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Abstract: In a debate paper, Keel and Bhattacharyya have suggested, by means of simple examples
taken from the open literature, that optimal and robust controllers can be fragile in the sense that a
minute perturbation in the controller parameters can make the closed-loop system unstable.
However, is it true that the optimal and robust controllers presented by Keel and Bhattacharyya
are actually fragile? It is demonstrated that the particular parametric stability margin used by Keel
and Bhattacharyya can be very conservative and to overcome this problem, two non-conservative
measures of controller fragility are proposed. In addition, it will be shown that the examples in
Keel and Bhattacharyya’s paper are very special and the resulting fragility cannot be linked to the
H1 optimisation but to non-appropriate H1 optimisation criterions and to bad choice of weights.
1 Introduction

In a debate paper [1], Keel and Bhattacharyya have
suggested, by means of simple examples taken from the
open literature, that optimum and robust controllers,
designed by using H2, H1, l1 and m formulations can be
extremely fragile in the sense that a minute perturbation
in the controller parameters can make the closed-loop
system unstable. The measure of fragility used in [1] is
the so-called relative parametric stability margin [2].

Different explanations for the fragility problem can be
found in the literature. Mäkilä [3] has pointed out that the fra-
gility problem was related to the controller realisation and also
that, differently from the study carried out in [1], in a realistic
situation, several control objectives are considered, leading
therefore to non-fragile controllers. Faris et al. [4] examine
Examples 3, 4 and 5 of [1] and present a procedure for asses-
sing the fragility on the basis of the inherent robustness of the
closed-loop system to perturbation in the physical parameters
that make up implementation, using first- and second-order
active RC filters in the implementation of continuous-time
controllers and considering the effects of floating point erros
in the implementation of digital controllers. More recently,
Examples 1 and 2 of [1] have been revisited [5, 6]. In
[5], these examples are considered under a different perspec-
tive, that is the fragility of repeated poles and zeros of the con-
troller transfer function and in [6] the same examples are
discussed from a robust control perspective. Another
approach has been presented by Whidborne et al. [7], who
proposed a controller fragility measure based on the
closed-loop pole sensitivity, which can be used to find an
optimal state-space realisation for the controller in order to
reduce the sensitivity of the closed-loop poles. The fragility
problem has also been related to constrained optimisation in
[8], where some conditions which may lead to the controller
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fragility are presented, for example, degeneracy of the roots
of the closed-loop characteristic polynomial. The main contri-
bution of [1] appears to be the establishment of another
research topic, namely the design of robust controllers that
are also non-fragile (see [9–15] and the references therein)

In spite of all the works listed in the previous paragraph,
some questions still remain to be answered. Is it true that the
optimal and robust controllers presented in [1] are actually
so fragile? More importantly, is it true that the controllers
obtained as solutions of the simple optimisation criteria pre-
sented in [1] are necessarily fragile? In this paper, these
questions are answered and it is demonstrated that the par-
ticular stability margin used by Keel and Bhattacharyya can
be very conservative and to overcome this problem, two
non-conservative measures, based on necessary and suffi-
cient conditions, are proposed here. In addition, it will be
shown that the examples presented in [1] are very special
and the resulting fragility cannot be associated with H1

optimisation but to non-appropriate H1 optimisation criter-
ions and to bad choice of weights.

This paper is organised as follows: in section 2, the relative
parametric stability margin is reviewed, and an example that
suggests the conservativeness of this measure is presented. In
section 3, two nonconservative measures of controller fragi-
lity are proposed and a comparison between the relative para-
metric stability margin and the two nonconservative
measures introduced in this paper is drawn. In section 4,
the examples used in [1] to label H1 controllers as fragile
are re-examined. Finally, conclusions are drawn in section 5.

2 Relative parametric stability margin

2.1 Definition

Consider a closed-loop system with unit negative feedback,
where

G(s) ¼
nG(s)

dG(s)
¼

Pm1

i¼0 ais
m1�iPn1

j¼0 bjs
n1�j

,

K0(s) ¼

Pm2

k¼0 eks
m2�kPn2

q¼0 fqs
n2�q

(1)
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are the transfer function representations of the plant and the
nominal controller, and assume that K0 (s) stabilises G(s).
Let p

0
¼ p

0
1 p

0
2 � � � p

0
l

� �T
(l � m2 þ n2 þ 2) denote a

vector formed with the parameters of K0 (s) whose elements
belong to the set P ¼ {e0, e1, . . . , em2

, f0, f1, . . . ,fn2
},

being chosen among those parameters, which are subject
to perturbation, and define the parameter vector

p ¼ p0
þ Dp ¼ [p0

1 þ Dp1 p0
2 þ Dp2 � � � p0

l þ Dpl]
T (2)

Assuming that the plant parameters are kept fixed, then it is
easy to check that, to each vector p, there corresponds a
closed-loop characteristic polynomial d(s, p) that can be
written as [2]

d(s, p) ¼ d(s, p0
þ Dp) ¼ d(s, p0) þ

Xl

i¼1

ai(s)Dpi (3)

where ai(s) are polynomials whose coefficients do not
depend on p. According to the boundary crossing theorem
[2], when the coefficients of a fixed degree polynomial are
subjected to change, in order to its zeros to move from
the open left half-plane to the right half-plane, they must
cross jv-axis, v [ Rþ. Substituting s ¼ jv in (3), and
for each v [ Rþ, writing ak( jv) ¼ akR( jv) þ jakI ( jv)
and d( jv, p0) ¼ dR( jv, p0) þ jdI ( jv, p0) where akR( jv),
akI ( jv), dR( jv, p0), dI ( jv, p0) [ R, then (3) can be
re-written as

A( jv)Dp ¼ �y( jv), (4)

A( jv) ¼
a1R( jv) a2R( jv) � � � alR( jv)

a1I ( jv) a2I ( jv) � � � alI ( jv)

� �
,

Dp ¼

Dp1

Dp2

..

.

Dpl

2
66664

3
77775, y( jv) ¼

dR( jv, p0)

dI ( jv, p0)

" #
(5)

Definition 1: Let Dp defined according to (4) and (5). The
parametric stability margin r is defined as the smallest
size of kDpk2 for all v [ Rþ that makes the closed-loop
system unstable, that is

r ¼ min
v[Rþ

jjDp( jv)jj2 (6)

It is worth remarking that if for some frequency vk, the rank
of A( jvk) is equal to one, then (4) may not have a solution.
In this case r( jvk) ¼ 1. In addition, notice that the loss
of stability can also be due to the loss of degree of
the closed-loop characteristic polynomial. Therefore, the
value of kDpk2 (rd), which makes the leading coefficient
of the closed-loop polynomial equal to zero must be taken
into account in the computation of r, that is, r is chosen
between the smallest value of (6) and rd. Finally, following
the usual practice for plant uncertainty analysis, the relative
parametric stability margin can be used, being defined as

r̄ ¼
r

jjp0jj2
(7)

Remark 1: It is important to notice that the state-space repre-
sentations associated directly with transfer functions are the
so-called controller and observer realisations [16]. However,
in practice, these forms are not usually used in the controller
implementation with analogue components; the so-called
parallel and cascade realisations are preferable from the
sensitivity standpoint. This leads to the following question:
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what are the largest perturbations in the coefficients that can
be tolerated in the actual controller implementation? This is
a difficult question and has been addressed in [13], for
example. In this paper, the fragility problem is approached
according to its original formulation [1, 2], and the issue of
controller realisation will not be addressed directly. A

2.2 Critical appraisal to relative parametric
stability margin as a measure of controller fragility

It is clear from (6) that the parametric stability margin rep-
resents the largest stability hypersphere in the controller
parameter space, being therefore a vectorwise measure.
However, it is well known [17] that when uncertainties
of a given polytopic nature are considered, this margin
provides only sufficient conditions for stability that may
be extremely conservative. In spite of it, the parametric
stability margin has been used in [1] as a componentwise
measure, that is, its value was deployed to give an
allowed percent variation on each parameter of p0 such
that the closed-loop system remains stable. This structure
for the perturbations on the controller characterises a poly-
tope (hyper-rectangle) in the controller parameter space and
thus, it is expected that the controllers considered in [1]
tolerate variations on their coefficients larger than those
prescribed by the relative parametric stability margin.

Example 1: Consider the design of a robust controller for an
electromagnetic suspension via m-synthesis technique orig-
inally presented in [18] and re-examined in [1] (Example 4).
The plant transfer function is

G(s) ¼
�36:27

s3 þ 45:69s2 � 4480:9636s� 204 735:226884

and the designed controller has the following transfer function

K(s) ¼
e0

0s
6
þ e0

1s
5
þ e0

2s
4
þ e0

3s
3
þ e0

4s
2
þ e0

5sþ e0
6

s7
þf0

1s
6
þf0

2s
5
þf0

3s
4
þf0

4s
3
þf0

5s
2
þf0

6sþf0
7

where

e0
0 ¼ �5:220000000000000 � 108,

e0
1 ¼ �1:190629800000000 � 1011,

e0
2 ¼ �1:089211902480000 � 1013,

e0
3 ¼ �5:104622252074320 � 1014,

e0
4 ¼ �1:285270261841830 � 1016,

e0
5 ¼ �1:629532689765926 � 1017,

e0
6 ¼ �7:937217972339767 � 1017,

f0
1 ¼ 1:468170000000000 � 103,

f0
2 ¼ 8:153914724000001 � 105,

f0
3 ¼ 2:268680248018680 � 108,

f0
4 ¼ 1:818763428483511 � 1010,

f0
5 ¼ 5:698409038920188 � 1011,

f0
6 ¼ 6:284542925855980 � 1012 and

f0
7 ¼ 6:227740485023126 � 1011:

Defining as the nominal parameter vector p0
¼ [e0

0 e0
1 � � �

e0
6 f0

1 f0
2 � � � f0

7]T, then the parametric stability margin is
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r ¼ 1:179386729005542 � 103 and the relative parametric
stability margin is r̄ ¼ 1:455352715523672 � 10�15. It has
been concluded in [1] (see also Example 2 of [1]) that since
r̄ ¼ 1:455352715523672 � 10�15 then, according to Keel
and Bhattacharyya’s measure of fragility, this system can tol-
erate a percent change in all the controller coefficients of only
1:455352715523672 � 10�13%.

Let us now consider the details involved in the compu-
tation of r. The vector of parameter perturbation Dp,
which leads to the minute value of r̄ obtained above, and
the corresponding vector of percent changes in the coeffi-
cients of p0, that is

Dp(%) ¼
De0

e0
0

De1

e0
1

� � �
De6

e0
6

Df1

f0
1

Df2

f0
2

� � �
Df7

f0
7

� �T

�100%

are, respectively, given as

Dp ¼

�2:492463778436260 � 10�5

7:069742475243460 � 10�8

3:247151359604312 � 10�11

�9:210374124301137 � 10�14

�4:230349120239370 � 10�17

1:199916288417147 � 10�19

5:511247150856264 � 10�23

�1:179386638592689 � 103

�4:618019789340906 � 10�1

1:536490503957842 � 10�3

6:016299762268140 � 10�7

�2:001721056947192 � 10�9

�7:837961827881649 � 10�13

2:607817737566834 � 10�15

2
666666666666666666666666666664

3
777777777777777777777777777775

,

Dp(%) ¼

4:774834824590537 � 10�12

�5:937817510735461 � 10�17

�2:981193422704023 � 10�22

1:804320411869537 � 10�26

3:291408232053199 � 10�31

�7:363560706410304 � 10�35

�6:943550208728406 � 10�39

�80:33038671221240

�5:663561547618787 � 10�5

6:772618156744279 � 10�10

3:307906717304374 � 10�15

�3:512771798716831 � 10�19

�1:247180888149330 � 10�23

4:187421977261709 � 10�25

2
666666666666666666666666666664

3
777777777777777777777777777775

(8)

Note that, although r̄ is of the order of magnitude of 10213%,
the required percent perturbation on p8

0 (eighth element ofDp
(%)), necessary to destabilise the feedback system, is about
280%. This shows that to make the closed-loop system
unstable, all the perturbations on the controller coefficients
should concentrate mainly in p8

0, whereas the other
parameters are subject to very small perturbations.

Example 1 suggests that if all perturbations on p8
0 are

limited to be ,80%, then the other controller coefficients
would tolerate greater perturbations so that the feedback
system remains stable. Therefore if one is interested in
1498
obtaining the maximum percent variation in each controller
parameter for closed-loop system stability, then it is necess-
ary to take into account the perturbation structure, that is, it
is necessary to define a parametric stability margin that has,
as stability domain, a hyper-rectangle centered at the com-
ponents of p0, the nominal controller parameter vector .

3 Non-conservative measures of
controller fragility

Let the i th component of the parameter perturbation vector
Dp introduced in (2) be defined as jDpij � r̃ j p0

i j, i ¼
1, . . . , l. Then, the problem of defining a non-conservative
measure of controller fragility can be stated as follows: find
the smallest value of r̃ for which the closed-loop system
becomes unstable or, equivalently, find the maximal hyper-
rectangle, H(r̃ , p0), centered at the nominal controller
parameter vector p0 such that all vectors p [ H(r̃ , p0) lead
to controllers that stabilise the closed-loop system, where pi,
the ith component of p, is as follows

pi [ (p0
i � ~rjp0

i j, p
0
i þ ~rjp0

i j), i ¼ 1, 2, . . . , l (9)

3.1 Componentwise parametric stability
margin using linear programming

Instead of solving the equation system (4), let us, for each
frequency v, formulate the following linear programming
problem

min ~r (10)

subject to the following constraints:

(i) r̃ � 0; (ii) A( jv)Dp ¼ �y( jv);

(iii)

�~rjp0
1j

�~r j p0
2j

..

.

�~r j p0
l j

2
66664

3
77775 � Dp �

r̃ jp01j

r̃ jp02j

..

.

r̃ jp0l j

2
66664

3
77775 (11)

Let r̃w(v) denote the solution to the linear programming
problem (10), at frequency v. Therefore, the maximum
allowed percent variation in the elements of p0 is given by

rLP ¼ min
v[Rþ

r̃w(v) (12)

A similar formulation to the problem of finding the maximal
polytope of perturbations in the plant, for discrete-time
systems, has been presented in [17], where the search for
the maximum allowed percent variation in the plant para-
meters also leads to the one-parameter optimisation problem
given by (12), with the appropriate stability boundary region.

The non-conservativeness of the measure given in (12) is
guaranteed by the following theorem.

Theorem 1: Let rLP be given by (12). Then the hyper-
rectangle H(rLP, p0) is maximal in the class of all boxes
subject to the admissible perturbations given by (9) and
such that all vectors p [ H(rLP, p0), except at the boundary
of H(rLP, p0), represent controllers that stabilise the
closed-loop system.

Proof: Let r̃ , rLP. Then, for all frequencies, (11.ii) is not
satisfied with any perturbation vector Dp defined accord-
ing to (11.iii), which implies that all closed-loop charac-
teristic polynomials d(s, p), where p [ H(r̃ , p0), do not
have any zero on the imaginary axis. According to the
IET Control Theory Appl., Vol. 1, No. 5, September 2007



boundary crossing theorem, all controllers associated with
p [ H(r̃ , p0) stabilise the closed-loop system. A

The computation of rLP can be carried out according to
the following algorithm.

Algorithm 1:
Step 1. Choose a finite number N of frequency points vk

k ¼ 1, . . . , N and set k ¼ 1.

Step 2. Set v ¼ vk and formulate the linear program-
ming problem (10) with the constraints imposed
by (11). Find r̃w(vk) solution to the linear pro-
gramming problem (10).

Step 3. Set k ¼ kþ 1 and go back to step 2 until k ¼ N.

Step 4. Find rLP ¼ mink r̃
w(vk).

Remark 2: As for the computation of the parametric stability
margin, it is also necessary to take into account the loss of
degree of the closed-loop characteristic polynomial d(s,
p0

þ Dp) in the computation of rLP, that is, to find Dp that
makes the leading coefficient of d(s, p0

þ Dp) equal to zero.

3.2 Componentwise parametric stability
margin using generalised Kharitonov theorem

Another necessary and sufficient condition for the closed-
loop stability of all systems whose coefficients of the
numerator and denominator polynomial of the controller
transfer function leads to parameter vectors in H(r̃ , p0), is
provided by the Generalised Kharitonov theorem [2]. In
order to do so, it is necessary to check if all the 32
generalised Kharitonov segments formed from nK (s), dK
(s), nG(s) and dG(s) are Hurwitz. For completeness, the
constructionof these 32 polynomial segments will now be
presented in detail. First, define pi ¼ [p0

i � r̃ jp0
i j, p

0
iþ

r̃ jp0
i j] ¼ [pmin

i , pmax
i ] and form all the four Kharitonov

polynomials for nK (s) and dK (s), as follows

n1
K (s) ¼ pmin

m2þ1 þ pmin
m2

sþ pmax
m2�1s

2
þ pmax

m2�2s
3
þ pmin

m2�3s
4

þ p
min
m2�4s

5
þ p

max
m2�5s

6
þ p

max
m2�6s

7
þ � � �

n2
K (s) ¼ pmin

m2þ1 þ pmax
m2

sþ pmax
m2�1s

2
þ pmin

m2�2s
3

þ pmin
m2�3s

4
þ pmax

m2�4s
5
þ pmax

m2�5s
6
þ pmin

m2�6s
7
þ � � �

n3
K (s) ¼ pmax

m2þ1 þ pmin
m2

sþ pmin
m2�1s

2
þ pmax

m2�2s
3
þ pmax

m2�3s
4

þ pmin
m2�4s

5
þ pmin

m2�5s
6
þ pmax

m2�6s
7
þ � � �

n
4
K (s) ¼ p

max
m2þ1 þ p

max
m2

sþ p
min
m2�1s

2
þ p

min
m2�2s

3
þ p

max
m2�3s

4

þ pmax
m2�4s

5
þ pmin

m2�5s
6
þ pmin

m2�6s
7
þ � � �

d
1
K (s) ¼ p

min
l þ p

min
l�1sþ p

max
l�2 s

2
þ p

max
l�3 s

3
þ p

min
l�4s

4
þ p

min
l�5s

5

þ p
max
l�6 s

6
þ p

max
l�7 s

7
þ � � �

d2
K (s) ¼ pmin

l þ pmax
l�1 sþ pmax

l�2 s
2
þ pmin

l�3s
3
þ pmin

l�4s
4
þ pmax

l�5 s
5

þ pmax
l�6 s

6
þ pmin

l�7s
7
þ � � �

d
3
K (s) ¼ p

max
l þ p

min
l�1sþ p

min
l�2s

2
þ p

max
l�3 s

3
þ p

max
l�4 s

4
þ p

min
l�5s

5

þ pmin
l�6s

6
þ pmax

l�7 s
7
þ � � �

d4
K (s) ¼ pmax

l þ pmax
l�1 sþ pmin

l�2s
2
þ pmin

l�3s
3
þ pmax

l�4 s
4
þ pmax

l�5 s
5

þ p
min
l�6s

6
þ p

min
l�7s

7
þ � � � (13)
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With the Kharitonov polynomials defined in (13), form the
following sets of Kharitonov segments

SN ¼ n12
S (s), n13

S (s), n24
S (s), n34

S (s)
� �

and

SD ¼ d
12
S (s), d13

S (s), d24
S (s), d34

S (s)
� �

where n
ij
S(s) ¼ (1 � l)niK (s) þ ln

j
K (s) and d

ij
S (s) ¼ (1 � l)

diK (s) þ ld
j
K (s), 0 � l � 1. Finally, the 32 generalised

Kharitonov segments are formed as follows

d
ijk
SD

(s) ¼ nG(s)niK (s) þ dG(s)d
jk
S (s),

i ¼ 1, 2, 3, 4 and jk defined in SD

d
jki
SN

(s) ¼ nG(s)n
jk
S (s) þ dG(s)diK (s),

jk defined in SN and i ¼ 1, 2, 3, 4

8>>>><
>>>>:

(14)

The following result can then be stated:

Theorem 2: For a given r̃, all the closed-loop characteristic
polynomials formed with all possible controllers whose
coefficients lie in the intervals defined in (9) are Hurwitz
if and only if all the 32 Generalised Kharitonov segments
defined in (14) are Hurwitz.

Proof: See [2, p. 300]. A

Remark 3: An easy way to check the stability of the 32 gen-
eralised Kharitonov segments defined in (14) is provided by
the so-called bounded phase lemma [2, p. 72]. In accord-
ance with the bounded phase lemma, given two Hurwitz
stable polynomials d1(s) nd d2(s) of degree n, and assuming
that the polynomial segment d12(s) ¼ (1 2 l)d1(s) þ ld2 (s)
has degree n for all l[ [0, 1], then d12(s) is stable if and
only if jf1( jv) � f2( jv)j = p rd for v [ R, where
fiðjvÞ denotes the phase of di( jv).

In this paper, the smallest value of the perturbation r̃ in the
controller coefficients that makes the closed-loop system
unstable obtained by using the generalised Kharitonov
theorem will be denoted by rGK. The search for rGK can
be carried out according to the following algorithm.

Algorithm 2: Make k ¼ 1 and choose a value for r̃1.

Step 1. Compute the 32 generalised Kharitonov seg-
ments defined in (14).

Step 2. Use the bounded phase lemma to check the
stability of each segment. If all the segments
are stable, then make k ¼ kþ 1, choose
r̃kþ1 . r̃k and go back to Step 1. If at least one
generalised Kharitonov segment has an unstable
polynomial, then use bisection between rk r̃k21

to find the smallest value of r̃ (rGK) for which
at least one of the 32 generalised Kharitonov
segments becomes unstable.

Remark 4: Since the values of rLP and rGK, obtained in
Sections 3.1 and 3.2, respectively, are both obtained from
necessary and sufficient conditions, they must be equal.

3.3 Comparative examples

To compare the results of this paper with those given
previously in terms of the relative parametric stability
margin, all the continuous-time domain examples consi-
dered in [1] are re-examined here. Table 1 shows the
maximum allowed percent perturbation in each parameter
of the coefficients of the numerator and denominator
1499



polynomials given by the relative parametric stability
margin (first column) and by the non-conservative measures
proposed in this paper (second column); the ratio between
the aforementioned measures are given in the third
column. Notice that, even for the notorious Example 1 of
[1], there is a significant change in the maximum allowed
perturbation: the relative parametric stability margin only
allows a perturbation of up to 2.1034 � 1025% whereas
using the parametric stability margins proposed in this
paper, the controller parameters are guaranteed to face a
change of up to 0.0377% without destabilising the
closed-loop system, that is, 1792.3 times the value given
by the relative parametric stability margin. The results are
even better if the coefficients of the controller transfer func-
tion of Example 1 of [1] are replaced with those given in [5]
(Example 1w). In this case, the measures proposed here
allows a perturbation in the controller coefficients of
�0.14% against only 8.577 � 1025% guaranteed by the
relative parametric stability margin. Finally, notice, accord-
ing to the fifth row of Table 1 (Example 4 of [1] and
re-examined in Section 2), how conservative Keel and
Battacharyya’s stability margin can be. The compensated
system can actually tolerate a change of up to 6.58% in
the controller coefficients rather than the 1.45 � 10213%
maximum change prescribed by the relative parametric
stability margin. It is an improvement over the relative para-
metric stability margin by a factor of about 1013!

4 Are H1 robust controllers actually fragile?

In this section, the simple examples used in [1] to label H1

controller as fragile are re-examined.

4.1 Example 1 of Keel and Bhattacharyya

This example was taken from [19]. The plant transfer
function is given as

G(s) ¼
s� 1

s2 � s� 2
(15)

and the design objective is to optimise the upper gain margin.
The controller obtained via Q-parameterisations using robust
control theory, to give an upper gain margin of 3.5 is

K(s)¼
e0

0s
6
þe0

1s
5
þ e0

2s
4
þ e0

3s
3
þe0

4s
2
þ e0

5sþ e0
6

f0
0s

7
þf0

1s
6
þf0

2s
5
þf0

3s
4
þf0

4s
3
þf0

5s
2
þf0

6sþf0
7

(16)

where e0
0 ¼ 379, e1

0 ¼ 39 383, e2
0 ¼ 192 306, e3

0 ¼ 382 993,
e4

0 ¼ 383 284, e5
0 ¼ 192 175 and e6

0 ¼ 38 582, and f0
0 ¼ 3,

f1
0 ¼ 2328, f 2

0 ¼ 238 048, f 3
0 ¼ 2179 760, f 4

0 ¼
2314 330, f 5

0 ¼ 2239 911 and f 6
0 ¼ 267 626. The lower

gain margin for this controller is [1, 0.9992] and the phase
margin is [0, 0.1681] degrees. This shows that small

Table 1: Maximum allowed perturbation in the
controller coefficients

Example r̄(%) rLP(%), rGK(%) rLP/r̄, rGK/r̄

1 2.1034 � 1025 0.0377 1792.3

1� 8.5770 �1025 0.14 1632.3

2 7.21 11.17 1.5492

3 1.16 4.34 3.7414

4 1.4553 �10213 6.58 4.5214 �1013

6 3.7370 �1024 0.98 2622.4
1500
variations on the gain or phase can make the closed-loop
system unstable. In [5], this example is re-examined, and it
is shown that the controller computed in [1] and given by
(16) is wrong, since an inaccurate Q(s) was deployed in its
computation. A correct sixth-order controller has been com-
puted and because of the three common stable factors in the
denominator and numerator, its transfer function has been
reduced to a third-order one, given as

K3rd(s)

¼
149:97s3

þ15301:13916s2
þ30568:08516sþ15416:916

s3
�133:375s2

�14821:16945s�27027:939519

(17)

However, this controller also leads to a poor lower gain
margin [1, 0.9965] as it can be seen from the Nyquist
diagram shown in Fig. 1 (solid line).

The explanation for the poor lower gain margin is as
follows: the plant and controller have one unstable pole
each, and thus, for closed-loop stability, it is necessary
that the Nyquist diagram encircles the critical point
21 þ j0 twice in a counterclockwise direction. Since G(s)
has relative degree equal to one, then the maximum gain
margin will be given for v ¼ 0, and therefore in order to
maximise the upper gain margin, the Nyquist diagram
shown in Fig. 1 must be shifted to the right, reducing there-
fore the lower gain margin. As a consequence, K3rd(s) can
tolerate only 0.14% of variations in its parameters, as seen
in Table 1, second row. It can therefore be concluded that
the low tolerance to controller parameter variation, in this
example, is due to the use of a bad optimisation criterion.

In [20], it has been suggested that the correct approach to
this problem is the maximisation of the so-called gain-phase
margin [21], which can be formulated as the H1 problem
min kSk1, where S(s) denotes the sensitivity function,
leading to the following first-order controller

K1st(s) ¼
4027sþ 4037:5

s� 3023
(18)

This controller leads to better gain and phase margins than
K3rd (s) as shown Fig. 1 (dash-dotted line). Indeed, the gain
margin is [0.7512, 1.4975] and the phase margin is [0,
219.2185] degrees. Therefore computing the parametric
stability margin either via linear programming or using

Fig. 1 Nyquist diagram of G(s)K3rd(s) (solid line) and
G(s)K1st(s) (dash-dotted line)
IET Control Theory Appl., Vol. 1, No. 5, September 2007



the generalised Kharitonov theorem, one obtains rLP ¼
rGK ¼ 0.142, which shows that the coefficients of K1st(s)
can be subjected to perturbations up to 14.2% without
destabilising the closed-loop system.

It is important to remark that although the replacement of
the problem of maximisation of the upper gain margin, as
done in [1, 19](minkTk1), with the problem of maximisation
of the gain-phase margin, (min kSk1), as proposed here, has
led to a satisfactory result, as far as controller fragility is con-
cerned, in practice other control objectives such as stability
robustness, noise attenuation, disturbance rejection and
control signal limitation must be considered. In addition,
the controller must satisfy some robust performance con-
ditions in the presence of plant uncertainty, and therefore it
becomes necessary to formulate 2-block H1 problems. In
[6], it is demonstrated, via examples, that failure to include
external disturbance and specifications on the control signal
in the optimal control problem formulation may lead to
serious problems in control systems design. It is also
pointed out in [6, 22] that Glover–McFarlane loopshaping
design method [23] can be used as a reasonable starting
point for robust control design.

4.2 Example 2 of Keel and Bhattacharyya

To compare the performance of the optimal controller given
by (16) with a non-optimal controller, an arbitrary first-
order controller with transfer function

Ka(s) ¼
11:44974739sþ 11:24264066

s� 7:03553383
(19)

has been designed in [1]. Although, this controller has
not been designed to maximize the upper gain margin,
its gain and phase margins, [0.7940, 1.2516] and [0,
29.8873], respectively, were compared with those of the
optimal controller computed in Example 1 given by (16),
and it was concluded in [1] that the arbitrary controller is
far less fragile than the optimal one. However, note that
Ka(s) leads to worse gain and phase margins than the H1

robust controller K1st(s) given by (18). In addition, Ka(s)
can tolerate less variations in its coefficients than K1st(s).
Therefore, K1st(s) is less fragile than Ka(s) on all counts.

Consider now the problem of maximising the closed-loop
system tolerance to additive uncertainty in the plant transfer
function, formulated as minkKSk1. The solution to this
problem is given by

Ko(s) ¼
12sþ 12

s� 7
(20)

Note that Ko(s) has all its coefficients close to the coeffi-
cients of Ka(s), which suggests that the arbitrary controller
Ka(s) can be seen as a suboptimal controller for the
problem min kKSk1; actually kKoSk1 ¼ 12, whereas
kKaSk1 ¼ 14:9805. It is worth remarking that the gain
and phase margins for Ko(s) are, respectively, [0:75,
1:1667] and [0, � 10:2250] degree and that Ko(s) can toler-
ate a change in its coefficients up to 7.69%. Therefore the
H1 controller Ko(s) is non-fragile.

4.3 Example 3 of Keel and Bhattacharyya

In this example, an optimal H1 robust controller has been
designed with the view to minimising kWTk1, where T (s)
is the complementary sensitivity function and W(s) is a
IET Control Theory Appl., Vol. 1, No. 5, September 2007
weighting function given by

W (s) ¼
sþ 0:1

sþ 1
(21)

The plant and the robust controller transfer functions are,
respectively, given as

G(s) ¼
s� 1

s2 þ 0:5s� 0:5
,

K(s) ¼
�124:5s3

� 364:95s2
� 360:45s� 120

s3 þ 227:1s2 þ 440:7sþ 220

(22)

According to [1], this controller can only tolerate a change
in its coefficients of at most 1.116%. However, this is not
true, as one can see from Table 1: K(s) can actually tolerate
4.34%. Therefore this controller is far less fragile than it
was suggested in [1]. On the other hand, the system gain
and phase margins are, respectively, [0.9166, 1.8051] and
[0, 12.9112], which implies that this controller cannot be
implemented in a real system since its lower gain margin
is approximately equal to one. It is therefore necessary to
improve the lower gain margin.

Notice that the closed-loop poles for K(s) are 2100,
21.000005427911 þ j0.000009401696, 21.000005427911
2j0.000009401696, 20.999989144178 and 20.1, which
reveals that three of them are very close to 21. It is well
known that the polynomial zero multiplicity is a factor
of sensitivity in the computation of polynomial zeros.
Following this clue, Whidborne et al. [7] investigated the
relationship between closed-loop pole multiplicity and con-
troller fragility, and Mäkilä [5] suggests that this problem is
part of the puzzle. However, the fragility in this example is
not related to the repeated poles of the closed-loop system
but to the zero of the weighting function W(s).

To show this, note that the pole of the closed-loop system,
closest to the origin, is equal to 20.1. It is well known that
the closer the closed-loop poles are to the jw-axis, the
closer the Nyquist diagram will be to the critical point
21 þ j0. Notice also that this closed-loop pole is exactly
the zero of the weighting function W(s) and, as it can be
proved (see Appendix), this always happens when a H1

robust controller is designed by optimally selecting the par-
ameter Q(s) of the Youla–Kucera parametrisation to solve
1-block problems. Therefore simply by changing appropri-
ately the weighting function, one can improve the gain
and phase margins. For example, choosing a new weighting
function

W2(s) ¼
sþ 0:2

sþ 1
(23)

then the resulting H1 controller that minimises kW2Tk1 is
given by

K2(s) ¼
�144:5s3

� 425:4s� 420:9s� 140

s3 þ 247:2s2 þ 481:4sþ 240
(24)

The closed-loop poles for the system with
K2(s) are 299.99999999999992, 21.00000591959048
þ j0.00001025331231, 21.00000591959048
– j0.00001025331231, 20.99998816081903 and 20.2.
Notice that the dominant pole is now 20.2 and therefore
as expected, this system has better gain and phase margins,
[0.8571, 1.6943] and [0, 16.2230] degrees, respectively. In
addition, it can also be verified that K2(s) tolerates a
change in its coefficients of up to 7.69%, which shows that
K2(s) is less fragile than K(s).
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5 Conclusions

In this paper, it is shown that the relative parametric stab-
ility margin used by Keel and Bhattacharyya to label,
as fragile, optimal and robust controllers can be very con-
servative when perturbations of a given polytopic nature
are considered in the controller coefficients. With the
view of showing this fact, two non-conservative measures
have been proposed: a first one, based on the solution of a
linear programming problem, and a second one, using the
generalised Kharitonov theorem. Both measures have
been applied to the same examples presented in the litera-
ture to illustrate the fragility problem, and it is shown that
the controllers, once labelled as fragile, can actually tolerate
much larger perturbations in its coefficients than that
prescribed by the relative parametric stability margin.

As far as the alleged fragility of H1 controller, all the
examples presented in [1] are re-examined here, leading
to the following conclusions: (i) the H1 optimisation in
Example 1 of [1] (optimisation of the upper gain margin)
is badly formulated and is suggested here that the correct
formulation is via optimisation of the so-called gain-phase
margin; (ii) the arbitrary controller of Example 2 of [1] is
actually a suboptimal controller for the H1 minimisation
problem min kKSk1; (iii) the lower gain margin and the
relative parametric stability margin for the system of
Example 3 can be improved simply by choosing another
weighting function with zeros farther to the left in the
s-plane.
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4 Faris, D., Paré, T., Packard, A., Ali, K.A., and How, J.P.: ‘Controller
fragility: what’s all the fuss?’. Proc. 36th Anual Allerton Conf.
Communication, Control, and Computing, 1998, pp. 600–609
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6 Mäkilä, P.M.: ‘On stability, robustness and fragility’. Proc. European
Control Conf., 2001, pp. 600–605

7 Whidborne, J.F., Istepanian, R.S.H., and Wu, J.: ‘Reduction of
controller fragility by pole sensitivity minimization’, IEEE – Trans.
Autom. Control, 2001, 46, pp. 320–325

8 Afolabi, D.: ‘Optimal controllers are fragile’. Proc. American Control
Conf., 2003, pp. 5306–5310

9 Yang, G.H., and Wang, J.L.: ‘Non-fragile H1 control for linear
systems with multiplicative controller gain variations’, Automatica,
2000, 37, pp. 727–737

10 Yang, G.H., Wang, J.L., and Lin, C.: ‘H1 control for linear systems
with additive controller gain variations’, Int. J. Control, 2000, 73,
pp. 1500–1506

11 Famularo, D., Dorato, P., Abdallah, C.T., Haddad, W.M., and
Jadbabaie, A.: ‘Robust non-fragile lq controllers: the static state
feedback case’, Int. J. Control, 2000, 73, pp. 159–165

12 Norlander, T., and Mäkilä, P.M.: ‘Defragilization in optimal design
and its application to fixed structure lq controller design’, IEEE
Trans. Control Syst. Tech., 2001, 9, pp. 590–598

13 Istepanian, R.S.H., and Whidborne, J.F. (Eds.): ‘Digital control
implementation and fragility: a modern perspective’ (Springer
Verlag, London, 2001)

14 Wu, J., Chen, S., Whidborne, J.F., and Chu, J.: ‘A unified closed-loop
stability measure for finite-precision digital controller realizations
implemented in different representation schemes’, IEEE Trans.
Autom. Control, 2003, 48, pp. 816–822
1502
15 Wu, J., Chen, S., Whidborne, J.F., and Chu, J.: ‘Optimal realizations
of floating-point implemented digital controllers with finite word
length considerations’, Int. J. Control, 2004, 77, pp. 427–440

16 Kailath, T.: ‘Linear systems’ (Prentice Hall, Englewood Cliffs, 1980)
17 Vicino, A.: ‘Maximal polytopic stability domains in parameter space

of uncertain systems’, Int. J. Control, 1989, 49, pp. 351–361
18 Fujita, M., Namerikawa, T., Matsumura, F., and Uchida, K.:

‘m-synthesis of an electromagnetic suspension system’, IEEE Trans.
Autom. Control, 1995, 40, pp. 530–536

19 Doyle, J.C., Francis, B.A., and Tannenbaum, A.R.: ‘Feedback control
theory’ (Macmillan Publishing Company, New York, 1992)

20 Moreira, M.V., and Basilio, J.C.: ‘Controladores robustos H1 não
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8 Appendix

In this appendix, the synthesis of H1 robust controllers [19]
for 1-block problems is briefly reviewed and it is shown that
when the optimisation problem is formulated using a
weighting function, then the zero of this function is a pole
of the closed-loop system.

According to the H1 theory, the optimal controller is
designed via Youla–Kucera parametrisation, that is

K(s) ¼ [Y (s) þM(s)Q(s)][X (s) � N (s)Q(s)]�1 (25)

where Q(s) [ RH1 is the parameter to be optimally
selected, and G(s) ¼ N (s)M�1(s), with N(s), M(s), X (s)
Y ðsÞ [ RH1 satisfying the Bezout identity

X (s)M(s) þ Y (s)N(s) ¼ 1 (26)

For plant models given in terms of strictly proper transfer
functions, the H1 problems min kWSk1, min kWSGk1
and min kWTk1 with non-trivial solution, where S(s)
and T(s) are the sensitivity and complementary sensitivity
functions, respectively, and W(s) is the weighting function,
do not have a proper solution, that is, Q(s) solution of the
H1 problem is improper. Consequently, the optimal control-
lers obtained by substituting the optimal Q(s) in the parame-
trisation given in (25) will also be improper. To circumvent
this problem, Q(s) is divided by a factor (tsþ 1)n to make
it proper, where t is chosen to be suitably small and positive.

A systematic way to compute the optimal Q(s) is pre-
sented in [24], consisting basically of the following steps:

1. write the optimisation problem as a model-matching
problem min kT1 � T2Qk1;
2. compute the inner–outer factorisation of T2(s), that is

T2(s) ¼ T2i
(s)T2o

(s) (27)

3. write

kT1 � T2Qk1 ¼ kR� XSk1 (28)

where R(s) ¼ Tw
2i

(s)T1(s).
4. find XS(s) [ RH1 that minimises kR� XSk1.
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5. compute the optimal Q(s)

Q(s) ¼ T�1
2o

(s)XS(s): (29)

It is not difficult to prove that, for all 1-block problems, the
zeros of the weighting function W(s) are also zeros of T2o (s)
[20]. Therefore according to (29), these zeros are also poles
of Q(s). To show that this fact implies that the zeros of W(s)
are also closed-loop poles, it is necessary first to write the
transfer functions of N (s) and M(s) as

N (s) ¼
nN (s)

d(s)
and M(s) ¼

nM (s)

d(s)
(30)

where nN (s) and nM (s) are, respectively, the numerator and
denominator of G(s) and d(s) is a Hurwitz polynomial.
In addition, write X(s) and Y(s) as

X (s) ¼
nX (s)

d̂(s)
and Y (s) ¼

nY (s)

d̂(s)
(31)
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where nX (s) and nY (s) are the numerators of X(s) and
Y(s), respectively, and d̂(s) is a Hurwitz polynomial.
Notice that d(s) and d̂(s) can always be chosen to be
equal [25] and therefore without loss of generality, in this
paper d(s) ¼ d̂(s). Making

K(s) ¼
nK (s)

dK (s)
(32)

and, in the sequel, substituting N (s), M(s), X (s), Y (s) and
K(s), according to (30–32), in (25), it is possible, after
simple algebraic manipulations, to write Q(s) as

Q(s) ¼
nK (s)nX (s) � nY (s)dK (s)

nK (s)nN (s) þ dK (s)nM (s)
(33)

Notice that the denominator of Q(s) is exactly the
closed-loop characteristic polynomial and therefore this
shows that the zeros of W(s) are also poles of the
closed-loop system.
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