during transient and
that the steady-state response of the model cannot be
distinguished from that of the real system, which attests the
accuracy of the estimation of t and kabs. Therefore it can be
concluded that the experimental procedure proposed in this
section has actually led to an accurate first-order model for
the system that consists of the inverter, estimator and
induction motor.

3 H11111 design of rotor flux-oriented
controlled induction motor drives
3.1 Problem formulation

The block diagram for the control problem addressed in this
paper is depicted in Fig. 3, where Vr(s), V(s), E(s), N (s) and
Isdref

(s) denote, respectively, the Laplace transforms of the

reference and actual speed signals, the error signal, the
measurement noise and the reference signal for the direct
component of the stator current, here assumed as the
control variable, G(s) denotes the transfer function of the
system to be controlled (inverter–estimator–induction
motor) and K(s) is the controller transfer function to be
designed. It is be assumed, for design purposes, that there
is no delay in the inversion–estimation stage.

The problems to be considered in this paper are as follows:

P1. Performance and robust stability against uncertainty in
the knowledge of the rotor time constant TR;
Figure 2 Step responses for the real system (dashed lines) and for the Simulink model (dashed lines) for steps of amplitudes
0.2 A (top plot) and 1.0 A (bottom plot)
2495
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P2. Speed control with tracking and transient performance
objectives;

P3. Speed control with tracking, transient performance and
attenuation of the effects of measurement noise h(t) in the
control signal isdref

(t).

These problems will be addressed using H1 control theory.
The corresponding formulations and solutions are presented
in the sequel.

3.2 Two-block H11111 problem for
performance and robust stability against
uncertainty in the knowledge of TR

Tracking/transient performance and robust stability
objectives are addressed simultaneously by solving the
following H1 optimisation problem

Prob. P1 min
K (s)[S

WSS
WT T

[ ]∥∥∥∥
∥∥∥∥

1

(7)

where S is the set of all stabilising controllers, WS(s) is a
weighting function used to penalise the relevant frequencies
of the signal to be tracked and WT (s) is obtained from
practical experiments and gives a quantitative measure on how
model parameter uncertainty affects the nominal model of the
system. Note that, as T(s) + S(s) ¼ 1, the control objectives
addressed in (7) are conflicting, and therefore in order to
consider both objectives simultaneously, the weighting
functions WT (s) and WS(s) must penalise different
frequencies; for example, in linear systems, frequency response
identification usually leads to more imprecise description at
high frequencies, and thus, in this case, WT (s) must be a
high-pass transfer function. On the other hand, signals to be
tracked have usually a pre-defined low frequency, and thus,
WS(s) must be a low-pass transfer function.

In a rotor flux-oriented current-controlled induction
motor, the main cause for parameter uncertainty is the
inexact knowledge of the rotor time constant. Therefore
WT (s) should be determined to account for the variation of
the rotor time constant. In order to do so, it is
worth noting that the mixed sensitivity problem given

Figure 3 Block diagram for the design of H1 speed
controllers of rotor flux-oriented controlled induction
motor drives
6
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in (7) is formulated assuming unstructured multiplicative
uncertainty in G(s), that is

Gp(s) = [1 + WT (s)]G(s) (8)

where G(s) is obtained for the nominal value of T̂ R and
GP(s) accounts for perturbations on T̂ R. It is clear from (8)
that, for each frequency vk, the following relationship holds
true

GP( jvk)

G( jvk)
− 1 = WT ( jvk) (9)

Thus, it is straightforward to see that

GP( jvk)

G( jvk)
− 1

∣∣∣∣
∣∣∣∣ ≤ |WT ( jvk)| ≤

GP( jvk)

G( jvk)
+ 1

∣∣∣∣
∣∣∣∣ (10)

Fig. 4 shows the results obtained experimentally by
applying isqref

(t) = I o
sqref

+ I max
sqref

sin(wkt) to the real set-up

described in Section 2.3, and computing the gains at each
frequency wk for I o

sqref
= 0.6 A, I max

sqref
= 0.3 A, and wk equal

to 1.4, 2.2, 3.3, 5.0, 7.7, 11.6, 17.9, 27.6, 41.0 and
63.2 rad/s, for T̂ R (ball-dotted line), for a perturbation of
+50% in T̂ R (cross-dotted line) and for a perturbation of

250% in T̂ R (star-dotted line). A first-order weighting
function, defined according to (8) can then be obtained by
adjusting the points obtained experimentally. For the
points shown in Fig. 4

WT (s) = 0.2(s + 131)

s + 23
(11)

has been obtained. Note that this weighting function satisfies
(10) for each vk, as shown in Fig. 4 (solid lines).

Figure 4 Experimental results obtained for T̂R ¼ 0.0493 s
(. o .) and by perturbing T̂R in +50% (. + .) and 250%
(. ∗ .) and |G(jv)| |1 + WT(jv)| (solid lines)
IET Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2491–2505
doi: 10.1049/iet-cta.2009.0377
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Before solving H1 problem P1, it is worth analysing the
weighting functions WS(s) and WT (s). As steps are usually
the class of signals to be tracked in practice, WS(s) must
be a low-pass rational function. Consequently, |S( jw)| will
be small at low frequencies. On the other hand, as
S(s) + T (s) ¼ 1, then |T ( jw)| will be large at low
frequencies, therefore WT (s) should not penalise low
frequencies. As pointed out before, this difficulty is easily
overcome in linear systems, because parameter uncertainty
in linear systems is mainly due to neglected dynamics,
which are characterised by high-frequency poles. However,
the rational function given by (11) places more penalty at
low rather than at high frequencies, and thus, the usual H1

control theory assumption that WT (s) is a high-pass
transfer function does not apply to rotor flux-oriented
current-controlled induction motor drives, since WT (s)
obtained experimentally is a low-pass transfer function. As
a consequence, the two-block H1 problem given in (7)
cannot be used to address simultaneously robustness and
system performance of current-fed vector-controlled
induction motors when parameter uncertainties are due to
TR. In [7], the mixed sensitivity problem (7) has been
considered and WT (s) has been chosen as a high-pass
transfer function, contradicting the experimental result
presented in this paper. Therefore the solution provided in
[7] bears no relationship with practice.

3.3 One-block H11111 controller for speed
control with tracking and transient
performance objectives

In order to address problem P2 (angular speed control with
tracking and transient performance objectives) using H1

control theory, the following optimisation problem must be
solved

Prob. P2: min
K (s)[S

‖WSS‖1 (12)

Writing

G(s) = N (s)

M(s)
(13)

where N(s), M(s) [ RH1 (RH1 denotes the set of stable and
proper transfer functions), finding X̃ (s), Ỹ (s) [ RH1 that
satisfy the Bezout identity

X̃ (s)M(s) − Ỹ (s)N (s) = 1 (14)

and knowing that all stabilising controllers can be
parameterised in terms of a free parameter Q(s) [ RH1 as

K (s) = − Ỹ (s) − M(s)Q(s)

X̃ (s) − N (s)Q(s)
(15)
Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2491–2505
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then, problem P2, can be rewritten as

Prob. P2: min
Q(s)[RH1

‖WS(X̃ − NQ)M‖1

= min
Q(s)[RH1

‖T̃ 1 − T̃ 2Q‖1 (16)

where T̃ 1(s) = WS(s)X̃ (s)M(s) and T̃ 2(s) = WS(s)N (s)M(s).
As the plant transfer function (6) is already stable, an
immediate choice for N(s), M(s) [ RH1 that satisfies (13)
is given as

N (s) = G(s) and M(s) = 1 (17)

It is therefore easy to see that the Bezout identity (14) has the
following solution

X̃ (s) = 1 and Ỹ (s) = 0 (18)

Consequently, the solution to optimisation problem (12) is
trivial and independent of WS(s), being given by

Q(s) = 1

G(s)
= ts + 1

kabsIsdref

(19)

However, this solution is improper and, therefore
Q(s) � RH1. In order to circumvent this problem, what is
usually done [21] is to approximate this function by a
rational one. This is carried out by introducing a
polynomial factor �ts + 1 in the denominator of Q(s), that is

QP(s) = 1

�ts + 1
Q(s) = ts + 1

kabsIsdref
(�ts + 1)

(20)

where �t is chosen with the view to approximating QP(s) and
Q(s) at the frequency range of interest. Direct substitution of
N(s), M(s), X̃ (s), Ỹ (s) and QP(s) given by (17), (18) and (20)
in the controller expression (15), followed by straightforward
calculation, leads to

K (s) = t

kabsIsdref
�t

ts + 1

ts
= Kp 1 + 1

Tis

( )
(21)

where

Kp =
t

kabsIsdref
�t

and Ti = t (22)

Equations (21) and (22) above show that the H1 controller
that optimises tracking and transient performance is just
the usual PI controller whose parameters are tuned
according to the so-called internal model principle applied
to proportional-integral-derivative (PID) controllers [22,
23]. This result explains, from the H1 point of view, why
PI controllers have been so successfully used in vector
control. However, it is worth remarking that, in order to
achieve best transient performance, the tune of PI
controllers must be done according to (22).
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The results obtained in this section can be summarised in
the following procedure.

Design procedure 1

Step 1: Set the integral time Ti = t, where t was obtained
according to experimental procedure 1.

Step 2: Choose an initial value for �t.

Step 3: Set

Kp =
t

kabsIsdref
�t

Step 4: Check, through simulation, the closed-loop step
response obtained for the pair (Kp, Ti). If the transient
behaviour is not satisfactory, decrease or increase �t and go
back to step 3. Otherwise, use the pair (Kp, Ti) to
implement the PI controller.

3.4 Two-block H11111 controller for speed
control with tracking, transient
performance and noise attenuation
objectives

Speed control with tracking/transient performance and noise
attenuation objectives is addressed by solving the following
two-block H1 problem

Prob. P3: min
stabilising K (s)

WSS
WKSKS

[ ]∥∥∥∥
∥∥∥∥

1

(23)

Using (13), (15), (17) and (18), then Problem P3 can be
rewritten as

Prob. P3: = min
Q(s)[RH1

‖[T1 − T2Q]‖1 (24)

where

T1(s) = WS(s)
0

[ ]
, T2(s) = WS(s)G(s)

−WKS(s)

[ ]
(25)

In order to obtain a solution to Problem P3, expressed
by (24), it is first necessary to obtain an inner–outer
factorisation of T2(s), as follows

T2(s) = T2in
(s)T2o

(s) (26)

where T2o
(s) is a stable and minimum phase transfer function

and T2in
(s) satisfies the condition T ∗

2in
(s)T2in

(s) = 1, with
T ∗

2in
(s) = T T

2in
(−s). Thus, (24) can be converted to the

following form

Prob. P3: min
Q(s)[RH1

R1 − X
R2

[ ]∥∥∥∥
∥∥∥∥

1

(27)
8
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where

R1(s) = T ∗
2in

(s)T1(s) (28)

R2(s) = [I − T2in
(s)T ∗

2in
(s)]T1(s) (29)

X (s) = T2o
(s)Q(s) (30)

The solution to Problem P3, expressed in terms of (27) is
obtained in an iterative way [4], leading to a controller K(s)
that solves optimisation problem (23), as follows:

Design procedure 2

Step 1: Set ginf = ‖R2‖1 and choose g . ginf ,

Step 2: Compute Zg(s), by performing the following spectral
factorisation

Zg(−s)Zg(s) = g2 − R∗
2(s)R2(s)

Step 3: Compute R(s) = R1(s)/Z(s) and factor R(s) as

R(s) = R+(s) + R−(s)

where R+(s) is strictly proper and anti-stable (only unstable
poles), and R−(s) is stable. Let R+(s) = [A, b, c, 0] be a
minimal order state-space realisation of R+(s).

Step 4: Compute Wc and Wo (the controlability and
observability grammians), solutions of the following
Lyapunov equations

AWc + WcAT = −bbT, ATWo + WoA = −cTc

Step 5: Compute l, the square root of the largest eigenvalue
of WcWo;

Step 6: If l . 1, choose a larger g and go to step 2; otherwise
define gsup = g and go to step 7.

Step 7: Define g = (ginf + gsup)/2 and execute, for this new
value of g, steps 2–5.

Step 8: If

(a) l . 1, define ginf = g and go back to step 7;

(b) l , 1, define gsup = g and go back to step 7;

(c) If |l− 1| ≤ e, where e is a tolerance, go to step 9;

Step 9: Define R̃(s) = [−AT, cT, bT, 0] and compute a
balanced realisation for R̃(s) = [Ab, bb, cb, 0]. A robust and
easily implementable numerical algorithm for the
computation of balanced realisations is given in [24].
IET Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2491–2505
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Step 10: Compute the diagonal matrix S, solution of the
following Lyapunov equations

AbS+ SAT
b = −bbbT

b and AT
b S+ SAb = −cT

b cb

Step 11: From S = diag{s1, s2, . . . , sn}, form the matrix
S2 = diag{s2, . . . , sn} and partition Ab, bb and cb as follows

Ab =
a11 a12

a21 A22

[ ]
, bb =

b1

b2

[ ]
, cb = c1 c2

[ ]

where a11, b1 and c1 are constants, a12, a21, b2 and c2 are
vectors of dimension n 2 1 and A22 is an (n 2 1) × (n 2 1)
matrix.

Step 12: Compute

X (s) = [R−(s) + Xb(s)]Zg(s)

where a state-space realisation for Xb(s) is obtained as follows

G = S
2
2 − s2

1In−1, u = −b1/c1

Ã = −[G−1(s2
1AT

22 + S2A22S2 − s1ucT
2 bT

2 )]T

b̃ = (c2S2 + s1ubT
2 )T

c̃ = −[G−1(S2b2 + s1ucT
2 )]T

d̃ = −s1u

Step 13: Compute

Q(s) = T−1
2o (s)X (s)

Step 14: Compute

K (s) = Q(s)

1 − G(s)Q(s)

Step 15: Use the balanced reduction algorithm [24] to reduce
the order of K(s). A

It is worth remarking that all factorisations required in
procedure 2 can be performed using Matlab functions.

Remark 2: An important issue in H1 design is the choice of
weighting functions. In the case of optimisation Problem P3
(23), two weights have to be assigned by the designer: WKS(s)
and WS(s).

Strictly speaking, tracking/transient performance of step
signals cannot be considered within H1 control theory.
This is so because steps are not ℓ2 signals because they do
not have finite ℓ2 norm. In order to circumvent this
problem, the weighting function WS(s) should be chosen so
as to have a dc gain as large as possible. This makes the
controller-dominant pole very close to the origin; therefore
Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2491–2505
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reducing, but not completely eliminating, the steady-state
offset. In order to completely eliminate the resulting (small)
steady-state offset, it is necessary to implement a sub-
optimal H1 controller, obtained from the optimal by
replacing the factor (s + b), where 2b is the controller
dominant pole (b ≃ 0), with s. This approximation
makes the controller have a pole at the origin;
therefore guaranteeing exactly tracking of step-type
reference signals.

Although there is no restriction on the order of WKS(s) and
WS(s), it is well known that the choice of high-order
weighting functions leads to high-order H1 controllers.
Therefore WKS(s) and WS(s) are usually chosen to be lead-
and lag-transfer functions

WKS(s) = s + aKS

s + bKS

, WS(s) = Ks(s + as)

s + bs

(31)

whose Bode diagrams are sketched in Fig. 5. Note in (31)
that WKS(s) has been normalised so as to have unity gain
at high frequencies. The choice of bKS is dictated by the
relevant noise frequency components. The gain Ks

determines how smaller the penalty on |S( jw)| (tracking
and transient performance) at high frequencies should be
in comparison with that on |K ( jw)S( jw)| (noise
attenuation). Finally, assuming that bs, Ks and bKS have
already been chosen, as and aKS must be adjusted so
as to establish how large the penalty on |S( jw)| at
dc-frequency should be in comparison with that on
|K ( jw)S( jw)|.

4 Experimental results
In this section, the theoretical results of the paper are
validated through the implementation of H1 controllers in
a real set-up, the induction motor whose parameters were
obtained in Section 2. Although design procedures 1 and 2
lead to continuous-time H1 controllers, the actual
implementations have been carried out in discrete time,

Figure 5 Asymptotes of the Bode diagrams of WKS(s) and
WS(s)
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using the same computer and processor as those used
to perform the on–off algorithm of the inverter.
The equivalent discrete-time controller has been obtained
using the Tustin’s rule [25] with a sampling interval
equal to 20 ms. In addition, there is a current limiter
that constrains the reference value of the quadrature
component of the stator current in the interval 215
to +15 A.
00
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Consider, initially, the design of H1 PI-controllers to
achieve tracking and best transient performance only. As
kabs = 108.6936, t ¼ 4.8703, and, in all experiments,
Isdref

= 2.65 A, then, according to steps 1 and 3 of design
procedure 1, the controller parameters must be tuned as

Ti = 4.8703 and Kp =
t

288.038�t
Figure 6 Closed-loop responses for

a Step reference signal of 100 rad/s of amplitude (from 150 to 250 rad/s)
b Corresponding control signal isqref

t
Obtained for H1 controllers for �t = t/24, t/30 (design procedure 1), and for K1,1

sub (s) and K1,2
sub (s) (design procedure 2)
IET Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2491–2505
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In order to illustrate the influence of �t in the compensated
system performance, experimental results for �t = t/24 and
t/36 are shown in Fig. 6a. The corresponding plots for the
reference value of the quadrature component of stator
current are shown in Fig. 6b. It can be concluded from
these plots that the design strategy proposed in design
procedure 1 has actually been effective to improve the
closed-loop system transient performance. Indeed, a
significant reduction in the system settling time has been
achieved: the open-loop system settling time is
approximately tso

= 4t = 19.5 s, whereas the settling times
for the closed-loop systems are 1.2 and 0.85 s for �t = t/24
and t/36, respectively. This performance index could be
reduced further but at the expense of an increase on the
control signal, as one can see in Fig. 6b.

Consider now the design of two-block H1 controllers to
achieve tracking, transient performance and noise
attenuation. Two controllers have been designed to
illustrate the influence of weights WKS(s) and WS(s). In
order to obtain a compromise between tracking/transient
performance degradation and noise attenuation, the
following weighting functions have initially been chosen

WKS(s) = s + 30

s + 100
, WS(s) = 0.2(s + 15)

s + 0.01
(32)

The resulting controller, obtained according to design
procedure 2, has the following transfer function

K1,1(s) = 0.1548(s + 100.7676)(s + 0.1729)

(s + 0.01)(s + 52.9590)
(33)
Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2491–2505
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As pointed out in Remark 2, since steps are not ℓ2 signals, the
two-block H1 controller given in (33) cannot eliminate the
steady-state error and thus the step response of the closed-
loop system compensated with this controller has a small
steady-state error (or offset). In order to eliminate this
offset, the controller to be actually implemented in practice
must have a pole at the origin. This can be achieved by a
controller K sub

1,1(s) whose transfer functions is the same as
K1,1(s) except for the pole p ¼ 20.01 which is replaced
with p ¼ 0. The closed-loop system performance and the
reference value of the quadrature component of stator
current for the system compensated with K sub

1,1(s) are shown
in Figs. 6a and b, respectively. Comparing the step
responses of the system compensated with K sub

1,1(s) and the
H1 PI-controller with �t = t/36, it can be checked that
although the former presents an overshoot of 7.5%, there
has been a decrease in the step response settling time,
which is now 240 ms.

Consider now the following choice of weights

WKS(s) = s + 30

s + 100
, WS(s) = 0.1(s + 15)

s + 0.01
(34)

The resulting controller, obtained according to design
procedure 2, has the following transfer function

K1,2(s) = 0.1105(s + 101.4496)(s + 0.1740)

(s + 0.01)(s + 44.9685)
(35)

As was the case for the H1 controller given in (33), the
above controller cannot eliminate steady-state errors to
step reference signals and must be replaced, in practice,
Figure 7 Per cent noise on the steady-state average value isqref
for the H1 PI-controller with �t = t/36 (top plot), and

for K1,2
sub (s)
2501
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Figure 8 Comparison between real (solid lines) and simulated (dashed lines) closed-loop performance of the systems
compensated with H1 PI-controller with �t = t/36 (left-side plots), and with K1,2

sub (s) (right-side plots)
with K sub
1,2(s) that is obtained from K1,2(s) by replacing

the pole p ¼ 20.01 with 0. The closed-loop system
performance and the reference value of the quadrature
component of stator current for the system compensated
with K sub

1,2(s) are shown in Figs. 6a and b. Although the
responses are quite close, it can be checked that both systems
present an overshoot of 7.5% and also that there has been an
increase in the settling time of the step response, which is
now 260 ms. It is also important to remark that, as one can
see in Fig. 6b, both two-block H1 controllers led isqref

(t) to
face a saturation in the first 0.2 s. This is due to the action
of the current limiter of isqref

(t) discussed at the beginning of

this section. This could be avoided either by choosing
different weights, although this would certainly slow down
the closed-loop response, or by replacing the current supplier
with a more powerful one.

As far as noise attenuation on isqref
(t) is concerned, Fig. 7

presents a comparison between the per cent noise on the
steady-state value of isqref

(t), for the closed-loop system

compensated with a H1 PI-controller with �t = t/36 (top
plot) and with K sub

1,2(s) (bottom plot). From the plots, it can
be seen that there has been a reduction on the noise
amplitude: the per cent noise has been reduced, in average,
from 8.6 to 5.4%. Further reduction on the noise amplitude
could be achieved by choosing other weighting functions,
although this would be achieved at the expenses of possible
degradation in the transient performance.

An important issue addressed in this paper is the
development of experiments for the estimation of the
02
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parameters of a linear model for rotor flux-oriented
current-controller induction motors. The open-loop
behaviour has been verified in Section 2.3. In this section,
the closed-loop behaviour of the real system is compared
with the response of a Simulink model subject to same
reference signal. Fig. 8 shows the closed-loop response and
the reference value of the quadrature component of stator
current for the systems compensated with the H1

PI-controller with �t = t/36 (left-side plots) and
with K sub

1,2(s) (right-side plots) for the real system
(solid lines) and for the Simulink model (dash-dotted
lines). It can be concluded from the plots that there is a
close match between simulated and real responses, attesting
again the validity of the proposed model and identification
scheme.

Finally, in order to submit the real induction motor drive
compensated with the H1 PI-controller (�t = t/36) and
with the two-block suboptimal H1 controller K sub

1,2(s) to a
more challenging situation, a signal formed of positive
and negative steps and also of negative and positive steps
with reversion has been used as a reference signal for the
angular speed. Fig. 9 shows the closed-loop system
performance and the reference value of the quadrature
component of stator current for the system compensated
with the H1 PI-controller (top plots) and with K1,2(s)
(bottom plots). It can be seen from Figs. 9a and b that
the closed-loop system compensated with the proposed
controller has performed satisfactorily, attesting once again
the efficiency of the design methodology proposed in this
paper.
IET Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2491–2505
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Figure 9 Closed-loop system performance of the real induction motor drive for a reference signal with positive and negative
steps with changing in the rotation direction for the system controlled with an H1 PI-controller

a With �t = t/36
b With K1,2

sub (s)
5 Conclusions
A practice-oriented design of H1 controllers for rotor
flux-oriented current-controller induction motors is
presented in the paper. All the stages of the design
process are addressed. Experimental procedures for the
estimation of the model parameters are presented, whose
efficiency has been proved by experiments carried out in
Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2491–2505
: 10.1049/iet-cta.2009.0377
a real set-up for both open- and closed-loop systems. As
far as the actual H1 design is concerned, the paper has
the following contributions: (i) it is presented an
appropriate way to tune PI controllers to achieve best
tracking/transient performance; and (ii) is has been
shown how to design a controller to achieve best
performance and noise reduction simultaneously; and
(iii) it has been shown through experiments carried out
2503
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in a real induction motor that the mixed sensitivity
problem cannot be used when the rotor time constant is
the uncertain parameter.

It is also important to remark that the main purpose
of the paper is to present a controller design strategy for
induction motor drives that can be easily applied in
practice; thus, the choice of a first-order model. Indeed, in
power systems, more complex models [26] may be required
because of rapid changes, such as short circuits, would
excite the non-linear characteristics of the induction
machine. This is an important point and might be the
subject of a future research work.
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