
204 IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 2, MAY 2004

State–Space Parameter Identification in a Second
Control Laboratory

J. C. Basilio and M. V. Moreira

Abstract—A difficulty usually encountered in the preparation
of a state–space-oriented control laboratory is that most of the
system identification techniques available in the literature are for
input/output models. Although in recent years there has been a
growing interest in state–space identification methods, the appli-
cation of these techniques in undergraduate courses are not im-
mediate since they require a deep knowledge in mathematics and
system theory. In this paper, experiments are proposed to estimate
the parameters of a second-order state–space system, a dc motor-
generator group, whose model plays a key role in a laboratory that
deals with state–space design. The efficiency of the proposed ex-
periments is demonstrated with the estimation of all parameters of
a real system.

Index Terms—Control education, laboratory education, param-
eter estimation, state–space models.

I. INTRODUCTION

I N GENERAL, laboratories for the basic courses in control
systems are divided as follows. First, an initial one [1]

uses, in general, step- and frequency-response methods to
obtain a transfer function for the system and, in the sequel,
by deploying classical control tools [2], proportional+integral
(PI) or proportional+integral+derivative (PID) compensators
are designed to meet transient performance specifications.
Second, a state–space-based control laboratory should also
cover the following topics: modeling/identification, controller
design, simulation, and controller implementation. From the
didactic point of view, ideal plants for a state–space-oriented
laboratory are those whose states are available. This feature
allows the following topics to be covered [3]: state feedback,
state estimators, and design for robust tracking and disturbance
rejection. In addition, it is important that the plant has, at least,
two states, i.e., be modeled as a second-order system.

A difficulty usually encountered in the preparation of a
state–space-oriented control laboratory is that most of the
system identification techniques available in the literature
[4]–[6] are for input–output models. Although in recent years
there has been a growing interest in state–space identification
methods [7]–[10] and references therein, the application of
these techniques in undergraduate courses are not immediate
since they require a deep knowledge in mathematics and system
theory. In this paper, experiments are proposed to estimate
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the parameters of a second-order state–space system, a dc
motor-generator group, whose model plays a key role in a
laboratory that deals with state–space design. The key point of
the proposed identification scheme is to split the second-order
system into two first-order ones and, in the sequel, to obtain the
equivalent discrete-time model for the first-order models. The
parameters can then be estimated using least squares.

This paper is structured as follows. In Section II, a dis-
crete-time model equivalent to a continuous first-order model
will be reviewed, and general experiments for the estimation
of the parameters of these systems are proposed. In Section III,
a second-order state–space model for the motor-generator
group is initially obtained, and in Section IV, experiments are
proposed to carry out the parameter identifications in a control
laboratory. The efficiency of the proposed experiments will be
demonstrated in Section V with the estimation of all parameters
of a dc motor-generator group of the Control Laboratory of the
Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro,
Brazil. Finally, conclusions are drawn in Section VI.

II. A DISCRETE-TIME MODEL FOR A FIRST-ORDER

CONTINUOUS-TIME SYSTEM

The experiments to be proposed in this paper for the identi-
fication of the plant parameters are based on the estimation of
the parameters of a first-order continuous-time system. How-
ever, as explained in the next section, frequency- or step-re-
sponse methods cannot be deployed, since sine-type or step
signals cannot be applied directly to the resulting first-order
systems. This apparent difficulty is circumvented using para-
metric identification. Thus, an equivalent discrete-time model
for the first-order continuous-time system needs to be obtained.
Since this relationship is crucial in the understanding of the pro-
posed identification scheme, the topics considered in this sec-
tion should receive special attention in the theoretical course
which precedes the laboratory or in the preparatory part of a
control laboratory that deploys the methodology proposed here.

A. Background

The transfer function of a first-order system with time con-
stant and steady-state gain , with no time delay, is given by

(1)

A straightforward state–space representation for (1) is

(2)
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where , . It is well known from
control theory [11] that the discrete-time model equivalent to a
continuous-time system with the state–space description (2) is
given by

(3)

where and denote the sampling instants

(4)

with denoting the sampling period. One can easily
see that (3) leads to the linear difference equation

(5)

This expression shows that, providing the parameters and
are estimated, then the gain and the time constant of the
continuous-time model (1) can be computed using the relation-
ships given in (4).

B. Least-Squares Estimation of and

The determination of and can be carried out as follows
[11, p. 423]: assume that the output and input are
known for . Thus, from (5), one can write

...
(6)

whose equivalent matrix form is given as

(7)

where

...
...

...

It is important to remark that, in practice, (the number of
recorded inputs and outputs) is much greater than 2 (the number
of columns of ). This fact makes almost impossible a solution
for system (7), and, therefore, one has to seek an approximate
solution. A well-known solution to this problem is the “least-
squares” solution, i.e., the one which minimizes the Euclidean
norm of and is given by [12]

(8)

Remark A: In the least-squares estimation of discrete-time
systems, the shape of the input signal plays an important role
since it can make the matrix in (7) lose rank, precluding the
computation of the inverse of in (8). Such a problem can
be avoided by using, as input signals, those that are sufficiently
rich [11, p. 423], as far as frequency information is concerned.

Fig. 1. Equivalent circuit of an armature controlled dc motor.

In the present work, a pseudorandom binary signal (PRBS) will
be used as input. This signal can also be seen as a pulse train
with variable width [6, p. 373].

III. MODELING

The plant used in the Control Laboratory of UFRJ consists
of a motor-generator group (two armature-controlled dc mo-
tors connected by their shafts). The variable to be controlled is
the shaft velocity, which is usually chosen to illustrate the fol-
lowing concepts [13]: 1) the need for feedback and 2) the need
for dynamic compensation when signals modeled as step are to
be tracked or rejected. In addition, this plant is also appropriate
for state–space-oriented control laboratories since, as it will be
seen in this section, it can be modeled as a second-order system.
Furthermore, one can always define state variables that can be
accessible for measurement and state feedback.

The generator in the motor-generator group plays an impor-
tant role, i.e., the effect of connecting a load (e.g., a resistance)
to its terminals can be modeled as an external disturbance signal
applied to the plant input [1]. The consequence is that the math-
ematical model of a dc motor-generator group is the same as
that of an armature-controlled dc motor, whose equivalent cir-
cuit is shown in Fig. 1, where and denote, respectively,
the armature resistance and inductance, is the motor inertia,
and represents the viscous friction.

Remark B: In order to derive a model for this system, one
must take into account two types of frictions: Coulomb (dry)
and viscous frictions. The main contributors to the frictions in
a dc motor are the frictions between the brushes and the com-
mutator, as well as in the bearings (Coulomb friction), and is a
result of windage (viscous friction). In well-lubricated bearings,
there is a component of viscous friction because of the laminar
flow of the lubricant, being usually the predominant one, when
the shaft is already in movement and a component of Coulomb
friction at very slow speed [14]. Therefore, since the model will
be assumed to be linear, the only effect that should be taken into
account is that of the viscous friction. The Coulomb friction has
a significant contribution to the motor nonlinear behavior when
very low voltages are applied to the motor input. This effect,
usually referred in the literature to as a dead zone, will be illus-
trated in Section IV.

Direct application of Kirchoff and Newton laws to the system
of Fig. 1 leads to the equations

(9)

where denotes the motor torque and an external
torque, which can be neglected when no load is connected to the
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generator terminals. The relationships between electrical and
mechanical equations are given as

(10)

where denotes the shaft velocity, and and are,
respectively, the counter electromotive and torque constants.
Substituting (10) in (9), and defining as state variables the
armature current and the shaft velocity , and as input,
the external voltage applied to the armature circuit , the
following state–space model is obtained:

(11)

Therefore, for the complete description of a second-order
state–space model of an armature-controlled dc motor, it is
necessary to identify the parameters , , , , , and

. The identification of and can be carried out using
concepts of electric machines [15]. However, most of elec-
tric-machine textbooks present models that are valid only for a
steady-state regime, thus neglecting the effect of the armature
inductance. The inertia can be determined using concepts
from Mechanics, which usually requires the motor to be disas-
sembled. Another important point to remark is that the viscous
friction varies linearly with the shaft velocity; therefore, one
needs to obtain an average value for the viscous friction in the
linear region of operation. Hence, one must seek alternative
ways to identify and and to design an experiment that
takes into account the different operating conditions of the
motor. One should emphasize that the experiments proposed in
this paper require only basic knowledge of electric machines,
usually presented in standard control textbooks (see, e.g., [2]).

Finally, notice that the measurement of is usually per-
formed by encoders or tachometers. These elements generate
a voltage at their terminals proportional to , as
follows:

(12)

Thus, substituting (12) in (11), results in

(13)

IV. PARAMETER ESTIMATION

In order to design experiments for the estimation of , ,
, , and , notice that (13) can also be written as

(14)

Thus, defining

(15)

then (14) is equivalent to

(16)

which represents two first-order systems. This finding allows
one to define two systems, an electrical ( ) and a mechanical
( ), whose state–space realizations are given as

(17)

where , and and

(18)

where , and .
According to (15), input depends on a control variable

, and another one depends on the machine parameters.
Similar conclusions could be drawn for , which depends
on being, therefore, a function of the motor parameters.
An immediate consequence of this fact is that the identification
of , , , and cannot be carried out by continuous-time
identification techniques, such as frequency or step response.
This apparent problem can be circumvented if the discrete-time
system identification technique suggested in the previous section
is deployed.

Since the plant is being described by the linear model given
in (13), its linear region of operation must be determined. An
experiment for the determination of the linear region of opera-
tion of the plant should, therefore, be the first experiment to be
performed.

A. Determination of the Linear Region of Operation

Experiments for the determination of a linear region of oper-
ation, as well as the kind of nonlinearity present in a dc motor,
has already been considered in [1]. Here, only the algorithms
necessary to determine the input values for which the system
behaves as a linear one are presented. A more detailed expla-
nation can be found in [1]. In addition, it will be assumed here
that the tachometer gain is known. If is unknown, then
its value can be determined by least-squares fitting of the points
( , ), , where is the shaft velocity and
is the corresponding voltage at the tachometer terminals.

Let denote the step amplitude of a voltage signal applied
to the armature circuit of the dc motor, and denote the cor-
responding steady-state value of the voltage at the tachometer
terminals. The determination of the linear region of operation
can be carried out as follows.

Experiment 1:

Step 1) Apply to the armature circuit step signals of ampli-
tude , , and record the corresponding
steady-state values of the voltage at the tachometer ter-
minals , .

Step 2) Form the points , , and find the
coefficients , of a polynomial

of degree , i.e.,

(19)

which fits better (in a least-squares sense) to the points
.
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The coefficients , of the polynomial
, given in (19), can be computed by least-squares fitting.

Notice that, with the points obtained from the experiment, the
following system of equations can be formed:

...
...

...
...

...
...

(20)

which can be written as . Since the number of rows
(number of points recorded in the experiment) is usually much
greater than the number of columns of (the degree of the
polynomial plus one), once again, one must rely
on a least-squares solution to compute the coefficients ,

. One can easily see that [12]
is the desired solution. Once the polynomial

has been computed, the linear region of operation will be
given by the values of for which the derivative of with
respect to is approximately constant.

Remark C:

1) One way to determine is as follows: for , compute
. Then, increase until the matrix

becomes nearly singular1 or the decrease in is below
a prescribed value.

2) Besides being a systematic way to determine the linear
region of operation, the experiment proposed above also
allows the student to identify the type of nonlinearity
present in the process. In the case of dc motors, for steps
with amplitude below a certain value , the motor does
not rotate. As mentioned in remark B, this situation char-
acterizes a nonlinear effect called dead zone.

B. Computation of and

When expressed in international system units, the electro-
motive and torque constants and , respectively, have
the same figures. Therefore, only one experiment to find them
is sufficient. In addition, notice from (10) that, if a constant
external torque is applied to the shaft, i.e., the dc motor is made
to work as a generator, the steady-state-induced voltage at its
armature terminal (with no load connected) will be given by:

(21)

This expression suggests the following experiment for the com-
putation of .

Experiment 2:

Step 1) Apply an external torque to the motor and record the
voltage at the tachometer terminals and the in-
duced voltage at the armature terminals for dif-
ferent speeds. Since there is no load connected to the
armature circuit, then is approximately equal .

1From the computation point of view, a matrix can be said to be singular when
these two conditions hold: 1) its smallest singular value is bellow a prescribed
tolerance value, and 2) its condition number is above a given upper bound.

Step 2) Form the vectors

and

Step 3) Compute as follows:

(22)

Remark D: If the shaft velocity is recorded, instead of
the voltage at the tachometer terminals , one must form the
vector , instead of , and compute
as follows:

(23)

C. Computation of , , , and

Systems and , given in (17) and (18), respectively, when
expressed in the transfer function form (1) are such that

, , , and . Therefore,
according to (3) and (4), the discretized models of systems
and are, respectively

(24)

where and , and

(25)

where and . Consequently,
linear difference equations for systems and will be given
by

(26)

(27)

Equations (26) and (27) show that, if the parameters , ,
, and are determined, then the gains , (and, con-

sequently, and , respectively), and
the time constants and (and, analogously,
and ) can be immediately computed. In addition, no-
tice that, since , ,

, and ; then,
by applying a voltage signal according to remark A, and
recording , and at the sampling instants ,

, one may write

...
...

...

(28)
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and

...
...

...

(29)
The least-squares solutions to (28) and (29) are, respectively,
given by

and
(30)

Therefore, the motor parameters , , , and will be given
by

(31)

where is the sampling period.
The development above leads to the following experiment to

find the parameters , , , and of a dc motor.
Experiment 3:

Step 1) Apply a voltage signal at the armature terminals
and record the signals , (armature-applied
voltage and armature current, respectively), and
(tachometer voltage) at the sampling instants ,

.
Step 2) Compute and

, and form the vectors and
and the matrices and , as defined in (28)

and (29).
Step 3) Compute , , , and according to (30).
Step 4) Use expressions (31) to compute , , , and .

Remark E:

1) The voltage signal to be applied to the armature ter-
minal should be a pulse train with variable pulsewidth,
which, according to remark A, can be seen as a PRBS.
Furthermore, since the motor parameters are determined
for a linear model, the pulse amplitude should be such
that the input signal remains in the linear region of
operation determined according to experiment 1, i.e.,
the minimum (maximum) value of the voltage applied
to the armature terminals must be greater (smaller) than
the left (right) extremes of the interval that characterizes
the linear region.

2) Notice that cannot be zero for all . Because the
motor has a monotonically increasing response, it pre-
cludes from being zero during, at least, the time
interval corresponding to the transient response.

V. PRACTICAL RESULTS

A. Experiments

In this section, the experiments proposed in the paper will
be used to obtain a state–space model for a dc motor-generator

Fig. 2. Points (V ; V ) (x marks) and the values of p(V ) (solid line) for a
fifth-order polynomial used in the determination of the linear region of the dc
motor.

Fig. 3. Points (W ;E ) (x-marks) and the straight line obtained by
least-squares fit.

group. The experiments have been carried out by the students as
part of the second laboratory in Control System at UFRJ.

According to Section IV, the first experiment is the determi-
nation of the linear region. As explained in remark E, this exper-
iment defines the smallest and the largest values (and, therefore,
the amplitude) of the pulse train to be used in experiment 3 to
determine , , , and . Following the steps of experiment
1, the points , shown in Fig. 2 (x-marks), are obtained.
These points have been fitted by a fifth-order polynomial ,
whose plot is also given in Fig. 2. Note that, for steps with am-
plitude smaller than 1.0857 V, the output is zero, i.e. the motor
shaft remains stuck. As pointed out in remarks B and C, this sit-
uation reveals the existence of a dead zone. In addition, notice
that the dc motor behaves as a linear system for input voltages
in the interval [2,25] V.

The second experiment to be carried out is to identify
and . Proceeding according to experiment 2, the pairs
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Fig. 4. Signal applied to the dc motor for the estimation of R , L , J , and f .

, plotted in Fig. 3 (x-marks), are obtained. There-
fore, in accordance with Step 3, 0.0453 V/(rad/s) and

0.0453 Nm/A. The accuracy of the result can be checked
by comparing the points and the straight line
in Fig. 3 (solid line).

Finally, according to experiment 3, for the identification of
, , , and , one must first record the signals , ,

and . The signal applied to the armature terminal is
shown in Fig. 4, while the resulting signals and are
given in Fig. 5(a) and (b), respectively, with solid lines. Fol-
lowing the next steps of experiment 3, the values obtained for
the electrical parameters and are 2.30 and 3.4 mH,
respectively, and for the mechanical parameters and are

kg m and kg m rad/s .

B. Model Validation

In order to show the accuracy of the parameter estimation,
a SIMULINK [16] model for the state–space description (13)
was built with the parameters obtained in the experiments. Af-
terwards, the same signal applied to the real plant (Fig. 4) was
applied to the SIMULINK model. The results are shown in
Fig. 5(a) and (b) (dashed–dotted line), which show a close agree-
ment between the model response (dashed–dotted line) and the
real response (solid line). This close agreement shows that the
proposed experiments are actually effective in identifying the
model parameters.

VI. CONCLUSION

This paper has dealt with identification of the parameters
of a state–space model in an undergraduate control laboratory.
Experiments are proposed, and the accuracy of the model
identification has been demonstrated by the estimation of all
parameters of the state–space linear model of a dc motor-
generator group.

Fig. 5. Signals recorded in the experiment for the estimation of R , L , J ,
and f (solid lines) and the simulation results with the parameters obtained in
the experiments (dashed–dotted lines).
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