IEEE TRANSACTIONS ON EDUCATION, VOL. 55, NO. 2, MAY 2012

285

Fair and Square Computation of Inverse
Z-Transforms of Rational Functions

Marcos Vicente Moreira and Jodo Carlos Basilio

Abstract—All methods presented in textbooks for computing
inverse Z-transforms of rational functions have some limitation:
1) the direct division method does not, in general, provide enough
information to derive an analytical expression for the time-domain
sequence z (k) whose Z-transform is X (z); 2) computation using
the inversion integral method becomes labored when X (z)z%~1
has poles at the origin of the complex plane; 3) the partial-fraction
expansion method, in spite of being acknowledged as the simplest
and easiest one to compute the inverse Z-transform and being
widely used in textbooks, lacks a standard procedure like its in-
verse Laplace transform counterpart. This paper addresses all the
difficulties of the existing methods for computing inverse Z-trans-
forms of rational functions, presents an easy and straightforward
way to overcome the limitation of the inversion integral method
when X (z)z*~1 has poles at the origin, and derives five expres-
sions for the pairs of time-domain sequences and corresponding
Z-transforms that are actually needed in the computation of
inverse Z-transform using partial-fraction expansion.

Index Terms—Control education, discrete-time signals, discrete-
time systems, inverse Z-transformation, teaching methodology.

I. INTRODUCTION

HE Z-transform is an important mathematical tool and

plays a key role in the analysis and design of discrete-time
systems. It is usually taught as part of a discrete-time control
course in electrical and electronic engineering curricula. The
Z-transform is a transformation that maps discrete-time signals
to complex rational functions, being defined as follows:

Z:IxR—-CxC )
x(k) — X(2) = Z[z(k)] = Z:{:(k‘)sz’. )
0

It is usually obtained by using convergence properties of com-
plex series [1], [2].

Taking into account the fact that signals considered in engi-
neering usually have rational Z-transforms and the concept of
transfer function, it can be seen that the output of the system
in the time-domain can be obtained by simply computing the
inverse Z-transform of the product of the discrete transfer
function of the system and the Z-transform of the input signal.

Manuscript received April 17, 2011; revised August 15, 2011; accepted
September 26, 2011. Date of publication October 17, 2011; date of current
version May 01, 2012. The work of J. C. Basilio was supported in part by the
Brazilian Research Council (CNPq) under Grant 306592/2010-0.

M. V. Moreira is with COPPE—Programa de Engenharia Elétrica, Electrical
Engineering, Universidade Federal do Rio de Janeiro, 21949-900 Rio de
Janeiro, Brazil (e-mail: moreira@dee.uftj.br).

J. C. Basilio is with COPPE—Programa de Engenharia Elétrica, Departa-
mento de Eletrotecnica, Universidade Federal do Rio de Janeiro, 21949-900
Rio de Janeiro, Brazil (e-mail: basilio@dee.uftj.br; basilio@pee.uftj.br).

Digital Object Identifier 10.1109/TE.2011.2171185

Therefore, the computation of inverse Z-transforms is crucial
in the performance analysis of discrete linear time-invariant
systems.

The computation of inverse Z-transforms is performed by
means of one of the following three methods [3]-[10]:

Z1) the direct division method;

Z2) the inversion integral method;

Z3) the partial-fraction expansion method.

The direct division method Z1 is a straightforward way to
obtain the time-domain sequence x(k) whose Z-transform is
X (z). However, this method is only suitable when it is neces-
sary to know the first terms of the time-domain sequence since,
apart from very special cases, it is not possible to obtain an an-
alytic expression for z(k).

The inversion integral method Z2 relies on the computation
of the following integral:

1
z(k) = — ¢ X(2)zF 'dz
27y Je

2
where C is a counterclockwise contour that encloses the origin
and all poles of X(z)z* L. The solution to this integral re-
quires some knowledge of complex variable theory, with the
sequence 2(%) being obtained by using the residue theorem.
However, as pointed out in [6], the computation of residues be-
comes cumbersome when X (z)z*¥~! has poles at the origin of
the complex plane. This difficulty has been partially circum-
vented in [8] by using the change of variable z = 1/u. It can be
easily checked that for the values of k for which X (1 /u)u ~*+!
has no poles at the origin, then z(k) = 0. However, it is still
necessary to compute the residues at the origin corresponding
to the values of & not encompassed by the analytic expression
for (k) that results from the computation of the residues of
X (2)z% ! associated with the poles that are not at the origin.
Therefore, although the approach proposed in [8] reduces the
awkwardness pointed out in [6], obtaining the complete solu-
tion is still labored.

The partial-fraction expansion method Z3 is considered by
some authors [3], [4], [7] as preferable to the inversion inte-
gral method, being regarded as the simplest and easiest way to
compute the inverse Z-transform of a rational function X (z).
In spite of being widely used in textbooks, the proposed proce-
dures differ from author to author, and the tables of Z-transform
pairs, when given, are both long and incomplete. The lack of an
expression for the time-domain sequence that corresponds to the
term with multiple poles is without a doubt the main reason for
the number of different approaches to compute inverse Z-trans-
forms using partial-fraction expansion. Franklin et al. [5] re-
strict themselves to the direct division and inversion integral
methods. Jackson [10] and Mitra [9] address this problem in
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a very superficial way. Cadzow and Martens [3] take into ac-
count poles with multiplicity less than or equal to five, propose
a partial-fraction expansion in which the numerator of the terms
of degree greater than one are polynomials (not a constant),
and present a table with the pairs of the terms considered. Op-
penheim and Schafer [4] present a partial-fraction expansion in
terms of negative powers of z, but do not specifically address the
inversion of the terms with degree different from one. Soliman
and Srinath [7] suggest the use of a 20-row table to identify the
sequences corresponding to the terms in the partial fraction ex-
pansion. Ogata’s book [6] restricts its treatment to multiplicity
two and recommends that for a triple pole at z = z;, the nu-
merator of the term (z — z;)® must include a term (z + z;).
Multiplicities larger than three are not considered in [6].

This paper addresses the computation of the inverse Z-trans-
form of a proper rational function X (z) and proposes a simple
remedy to overcome the alleged cumbersomeness of the use of
the inversion integral method Z2 when the function X (z)z* 1
has poles at the origin for some values of k. In addition, a list
with only five pairs of time-domain sequences/Z -transforms for
all the terms that are actually needed in the computation of in-
verse Z-transforms using partial-fraction expansion is derived
here.

This paper is organized as follows. The computation of in-
verse Z-transform is considered in Section II, addressing all
methods Z1-Z3, highlighting their importance and dependence
on each other. In Section III, two examples are used to illus-
trate this paper’s contributions. Student assessment is reported
in Section IV. Finally, conclusions are drawn in Section V.

II. COMPUTATION OF INVERSE Z-TRANSFORM

Let the Z-transform of a real sequence (%), obtained ac-
cording to (1), be expressed as

_ bozm,_'_blszl _l_bzszQ + "'+bm

X
(Z) 2"+ (len'71 + (LQZ'TL72 + - ta,

where b;, a; € R,foryj = 0,...,mand¢ = 1,...,n, and
n > rn. Assuming that X(z) has ng (ng > 0) poles at the
origin of the complex plane, then the last n( coefficients of the
denominator of X (), namely, @y —ny+1; @n—ng+25 - - - s U, ATE
identically zero, and thus (3) can be rewritten as

boz"” + blszl + ngm72 + -+ by

~T0 (anno + alznfnofl + .. 4 ani?m)

X(z) = “4)

Methods Z1-Z3 for computing z(k) = Z [ X (z)] will be now
considered.
A. Direct Division Method

Since, by assumption, n > m, then dividing the numerator
and denominator polynomials of X (z), given in (4), results in

boszn + blz.mfnfl + bQmenfz 4+ 4 bmzfn,

— — 9 —
14+a1z7t+agz 24+ a,_p, 2" "

X(z) =
)
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Defining » = n — m, then (5) can also be written as

i bozir-i-blziril +"'+bm27n
1+ (L1271 + (L2Z72 + -+ Up—ng zZho—n ’

X(2) ©)

It can immediately be seen that X (z) can be expanded into
an infinite power series in z~1. Therefore, according to (1),
the terms z (k) of the time-domain sequence will be the coef-
ficients of z=%, k = 0,1,2,.... The following conclusions can
be drawn.

C1) The first r terms of the sequence (k) (x(0) to z(r — 1))
are equal to zero.
z(r) = bo.
The remaining terms of x(k) (i.e., & > ) can be ob-
tained through straightforward polynomial division.
It is not hard to see that, in general, this method does not pro-
vide the means to obtain a closed-form expression for x (%) and
is thus suitable only when it is necessary to obtain the first few
terms of z(k). Nevertheless, as will be seen in Section II-B, this
fact will be used in order to overcome the limitation of the in-
version integral method when X (2)2* ! has poles at the origin.

C2)
C3)

B. Inversion Integral Method

Another way to compute the inverse Z-transform of a proper
rational function is by using the Cauchy integral theorem,
leading to the inversion integral given in (2). One way to eval-
uate the contour integral (2) is through the Cauchy’s residue
theorem [1], which states that if X (z)z*~! has p distinct poles
inside C, then (%) will be given by

z(k) = ZResZ:Z,. [X(2)zF 1] (7)

where Res._., (.) denotes the residue at pole z;. If z; is a simple
pole, then

Res.—, [X(2)2" 1] = I (2 = 2)X(2)2" 1] @)
and when z; is a pole of multiplicity ¢, then
Resz:zi [X(Z)Zkil]
L 1 ar - k-1
= lim [(Z_Zi)q)&(z)z‘ ] )

(g — 1) z—z de!

It is remarked in [6] that when X (z)z* ! has poles at the
origin for some values of k, then the application of the inversion
integral method becomes cumbersome. The explanation of this
follows. Assume that the numerator and denominator of X (%)
are coprime and that X (z) has no zeros at the origin. Since, by
assumption, X (z) has ng poles at the origin, then X (z) can be
written as

(10)
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where X (%) has no poles at the origin. Thus

1

X = o XG)

n
has ng = nog + 1 — k poles at the origin, which implies that
the number of poles of X (z)zk -1 at the origin, n,x, depends
on the value of k. Assuming that X (z) has § distinct poles
Z1, %2, ..., 2p, then z(k), k = 0,..., ng, will be given as

[ X (2 L X(z
2(0) = Res.—q Zno(i)l +;Resz,zi Lny)l] (12)
B [ X(2) . X (2)
x(ng) = Res.—o i + ;Resz:zi [ ] (13)

and for k > ng + 1

X(2) ] . (14)

P
(k) = ZRcsz:zi lzno—kﬂ
=1

It is therefore not difficult to see that it is necessary to compute
(np+1) X (p+ 1) residues in order to calculate the first ng + 1
terms of the sequence. Looking at the problem from this per-
spective, it is not difficult to agree with [6] that the computation
becomes cumbersome. However, it is also clear from (12) and
(13) that the first ng 4+ 1 terms do not depend on %. This obser-
vation provides a simple way to overcome the alleged cumber-
someness: Instead of computing (k) foreach k = 0,1,...,ng
using (7), it is enough to deploy the direct division method to
obtain the first ng 4+ 1 terms of the sequence, and then use (14)
to calculate (k) for k& > ng + 1.

It is important note that if the relative degree! r of X (2) is
greater than or equal to the number of poles ng of X(z) at the
origin, then it is not necessary to use the direct division method
since, according to conclusions C1 and C2 of Section II-A, the
first ng + 1 terms of (k) can be readily obtained by inspection
of X (z) when written in the form of (6).

C. Partial-Fraction Expansion Method

Let X (=) be given by (3). In order to find the inverse Z-trans-
form of X (z) through partial-fraction expansion, the first step
is to compute the partial-fraction expansion of X(z)/z; the
reason for which will become clear in what follows. Assume
that X (z)/z has p distinct poles z; € C, each one with multi-
plicity ¢; (g1 + g2 + - - + g, = n). Since m < n, then X (z)/z
can be expanded as

X(z)  An Ags Arg
z _(z—z1)+(z—zl)2+ +(z—21)‘11
API Apz APQ
St e (15
G " Gomp Gz Y

IThe relative degree of a rational function is the difference between the de-
grees of its numerator and denominator polynomials.

When z; is a simple pole, then ¢; = 1, and the only coefficient
to be computed is A;1, which is given by

X(2)

A= lim (2 — %)

zZ—rzq

(16)

If 2; is a multiple pole, then the coefficients A;; are computed

as follows:
1 [ =7 X(2
Aij = lim —d— (Z _ Z'i)qi (4) 7
z—2zy ((11 — ])' dg[h*] z
j=1,...,q. (17)
Multiplying both sides of (15) by z gives
Xy = Anr oy Awr L Awe
(Z_Zl) (Z—Zl) (2—21)‘11
Api 2 Aps? . _Apgz (18)
(Z - ZP) (Z - Zp)~ (Z — Zp)ql’

Thus, to compute the inverse Z-transform of X (z), it is only
necessary to know is the inverse Z-transform of the terms on
the right-hand side of (18), which can be arranged in five types,
as follows: 1) single or multiple poles at the origin: z; = 0,
q; > 1;2) asingle real pole: z;, = a (@ € R*), ¢; = 1;3) a
single complex pole: z; = ae?“ (a € R%), ¢; = 1; 4) multiple
real poles: z; = a, (a € R*), ¢; > 1; 5) multiple complex
poles: z; = ae?“(a € R’ ), ¢; > 1. These cases will now be
addressed.

1) Terms Containing Single or Multiple Poles at the Origin:
Using (1), the following pair can be easily obtained:

zk)=86k—no) = X(z)=2"= ng € N

(19)
where §(k —ng) = 1, for k = ng, and zero elsewhere. This pair
is the relationship sought in Case 1.

2) Terms Containing a Single Real Pole: Assuming thata €
R*, then using (1), it is not difficult to see that the solution to
Case 2 is given by

Z?Lo

1 s
2(k)=0a", aeR* = X(z) = T :

» |21 >al.
(20)
3) Terms Containing Single Complex Poles: If z; = ae?*®
(e € R ) is a complex pole of X (z),s0is 2] = ae~7%0_ There-
fore, the two terms below must appear in the partial-fraction
expansion (18)

z —

Ae—i¢y
(z —27)

where A € RY . Using (20), one may write

Aeitz

(z = 2)

Y(z) =

€2y

y(k) = Aed?abeiok 4 Aoty —iwok fork > 0. (22)
Therefore, (22) can be rewritten as

y(k) :A(Lkej(wok-i‘@) + Aa}ke*j(wok-l'@

=2A4a cos(wok + ¢), k>0 (23)

solving, therefore, Case 3.
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TABLE I
INVERSE Z-TRANSFORM FOR THE GENERAL TERMS IN PARTIAL-FRACTION EXPANSION

Type of poles Term Inverse Z-transform

A
Single/multiple poles at z =0 — Ad(k — ng)

Z

A
Single real pole 2 _za Adk k>0

: Az k—q+1TT9-2 .
Multiple real pole G_a) ma =5k —1),k>0
. Ael? Ae™1%2
Single complex poles G —aom) ¥ = gm0y’ Aja e Ry 2Aa* cos(wok + ¢),k >0
Jo —Jj¢ 2 k—q+1 k— 1

Multiple complex poles Al A% AaeRy (g — 1)!a coslwo(k —g+1) +9]

(2 — aedwo)e

(2 — ae=gwo)a’ ™"

XT3k — i) k>0

4) Terms Containing Multiple Real Poles: Assume that ¢ €
R* and define

Az

Y(z) = m

(24)

Using (9), the corresponding time-domain sequence y(k) can
be obtained, being given as

y(k) =Res._, [Y(2)2" ] o3)
et N
B (g — 1) }LH}L dza—1 [(2 - “)qmzk 1
A a2
= maqu-&-l H(k; — i), k> 0. (26)
' i=0

5) Terms Containing Multiple Complex Poles: As in the
case of single complex poles, the following expression must be
considered:

Ae—i%,

(z —ae—Jwo)a’

Aei?

(2 — aeiwo)e

Y(z)=

27

The inverse Z-transform of each term on the right-hand side of
(27) can be obtained using (25), which results in

y(k) =

[ejcﬁ(aejwo )qu+1 4 671’@ (aefiw )qu+1}

(q—1)!
qg—2

x [[(k—i).k >o0. (28)
i=0

Therefore, (28) can be rewritten as
Agk-at+1 2 )
y(k) ZQWCOS [wo(k — g+ 1)+ ¢] x l})(k — i),
k>0. (29

The results of this section are summarized in Table I. Notice
that it is enough to know only the five pairs given in Table I
to compute the inverse Z-transform of a rational function. This
fact makes the teaching of inverse Z-transforms using partial
fraction expansion easy and straightforward since an analog
table containing pairs of functions/Laplace transforms was pre-
viously derived when inverse Laplace transforms using partial
fraction expansion was taught.

Remark 1: The usual approach to the computation of inverse
Z-transform in the case of multiple poles (real or complex) re-
quires that the numerators of the partial fraction expansion terms
be polynomials. Because of the way the denominator polyno-
mials of the partial fraction expansion of X (z)/z are chosen in
the methodology proposed here, and due to the fact that (25)
has been derived from (24) by using the inversion integral, the
numerator of all terms of the partial fraction expansion of X ()
are polynomials of degree 1 without the constant term. This re-
lationship between the partial fraction expansion and the inver-
sion integral is the key step to establishing the partial fraction
expansion proposed here, which can be regarded as the inverse
Laplace transform counterpart. Notice that the computation of
inverse Laplace transforms using partial fraction expansion also
does not require polynomial numerators. O

III. EXAMPLES

Two numerical examples are presented here to illustrate the
methodology proposed in this paper.

A. Example 1
In this example, z(k) = Z~1[X(2)] will be computed for
z+2
X(z)= ——= 30
()= ;g (30)
using the inversion integral method. Note that since
5 2 Jk*S
X(z)zk‘l = w (31)

(z-2)

then the multiplicity of the poles of X (z)z¥~1 at the origin de-
pends on the value of k, as follows: 1) k = 0: z; = 0(#3) and
20 =2;2)k=1:21 =0(#2)and 20 = 2;3) k =2:2, =0
and zo = 2;4) k > 3: z; = 2, where (#.) denotes multiplicity.
This makes the task of computing (k) long and tedious since
seven residues must be computed, as follows:

Ro1 + Rp2, k=0
n ) B+ R, E=1
w(k) = Ro1 + Roa, k=2
where
o (z+2)
Ry1 =Res.—g [m
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Ryps =Res.—o | ——=
02 €5z=2 |3z —2))
_ [ (z+2) ]
Rll —RBSZ:O _22(2 — 2)_
[ (z +2) ]
Ri3 =Res.—
12 €5z=2 (z — 2)
[ 2
RQl :RBSZ:O 7 + ) :|
(z—2
[ (z+2)
Rys =Res.—
22 €5z=2 (= — 2)}
z 42
Rg(k) :RBSZZQ %} .

Notice that, according to Section II-B, it is not necessary to com-
pute the first six residues; terms 2:(0), (1), and 2(2) can be ob-
tained in a straightforward way (see conclusions C1 and C2 in
Section II-A) as follows.
1) 2(0) = z(1) = 0, since X (z) has relative degree equal to
2

2) x(2) = 1, the leading coefficient of the numerator polyno-
mial of X (z).
Therefore, the only residue that has to be computed is Rs(k),
which, according to (8), is given as

Ry(k) = liné(z +2)zF 73 = 9k 1, k> 3.

Thus

Remark 2: If the transformation proposed in [8] is performed
in (31), then the following contour integral must be solved:
1 [ u+05
(k) = ut0o
Jé—u+05

- —k-l—ld
27

where C is any closed contour inside a circle of radius equal
to 0.5. Since, due to the change of variable z = 1 /u, the closed
contour C does not encircle the pole v = 0.5, it is not hard to see
that for £ = 0.1, z(k) = 0. However, as shown in Example 1,
x(2) is also a constant. In order to obtain x(2) using the contour
integral above, it is still necessary to compute the residue for
k = 2 as follows:

which is the same value as that easily obtained using the strategy
proposed in this paper. O

B. Example 2

In this example, the inverse Z-transform of
23

(1—2"1)3(1—2"14+22)

X(z) =

will be computed using the partial-fraction expansion method.
According to Section II-C, the first step is to write X (%) in pos-
itive powers of z, and then to obtain the partial-fraction expan-
sionof Y (z) = X(z)/z. Since the poles of X (z) are z; = 22 =

z3=1,24 = 1/24 jV/3/2 = &7/3) and z5 = 2%, then Y (2)
must be expanded as

Al AQ A3 B B*
Y(z) = :
(2) z—1+(z—1)2+(z—1)3’+z—24+

where the coefficients A;, As, A3, and B are computed using
(17) and (16) as follows:

(32)

*
2—24

Az = lim(z — 1)*Y(2) = 1

z—1

As = lim di(z —1*Y(2) =0

lim li(z —1)*Y(2) =

A =
L7 2dz
ﬁc—jws),
3

D= hm (2—24)Y( )=

Therefore, X (z) has the following expansion:

— P V3 eI /6),

X(z)= +m+?<

e.f(vr/b’);;)

Z— 24 z— 2z
(33)
Using Table I on the right-hand side of (33) leads to the fol-

lowing expression:

1

m(k:):§(kz—k—2)+ k>0.

2v/3 koW
cos ,
3 3 6

IV. STUDENT ASSESSMENT

In order to assess the methodology proposed in this paper,
two surveys were carried out in the first and second semesters of
2010 with electrical engineering students attending their second
control course. The students were asked to answer the question-
naire shown in Table II. Eighty-eight students (48 in the first
semester and 40 in the second) answered the eight statements
of the questionnaire by circling the grade that most closely de-
scribed their opinion for each statement as follows: 5—abso-
lutely agree; 4—mostly agree; 3—slightly agree; 2—slightly
disagree; 1—mostly disagree; 0—absolutely disagree. Those
students who scored 0 in statement 4 were asked not to score
statements 5 and 7. Students were also told to score statement 8
only if they had discussed the method presented in the course
with at least one student from other engineering courses.

Table III shows the results of the survey. Two conclusions
can be drawn from the average scores shown in rows 1 and 2
of Table III: 1) the students had an above average background
in Laplace transforms; and 2) partial-fraction expansion was
their favorite method to perform the computation of inverse
Laplace transforms. This fact had been realized by the authors
in previous courses in which Laplace transforms were either
taught or used as a tool. The opposite feeling was demonstrated
by students when they were taught the computation of inverse
Z-transform with all the restrictions imposed in the textbooks
cited in this paper. The students’ disappointment was actually
the motivation for seeking different approaches to deal with
the computation of the inverse Z-transform. The high average
score of statement 3 presented in the third row of Table III
shows the important role the inverse Laplace transform played
in the process of understanding the computation method pro-
posed here. The low average score of statement 4 reveals that
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TABLE II
EIGHT STATEMENTS USED IN THE STUDENT SURVEY

Before this course, I had a strong background in Laplace
transforms.
5 4 3 2 10

My favorite method to compute inverse Laplace transforms
is the partial fraction expansion.
5 4 3 2 10

My prior knowledge of how to calculate inverse Laplace

transforms was crucial in helping me

to understand the method presented in this course.
54 3 2 10

I used other textbooks besides the lecture notes to study
how to perform the computation of inverse Z-transforms.
5 4 3 2 10

I found the methods presented in the textbooks I used
to complement my studies in computation of inverse
Z-transforms more appropriate than those taught
in this course.

5 4 3 2 10

I believe I will remember how to calculate inverse
Z-transforms even after the end of this course.
5 4 3 2 10

I believe I would not be able to remember how to calculate

inverse Z-transforms in the future if I had been taught

in accordance with the usual techniques presented in textbooks.
5 4 3 2 1 0

In talking to other students from different engineering courses
who had been taught inverse Z-transforms according
to standard textbooks I realized that my knowledge on
this subject is much better than theirs.
54 3 2 10

TABLE III
RESULT OF SURVEY ANSWERED BY THE STUDENTS

Statement Average score

3.64
4.36
4.29
1.24
115
3.67
3.50
4.10

RN ST w N

only a few students sought other references than those given
in class. Indeed, only 43% of the students consulted some
textbook. It is worth remarking that the lecture notes on which
this paper was based on were handed out to the students. Those
students who browsed at least some textbooks found the method
presented in class easier to understand than those presented
in those textbooks, as demonstrated by the low average score
associated with statement 5. Comparing the average scores
for statements 1, 6, and 7, it can be verified that the students
have approximately the same expectation of their knowledge
of the Z-transform as their evaluation of their own background
in Laplace transforms. The result of statement 8 attests to the
success achieved by the proposed method. The average score

IEEE TRANSACTIONS ON EDUCATION, VOL. 55, NO. 2, MAY 2012

of statement 8 is very high (4.10), although only 34% of the
students responded to this statement, which again shows that
from the students’ point of view, the method has superseded
the standard ways to teach the inverse Z-transform.

V. CONCLUSION

In this paper, simple and systematic ways to compute inverse
Z-transforms have been proposed. The teaching methodology
presented here can be regarded as the inverse Laplace transform
counterpart. A short but complete, list of pairs of time-domain
sequences/Z -transforms has been derived. An alleged cumber-
someness of the inversion integral method in the case of mul-
tiple poles at the origin has also been removed. Student assess-
ment of the new teaching methodology proposed here has at-
tested that the method can be effectively used in the teaching of
inverse Z transforms.
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