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Polynomial Time Verification of Decentralized
Diagnosability of Discrete Event Systems

Marcos V. Moreira, Thiago C. Jesus, and João C. Basilio

Abstract—The first step in the diagnosis of failure occurrences in discrete
event systems is the verification of the system diagnosability. Several works
have addressed this problem using either diagnosers or verifiers for both
centralized and decentralized architectures. In this technical note, we pro-
pose a new algorithm to verify decentralized diagnosability of discrete event
systems. The proposed algorithm requires polynomial time in the number
of states and events of the system and has lower computational complexity
than all other methods found in the literature. In addition, it can also be
applied to the centralized case.

Index Terms—Automata, computational complexity, diagnosability ver-
ification, discrete-event systems (DES), failure diagnosis.

I. INTRODUCTION

Failure diagnosis is an important task in large complex systems and,
as such, has received considerable attention [1]–[12]. In [4] and [5],
a discrete-event system (DES) approach to failure diagnosis has been
presented and a diagnoser has been proposed with two purposes: (i)
on-line detection and isolation of system failures and; (ii) off-line veri-
fication of the diagnosability properties of the system. As shown in [4],
on-line detection of failure events can be carried out with polynomial
complexity at each step of the diagnosis procedure. However, the veri-
fication of language diagnosability, as proposed in [4], has, in the worst
case, exponential complexity in the system state-space. This is due to
the fact that the necessary and sufficient condition for diagnosability is
stated in terms of the off-line diagnoser, and the state space of the di-
agnoser is, in the worst case, exponential in the cardinality of the state
space of the system model.

More efficient ways to test whether or not a language is diagnos-
able—according to the language diagnosability definition introduced
in [4]—without having to construct a diagnoser, have been presented
in [13] and [14], in which polynomial-time algorithms, based on the
construction of nondeterministic automata and on the search for cycles
with a given property, are proposed. The computational complexity of
the algorithm proposed in [13] is shown to be of fourth order in the
number of states and of first order in the number of events of the system
whereas the computational complexity of the algorithm proposed in
[14] is of second order in the number of states and of first order in the
number of events of the system; having, therefore, lower computational
complexity than that proposed in [13]. It is important to remark that in
[13] and [14] it is assumed that the language generated by the system
is live and that there does not exist cycles of unobservable events in the
automaton model of the system.

Polynomial time algorithms for the verification of diagnosability in
the case of decentralized failure diagnosis (or codiagnosability) have
been proposed in [15]–[17]. Decentralized diagnosis (or codiagnosis)
implies that several diagnosers are deployed, each one possessing its
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own set of sensors, without any communication between them or to
any coordinator; this is equivalent to protocol 3 of [18]. These algo-
rithms are based on the construction of testing automata and on the
search for offending cycles in these automata. The algorithm proposed
in [15] can also be used for the verification of diagnosability and has
computational complexity of order ����� in the number of states and
events of the system, where � denotes the number of local diagnosers.
In the centralized case, � � �, and the complexity of the algorithm
is of second order in the number of states and events of the system
model, which is greater than the order of complexity of the algorithm
proposed in [14]. On the other hand, in [15] the assumptions of live-
ness of the language generated by the system and nonexistence of cy-
cles of unobservable events are both removed. The algorithm proposed
in [16] also removes these assumptions and the verifier automaton has
���� � ������ states and ���� � ������ � ��� � ��� �� tran-
sitions at most, where � and � are the state-space and event set of the
system, respectively, and ��� denotes cardinality.1

We propose in this technical note a new algorithm for verification of
both codiagnosability and centralized diagnosability of DES and show
that the proposed algorithm has lower computational complexity than
the aforementioned ones. The algorithm efficiency is due to the fact
that, in the construction of the verifier, only the traces that lead to vi-
olation of codiagnosability are actually searched, and as a by-product,
theses traces can be easily found. We also remove, as in [15] and [16],
the assumptions of liveness of the language generated by the system
and nonexistence of cycles of unobservable events.

This technical note is organized as follows. Section II presents some
preliminary concepts and reviews the definition of codiagnosability. In
Section III, a new algorithm to test the decentralized and centralized di-
agnosability of discrete event systems is proposed. The computational
complexity of the algorithm is evaluated in Section IV. In Section V,
an example is used to illustrate the method. Finally, conclusions are
drawn in Section VI.

II. PRELIMINARIES

Let � � ������� ����� ��� denote the deterministic automaton
model of a DES, where� is the finite state space, � is the set of events,
� is the feasible event function, � is the transition function, �� is the
set of marked states and �� is the initial state of the system. For the sake
of simplicity, the feasible event function and the set of marked states
are omitted unless stated otherwise [19]–[21].

The accessible part of �, denoted as �	���, is the operation over �
that eliminates all states of� that are not reachable from the initial state
�� and its related transitions, i.e., �	��� � ������� ���� ���, where
��� � �� � � 	 ��
 � ���
����� 
� � ��� and ��� 	 ��� � � �

��� is the new transition function obtained by restricting the domain
of � to the smaller domain of the accessible states ���. The coacces-
sible part of �, denoted as ���	���, is obtained by eliminating all
states of � from which it is not possible to reach a marked state, i.e.,
���	��� � ��������� ������ �������� ���, where ����� � �� �

� 	 ��
 � ���
���� 
� � ����, ������� � �� if �� � �����, or
������� is undefined if �� �� �����, and ����� 	 ����� � � � �����

is the new transition function obtained by restricting the domain of �
to the coaccessible states �����.

The projection � 	 ��
� � ��

� , where �� 	 �� is defined as
���� � �, ���� � �, if � � �� or ���� � �, if � � �� 
 ��,
and ��
�� � ��
�����, for all 
 � ��

� , and � � ��. The pro-
jection operation can also be applied to the language generated by �,

1The notation ��� is also used in this technical note to denote the length of a
sequence.
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����, simply by applying these rules to all traces � � ����. The in-
verse projection ���� � ��

� � �� is defined as ���� ��� � �� � ��
� �

����� � ��. The inverse projection operation can also be applied to
���� to obtain ���� ������. With a slight abuse of notation, the au-
tomaton that generates ���� ������ will be denoted as ���� ���.

Operations between two or more automata can also be defined. Let
�� � ���������� ��� ����� and �� � ���������� ��� �����.
The product or completely synchronous composition of ��

and ��, denoted by �� � ��, is defined as �� � �� �

	
������������� ����� ������ ������, where ��������� ���� �� �
������� ��� ������ ���, if � � ������ � ������ and is undefined,
otherwise. Notice that a transition in the product �� � �� occurs if
and only if the transition is possible in both automata �� and ��.
As a consequence, the language generated by �� � �� is equal to
����� � �����. The synchronous or parallel composition is defined
as ��	�� � ���

�
����� ���

�
����, where �� � ��� � ���

� � ��
� ,

� � �, 2.
Suppose that the event set of � is partitioned as � � �� 	����,

where �� and ��� denote the set of observable and unobservable
events, respectively, and let �� 
 ��� denote the set of failure events.
In addition, assume that the set of failure events can be partitioned as

�� �

	

���

��� (1)

where ��� represents a set of failure events of the same type. Let the
language generated by � be denoted as ���� � . The diagnosis of a
failure event belonging to the set ��� can be carried out using two basic
architectures: centralized or decentralized. In the centralized architec-
ture, a failure event in the set ��� is diagnosed if it can be identified
through the observation of events of the set �� only. In the decentral-
ized architecture, event observations are distributed among � local di-
agnosers, where each diagnoser has its own set of observable events
and do not communicate between each other or to any coordinator. As
a consequence, the occurrence of a failure event in the set ��� is diag-
nosed when at least one local diagnoser identifies its occurrence. For
this reason, the problem of diagnosing all failure event occurrences in
a decentralized architecture as above is usually referred to as codiag-
nosis. When there are multiple failure types, then the diagnosability/co-
diagnosability of  with respect to ��� is checked by constructing a
verifier for ��� treating all the other failure types as normal unobserv-
able events. Thus, in this technical note, without loss of generality, it is
considered that there is only one failure type, i.e., � � �.

Suppose that there are � local diagnosers, each one with observable
event set �� , � � �� 
 
 
 ��, and assume, without loss of generality,
that  is live. If  is not live, then there must be a deadlock state in the
system, and so,  can be made live by adding a self-loop labeled with
an unobservable event �� � ��� ��� (the set of all nonfailure events
that are not observed by any of the � local diagnosers) to each dead-
lock state. The resulting language will be live and such that all traces
in  have the same projections �� � �� � ��

� as before, therefore,
not changing the partial observability property of the system. This pro-
cedure is similar to that described in [15] with the only difference that,
in [15], the unobservable event is the empty trace �. Since, in this tech-
nical note, automaton � is supposed to be deterministic, the self-loop
added here is an unobservable event ��.

Let �
 be the subautomaton of � that represents the nonfailure
behavior of the system, and let ���
� � 
 ; thus 
 is a prefix-
closed language formed with all traces of  that do not contain any
failure event from the set �� .

Definition 1: Let  be the prefix-closed language generated by the
system and let
 �  denote the prefix-closed language generated by

�
 . Assume there are � local sites with projections �� � �� � ��
�

�� � �� � ��� 
 
 
 ���� and let �� be the set of failure events. Then,
 is codiagnosable with respect to �� and �� if and only if

�� � ���� �  � 
� ���� �  � 
 � ��� � ���

�� � �� � �� � �
��

� ��� ������ �� �  � 
 �

According to Definition 1,  is codiagnosable with respect to ��

and �� if and only if for all traces �� of arbitrarily long length after
the occurrence of a failure event, there do not exist traces �� � 
 ,
not necessarily distinct, such that �� ���� � �� ���� for all � � �� .
Therefore, the verification algorithm is based on the search for traces
�� � 
 , for � � �� 
 
 
 ��, and �� �  � 
 that violate the codiag-
nosability condition presented in Definition 1.

III. VERIFICATION ALGORITHM

In this section, we first present an algorithm for the verification of
codiagnosability of a system and, in the sequel, we state a theorem
that proves the algorithm correctness. It will be assumed, without loss
of generality, that � � �. The overall strategy behind the algorithm
is simple but the presentation of detailed steps is somewhat involved;
the reader may prefer to get insight into the proposed algorithm by
consulting Example 1 of Section V while following the algorithm.

Algorithm 1: Let � be a deterministic automaton and �� the set of
failure events. Assume that, for each local diagnoser, � is partitioned
as � � �� 	���� , � � �, 2, where �� and ��� are the observable
and unobservable event sets for each local diagnoser, respectively.

• Step 1: Compute automaton �
 that models the normal behavior
of �, as follows:
— Step 1.1: Define �
 � � � �� .
— Step 1.2: Build automaton 	
 composed of a single state �

(also its initial state) with a self-loop labeled with all events in
�
 .

— Step 1.3: Construct the nonfailure automaton �
 � � �

	
 � ��
 ��� �
 ��
 � ���
�.
— Step 1.4: Redefine the event set of �
 as �
 , i.e., �
 �

��
 ��
 � �
 ��
 � ���
�.
• Step 2: Compute automaton �� that models the failure behavior

of the system, as follows:
— Step 2.1: Define 	� � ������ � ��� �����, where �� �

�����, ���� � ���, ����� ��� � � and ����� ��� � � ,
for all �� � �� .

— Step 2.2: Compute�� � �		� and mark all states of�� whose
second coordinate is equal to � .

— Step 2.3: Compute the failure automaton2 �� � ��	
����.
• Step 3: Define function �� � �
 � � as:3

����� �
�� if � � ��

� � if � � ��� ���

� (2)

Construct automata �
�� � ��
 �� � �
��� ���
 �, for � � �,
2, with �
����
 � ������ � �
��
 � �� for all � � �
 .

• Step 4: Compute the verifier automaton �� �

�
��	�
��	�� � ��� �� � � � �� �� � ���� �.

2Notice that all traces of� that contain a failure event belong to the language
generated by � , i.e., ��� � � � � � , where for a given language � de-
fined over the event set �, �� denotes the prefix-closure of �, i.e., �� � �� �
� � ��� � � ���� � ���.

3Notice that function � just renames the labels of the events in � �� .
The notation � �� � is used in this technical note to represent the renaming
of the events in � as given by (2); thus, � � � �� �.
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Notice that a state of �� is given by �� � ������ ����� �� �,
where ����, ����, and �� are states of ����, ����, and �� ,
respectively, and �� � ��� ���, where � and �� are states of �
and ��, respectively.

• Step 5: Verify the existence of a cycle4 �� ��

���� � ��� �
���
� � � � � � ��� � ��� �

�
� �, where � � � 	 �, in

�� satisfying the following conditions:

�
 � ��� � � �� � � � � �� ��� 	
� �
� ��� � �
�

� �� � �������

If the answer is yes, then � is not codiagnosable with respect to
�� and �	 . Otherwise, � is codiagnosable.

It is important to remark that the verification algorithm proposed in
this technical note has a crucial difference from that presented in [15]
as follows: the search carried out in step 5 of Algorithm 1 seeks se-
quences of �� that have the same projections as some sequence of
���� � � � � �� , whereas the search on the verifier proposed in
[15] is for sequences of �� that have the same projections as some se-
quence of�. As a consequence, the number of transitions of the verifier
proposed here in comparison with that of [15] is significantly smaller,
therefore reducing the complexity order of the algorithm. Finally, it is
worth mentioning that Algorithm 1 only deploys parallel composition
and does not require any new automaton composition as is the case of
the algorithm presented in [15].

The following theorem proves the correctness of Algorithm 1.
Theorem 1: Let � and �� ��� 	 �� denote the prefix-closed

languages generated, respectively, by � and �� . Assume there are
two local sites with projections �� � �
 
 �


� (� � �, 2) and let
�	 be the set of failure events. Then, � is not codiagnosable with re-
spect to �� and �	 if and only if there exists a cycle in �� , �� ��

���� � ��� �
���
� � � � � � ��� � ��� �

�
� �, where � � � 	 �, satisfying the fol-

lowing conditions:

�
 � ��� ���� � � � � �� ��� 	
� �
� ��� � �
�

� � � ���� � ��� (3)

Proof: ��� Suppose that there exists a cycle �� ��

���� � ��� �
���
� � � � � � ��� � ��� �

�
� � satisfying condition (3). Since

�
�

� � � for some 
 � ��� ���� � � � � ��, then, from the construction of
�� and �� , it can be seen that ��� � � for all 
 � ��� � � �� � � � � ��.
This implies that there exists an event sequence �� � � ���� �,
such that �	 � �� , where �	 � �	 , and � � ������� � � ����

�,
� � , where �� � 	 �� � � . Define now the following projection
operations:

�� � �� ��� � �� �
 
�

� �

�� � �� ��� � �� �
 
�

� �

� � �� ��� � �� �
 
�

�

Since �� � ������������ , then ���� � � ���� ��������� �

���� ��������� � �������� ��, which implies that �� � �

�������� ��. Let � � � ��� � �, where � � � ��� � and  � � �� �.
Thus, since � ��������� ��� � ���� �, then � � ���� �. Notice
that since � � ������� � � ����

�, where �� � 	 �� � � , and, by
assumption, there exists an event �� � � for 
 � ��� � � �� � � � � ��,
then the event sequence  � � �� � also has arbitrarily long length,
which implies that � � � also has arbitrarily long length after the
occurrence of the failure event �	 .

Let �� � �� ��� � �. Since �� � � ���� �, then �� � �

���� ���������. In addition,�� ����� ���������� � �������, which

4A path �� � � � � � � � � � � � � � � �, for � � �, is the sequence of
states and events such that � � ��� � � � for all � � ��� �� � � � � ��.
The path forms a cycle if � � � .

implies that �� � �������. Notice that ���� is obtained from ��

after renaming the events of the set �� according to function ��.
Thus, there exists a trace �� � ����� such that �� ���� � � ��� �.
Using the same reasoning it can be shown that there exist traces �� �

������� and �� � ����� such that �� ���� � � ��� �.
To conclude the proof, notice that

� ��� � � � ��� ��� � �� � �� �� ��� � �� � �� ���

and thus �� ���� � �� ���. Since � � ���� � � �
, �� ��� �

�� ��� yielding

�� ���� � �� ����

The same reasoning can be used to show that �� ���� � �� ���.
These facts show that there exist traces ��� �� � �� and � � � ���

that violate the codiagnosability condition of Definition 1.
��� Suppose that � is not codiagnosable with respect to �� and

�	 . Thus, there exist sequences � � ���� �, where �	 � � and
�� 	 �� � � , and ��� �� � �����, such that �� ��� � �� ����

and �� ��� � �� ����. We will show that there exists a cycle of
failure states in �� associated with traces �, �� and ��, that violates
the codiagnosability condition of Definition 1 and, for this purpose, we
split the proof in two parts, as follows: (i) in the first part we show that
there exists an arbitrarily long length sequence � � ���� � such that
� ��� � �,�� ��� � �� , and�� ��� � �� , where �� � ������

and �� � ������;5 (ii) in the second part we prove that there exists a
cycle ��, associated with sequence �, satisfying condition (3).

In order to prove part (i), suppose that there exists a state in �� ,
�� � ������ ����� �� �, reachable from the initial state ���� after the
execution of a sequence � � ���� �, where � ��� is in the prefix-
closure of ���, i.e., � ��� � ���. Notice that this state �� always
exists since � can be the empty string and, in such case, �� � ���� .
Now, let � � � be a feasible event of �� , such that � ���� � ���,
and consider the problem of finding a state of �� , ��� , reachable from
�� , that has � as a feasible event. Three cases are possible: (a) � is
observable by only one local diagnoser; (b) � is observable by both
local diagnosers; (c) � is an unobservable event, i.e., � � ��.

Let us first consider case (a) and suppose, for instance, that � �

�� � �� . Therefore, in order to perform �� � ������������ , a
self-loop labeled with � must be introduced in all states of ����. Thus,
� can occur if and only if it is a feasible event of the state associated
with ����. Since �� ���� � �� ���, it can be seen that, after the
occurrence of a finite trace of unobservable events in �


� , a state of
����������� that has � as a feasible event must be reached. When this
state is reached, � will be a feasible event of ��� � ������� ����� �� �

as desired. Consider now case (b), i.e., � � �� � �� . In this case,
� will be a feasible event of �� if and only if it is feasible for the
corresponding states of ���� and ����. Since �� ���� � �� ���

and �� ���� � �� ���, then � will be feasible for a state of �� ,
��� � ������� ������ �� �, after the occurrence of a finite trace from
��� � �� �
. Finally, consider case (c), i.e., � � ��. In this case,
a self-loop labeled with all events in the set �� is added to each state
of ���� and ����, which implies that � is already feasible for �� �

������ ����� �� �. Therefore, it can be seen that there exists a sequence
� associated with � such that � � ���� ��� ������ ��� ��������,
which implies that � ��� � �, �� ��� � �� , and �� ��� � �� .

In order to prove part (ii), i.e., that there exists a cycle �� in �� ,
associated with �, where at least one of the events in the cycle belongs
to �, notice that since �� is a finite state automaton, then associated

5The extension of function � to domain � is done in the usual way, i.e.,
� �	�� � � �	�� ���, for all 	 � � and � � �, and � �
� � 
.
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with �� there is a cycle of failure states ��� in�� that can be associated
with a path in �� where the events of ��� are contained in this path.
Since �� is a finite state automaton and �� � � ���, this path must
include a cycle �� where at least one of the events in �� belongs to �.
Moreover, since ��� is a cycle of failure states, it can be seen from the
construction of the verifier automaton �� that �� is a cycle of failure
states satisfying condition (3).

Remark 1: The proof of theorem 1 provides an easy way to find the
traces ��, ��, and �� that lead to a violation of codiagnosability of �,
as follows:

1) Identify a cycle that satisfies the condition for non-codiagnos-
ability imposed in step 5 of Algorithm 1 and obtain a trace � that
takes 	��� to this cycle.

2) Obtain �� � �� ���, �� � �� ��� and �� � � ���.
3) Define the inverse renaming function



��

� � �� ���

�� ���

where �� � 
����, with the following extension to domain
��
� : 
��� ��� �� � � 
��� ��� �
��� ��� � for all �� � ��

�

and �� � �� , and 
��� ��� � �.
4) Obtain �� � 
��� ��� � and �� � 
��� ��� �.

IV. COMPLEXITY ANALYSIS OF ALGORITHM 1

The computational complexity of Algorithm 1 will be determined
based solely on the analysis of the steps necessary to obtain the verifier
automaton �� , since the verification of the existence of offending cy-
cles in�� , required in Step 5 of Algorithm 1, can be carried out simply
by decomposing the directed graph that results from the application of
Algorithm 1 into strongly connected components [22]. According to
the algorithm, if one vertex of a strongly connected component has an
 label, then so do all vertices. Therefore, it is not necessary to count
all the offending cycles in �� but only to verify if there exists an edge
labeled with an event in � connecting vertices labeled with  of a
strongly connected component. As a result, Step 5 requires linear com-
plexity in the number of states and transitions of �� [22].

Table I shows the maximum number of states and transitions of all
automata that must be computed in order to obtain the verifier au-
tomaton �� for � local diagnosers according to Algorithm 1. The
first step of Algorithm 1 is the construction of a single-state automaton
�� and the computation of the nonfailure automaton �� � ���� .
Therefore, since �� is a single-state automaton with a self-loop tran-
sition labeled with �� � ���� , then the maximum number of states
and transitions of�� are ��� and ������� �, respectively. The second
step of Algorithm 1 is the construction of automaton �� . In order to
do so, it is first necessary to construct automaton �	 with two states,
� and  , whose transitions are labeled only with failure events and, in
the sequel, to obtain �	 � ���	. Notice that 	��	� � 	��� and that
the states of �	 are equal to �	��� or �	�  �, where 	 � � . There-
fore, the maximum number of states of �	 is �� ���. The failure au-
tomaton �� is computed by taking the coaccessible part of �	 whose
set of marked states is composed of states of the form �	�  �, 	 � � .
This leads to an automaton that generates language	��� � � � � �� .
Since �� � ������	�, then, in the worst case, both automata have
the same number of states and transitions. In step 3 automata ����, for
� � �� � � � � �, are obtained from �� by renaming the unobservable
events of the set �
� � �� for each diagnoser according to function

� defined in (2). This leads to � automata with the same number of
states and transitions of �� . Finally, in step 4 the verifier automaton
�� is obtained by computing �� � ���������� � � � �������� .

TABLE I
COMPUTATIONAL COMPLEXITY OF ALGORITHM 1

Fig. 1. Automaton � of Example 1.

Since the number of states of ���� and �� are, respectively, ��� and
�� ��� at most, then the number of states of �� is in the worst case
equal to � � ������. Moreover, the maximum number of transitions
of�� is equal to ��������� 	���
���������� ���, since for the
construction of each����, ������� � new events can be created. There-
fore, the complexity of Algorithm 1 is������������������� ���,
which shows that the proposed algorithm requires polynomial time in
the number of states and events of �. It is worth remarking that, like
all methods found in the literature, it has exponential complexity in the
number of local diagnosers.

Notice that the computational complexity of Algorithm 1 is smaller
than the complexities of the algorithms proposed in [15] and [16] which
are �������� � ������� and ���� �� � ������ � ����, respec-
tively. It is also important to remark that the size of the verifier au-
tomaton �� is, in general, smaller than the worst case presented in
Table I since the algorithm searches only for those traces in � � ��
and �� that may lead to a violation of diagnosability, namely the ver-
ifier automaton represents only the traces in � � �� and �� that have
same projections.

Remark 2: It is important to remark that a test for the diagnosability
of � with respect to a projection �� and set of failure events �� in the
centralized case can be easily obtained by making� � � in Algorithm
1. Therefore, a verifier automaton for the centralized case is given as
�� � ������� and the necessary and sufficient condition for the
nondiagnosability of � is the existence of a cycle of failure states in
�� such that at least one event in the cycle is an event of �.

V. EXAMPLE

Example 1: Consider the system modeled by automaton � shown
in Fig. 1, and suppose we want to verify the codiagnosability of �
with respect to �� , � � �, 2 and �� , where � � 
�� �� �� �
� ���,
�� � 
�� ��, �� � 
�� ��, �
� � 
�
� ���, and �� � 
���.
According to Algorithm 1, the first step is to obtain single-state
automaton �� and to compute the nonfailure automaton �� , which
are shown in Figs. 2(a) and 2(b), respectively. The next step is to
obtain automaton �	, shown in Fig. 3(b), by making the synchronous
composition of � and �	 (shown in Fig. 3(a)) and marking all
states that has  as the second component. Continuing Algorithm
1, we must construct the failure automaton �� , depicted in Fig. 4,
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Fig. 2. Automata � (a) and � (b) of Example 1.

Fig. 3. Automata � (a) and � � ��� (b) of Example 1.

Fig. 4. Automaton � � ������ � of Example 1.

Fig. 5. Automata � (a) and � (b) of Example 1.

taking the coaccessible part of ��. The next step of Algorithm 1,
is to obtain automata ���� and ���� (shown in Figs. 5(a) and
5(b)) from �� by renaming the unobservable events in the sets
��� � �� � ��� ��� and ��� � �� � ��� ���, respectively.
The final step of Algorithm 1 is the computation of the verifier
automaton �� � ������������ , depicted in Fig. 6. To verify
the codiagnosability it is necessary to find cycles of failure states
in �� formed with events in �. The verifier of Fig. 6 has sev-
eral cycles (for example, the cycles �������� �	 � ������ �,
�������� �	 � ������ �, and �����	�� ��� ����	� �). No-
tice that only cycle �����	�� ��� ����	� � has events in � (all
the other have only events in either �	 � �� or �	 � �� ). The ex-
istence of cycle �����	�� ��� ����	� � implies that the language
generated by � is not codiagnosable with respect to �� and �� .

As pointed out in remark 1, traces 	�, 	�, and 	
 that lead to
a violation of codiagnosability of � can be obtained from traces

Fig. 6. Verifier automaton � � � �� �� of Example 1.

of �� that contain cycles that violate the codiagnosability con-
dition of theorem 1. It can be seen from Fig. 6 that these traces
are: �� � ����

�
	 ��
	 ��	 ���; ��� � ���	 ���	 ��
	 ��	 ���;

and ���� � �	 ����
�
	 ��
	 ��	 ���, where ���� �� � � .

Thus, the traces that lead to a violation of the codiagnosability
are the failure trace 	
 � � ���� � � ����� � � ������ �

�����
�
� and the nonfailure trace 	� � ���

�
��	 ����� �

���

�
��	 ������ ����

�
��	 ������� � ����
��, with respect

to �� , and the nonfailure traces 	�� � ���

�
��	 ����� � � or

	��� � ���

�
��	 ������ � ���

�
��	 ������� � ��, with respect to

�� .
Regarding the computational complexity, the number of states and

transitions of the verifier automaton of Fig. 6 are, respectively, 13 and
28, whereas the number of states and transitions of the testing au-
tomaton proposed in [15] for automaton � of Fig. 1 are 16 and 68,
respectively, and the number of states and transitions of the verifier au-
tomaton proposed in [16] are 69 and 168, respectively. As expected the
search for the cycle that violates the codiagnosability has higher com-
putational complexity using the verifiers proposed in [15] and [16].

VI. CONCLUSION

We propose in this technical note a new algorithm for the verifica-
tion of decentralized and centralized diagnosability of a discrete event
system using a deterministic verifier. This algorithm requires polyno-
mial time in the cardinalities of the state space and event set of the
system and has lower computational complexity than other algorithms
proposed in the literature. The algorithm also does not require assump-
tions on the liveness of the language generated by the system or the
nonexistence of cycles of unobservable events.
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Stability Analysis of Positive Switched
Linear Systems With Delays

Xingwen Liu and Chuangyin Dang

Abstract—This technical note addresses the stability problem of delayed
positive switched linear systems whose subsystems are all positive. Both dis-
crete-time systems and continuous-time systems are studied. In our anal-
ysis, the delays in systems can be unbounded. Under certain conditions,
several stability results are established by constructing a sequence of func-
tions that are positive, monotonically decreasing, and convergent to zero
as time tends to infinity (additionally continuous for continuous-time sys-
tems). It turns out that these functions can serve as an upper bound of the
systems’ trajectories starting from a particular region. Finally, a numerical
example is presented to illustrate the obtained results.

Index Terms—Delays, dual systems, positive switched linear system
(PSLS), stability.

I. INTRODUCTION

A switched system is a type of hybrid dynamical system that com-
bines discrete states and continuous states. Informally, it consists of a
family of dynamical subsystems and a rule, called a switching signal,
that determines the switching manner between the subsystems. Many
dynamical systems can be modeled as such switched systems [1]–[3].
Switched systems possess rich dynamics due to the multiple subsys-
tems and various possible switching signals [4], [5]. Many interesting
and challenging issues in switched systems have attracted a lot of at-
tention [6]–[9].

Recently, the importance of positive switched linear systems
(PSLSs) has been highlighted by many researchers due to their broad
applications in communication systems [10], formation flying [11],
and systems theory [12], [13]. A positive system implies that its states
and outputs are nonnegative whenever the initial conditions and inputs
are nonnegative [14], [15]. A PSLS means a switched linear system in
which each subsystem is itself a positive system. Positive systems have
numerous applications in areas such as economics, biology, sociology
and communications [16], [17], [30]. It is well known that positive
systems have many special and interesting properties. For example,
their stability is not affected by delays [18]–[20]. It should be pointed
out that studying the dynamics of positive switched systems is more
challenging than that of general switched system because, in order
to obtain some “elegant” results, one has to combine the features of
positive systems and switched systems [21].

A mass of literature is concerned with the issue of stability of PSLSs
[22]–[25]. When stability of positive systems is considered, it is natural
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