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Design of Pl and PID Controllers With
Transient Performance Specification

J. C. Basilio and S. R. Matos

Abstract—Proportional-integral-derivative (PID) controllers ¥(t)
are widely used in industrial control systems because of the
reduced number of parameters to be tuned. The most popular
design technique is the Ziegler—Nichols method, which relies
solely on parameters obtained from the plant step response.
However, besides being suitable only for systems with monotonic
step response, the compensated systems whose controllers are
tuned in accordance with the Ziegler—Nichols method have
generally a step response with a high-percent overshoot. In this
paper, tuning methods for proportional-integral (Pl) and PID
controllers are proposed that, like the Ziegler—Nichols method,
need only parameters obtained from the plant step response. The
methodology also encompasses the design of PID controllers for
plants with underdamped step response and provides the means a
for a systematic adjustment of the controller gain in order to
meet transient performance specifications. In addition, since all
the development of the methodology relies solely on conceptsrig. 1. Step response for the tuning of PID controllers according to
introduced in a frequency-domain-based control course, the paper Ziegler—Nichols method.
has also a didactic contribution.

Index Terms—Control education, control system design, process TABLE |

control, proportional-integral-derivative  (PID) controllers, TUNING OF PID CONTROLLER PARAMETERS ACCORDING TO

root-locus diagram. ZIEGLER-NICHOLS METHOD
Controller K, T; Ty

I. INTRODUCTION p l/a
] o PI 0.9/a 3L
PROPORTIONAL—Integra|-derlvatlve (PID) controllers [1]—[3] PID 1.2/a 2L LJ2
are widely used in industrial control systems because of the

reduced number of parameters to be tuned. They provide control

signals that are proportional to the error between the refererfp@cause of integral action) and the ability to anticipate output
signal and the actual output (proportional action), to the integi@langes (when derivative action is employed).

of the error (integral action), and to the derivative of the error The most employed PID design technique used in the industry
(derivative action), namely is the Ziegler—Nichols method [1], which avoids the need for a
model of the plant to be controlled and relies solely on the step
1 f d response of the plant. The parameter setting, according to the
u(t) = Kp |e(t) + T / e(r)dr + Td%e(t) @) Ziegler—Nichols method, is carried out in four steps.

0 1) Obtain the plant step response.

whereu(t) ande(t) denote the control and the error signals, 2) Draw the steepest straight-line tangent to the response.
respectively, ands,,, T;, andT}; are the parameters to be tuned. 3) Obtain the measuresandL, as shown in Fig. 1.

t

The corresponding transfer function is given as 4) Set the parameters,, T;, andT; according to Table I.
It is well known that feedback systems with PID controllers
K(s) =K, (1 + + Tds> . ) tuned accor(_jmg to the Zle_zgle_r Nichols step response method
is has good disturbance rejection. However, the compensated

The main features of PID controllers are the capacity to eI|mS|—yStem response to a step S|gna| h.as, n gener_al, a h|gh percent
.avershoot, and the control signal is usually high, which may

nate steady-state error of the response to a step reference signa .
ad the actuator to saturation. In several processes (such as

chemical process), high-percent overshoot is not a problem,
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overshoot at all; therefore, the Ziegler—Nichols method cannot y(t)
be used to tune PID controllers for these systems. Another y
restriction of Ziegler—Nichols is that it is only suitable for o
systems with monotonic step response (S-shape response).
More recently, there has been a renewed interest in PID con-
trol, and the number of publications in the last ten years has
overcome the total number of papers published before 1990
[4]. New tuning rules based on time-domain specifications have
been proposed (e.g., [5], [6] and the references therein). Hang
et al.[5] have reexamined the Ziegler—Nichols method and pro-
posed new tuning formulas for proportional-integral (PI) con-
trollers and the introduction of a setting-point weight for sy "ig. 2. Step response for the identification of the plant transfer function
tems with PID controllers. Zhuang and Atherton [6] propose an” '
optimal design of PID controllers based on the minimization

t

i o D
of an integral criterion [integral of the square of the product of _(S)
time and error (ISTE)]. The main purpose of such approaches R(s) Y(s)
. K(s) G(s)
was to reduce the excessive overshoot of systems compensated TN +

with Ziegler—Nichols controllers. The main drawbacks of these

methodologies are: 1) no constraint is made on the maximum

value for the response overshoot; and 2) like the Ziegler—Nichols

method, they are suitable only for plants with monotonic sté:bg'

response. _ _ ,
In this paper, tuning methods for PI and PID controllers are 1) APPly to the plant a step signal with amplitud and

proposed such that the response of the compensated system ecord the responsg(), as shown in Fig. 2.

has overshoot below a prescribed value. The methodology als¢?) Compute numerically the are4, and the steady-state

encompasses the design of PID controllers for plants with un- _ Valu€yoo 0f y(?).

derdamped step response. All the development of the method3) COMPUteX’ = y.. /A.

ologies is simple and relies solely on concepts introduced fi®r the computation of, one case see that for an ideal, critically

a frequency-domain-based control course. For this reason, #§anped second-order system with transfer function (3), the re-

3. Block diagram of a feedback control systems.

paper also has a didactic contribution. sponse to a step with amplitudeis given by [9], as follows:
This paper is organized as follows. The tuning of Pl and PID 1
) . . . — -1t -1t
controllers for plants with monotonic step response is consid- y(t) = KA <1 —te e ) ;o 120

ered in Section Il, and the design of PID controllers for plants )

with underdamped step response is carried out in Section lif€refore, sincg., = KA, then

Examples are given in Sections Il and lll to illustrate the pro- oo oo 1

posed strategies. Finally, conclusions are drawn in Section IV. 4, = /[KA —y(t))dt = KA/ <;te—%t + e—%t) m
0

Il. DESIGN OFPI AND PID CONTROLLERS FORPLANTS WITH

After some straightforward calculation, one can check to see
MONOTONIC STEP RESPONSE

that A, = 2K A7, and thus
Initially, the design of PI and PID controllers for plants Ao
with monotonic step response are considered. These systems =5
are better modeled by second-order systems (with or without
Qelay). Sys_tems with monotonic step.r(.as_ponse whpse (_:ienvat V.eDesign of a Pl Controller
is clearly different from zero at the vicinity of the time instan
when the step change occurs should be modeled as first-ordegonsider the feedback system of Fig. 3 and supposéthat
systems. Immediately, one can see that, in this case, the vali§egiven by (3). When the controller to be designed is a PI, the
of a and L of Fig. 1 are both zero, precluding the use of thelerivative timeT; is made equal to zero; therefore, (2) assumes
Ziegler—Nichols method. When this situation happens, tfiee form
design of Pl and PID controllers is straightforward [3], [7], [8]. 1
Let G(s) denote the transfer function model of the plant to K(s) = K, (1 + T»s) )
be controlled, and assume that the system has a step response ‘
with the same shape as that shown in Fig. 2. T&iés) may be or, equivalently,

= (4)

modeled as [9] s+ 1/T; s+ z
. K(s) = K, S/ = K,— (6)
G(s) = (rs+ 1)2° ) wherez = 1/T;. The problem of setting the PI controller pa-

rameters of a critically damped second-order system can then
The parameteK can be computed as follows [3]. be stated as follows: find a gaifi, and place the zere-1/T;
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. Im(p) system will be underdamped (overdamped). In addition, by re-
placing¢ = 1/(2, /KKP) in the expression for the percent
overshoot of a second-order system [9]

PR o [ 2 RC(P)
-1 =% _en
PO(%) = exp(—‘) x 100%
(o) vi-¢
Im(p) it is not difficult to obtain the following relationship between
‘ ! K,5 = PO(%)/100 and K ,:
1 T\ 2
. K,=—|1 —) . 7
*— > Re(p) v 4K[ +(is) } )
’ t At this point, it is important to note that in this development,

it is assumed that the plant to be controlled is modeled exactly
as a critically damped second-order system. However, in prac-
tice, the system under consideration is not necessarily an exact
critically damped second-order system; therefore, the transfer
function model (3) is only an approximation for the actual plant.
The implication is that the transient performance indexes for
this case will not be exactly those used to &gt in (7); the
closer the model step response is to the actual system response,
the more accurate will be the setting as far as overshoot is con-
Fig. 4. Root-locus diagram for the design of Pl controller.Ta)> 7. (b)  cerned. Thus, a final adjustment &), is required in order for
Li=re@T < the compensated system to meet the performance specifications.
Thus, the tuning of parametefs, andZ; of a PI controller

such that the feedback system satisfies some transient perfgf- system with a monotonic step response can be carried out
mance specification. The solution to this problem can be foung@cording to the following algorithm:

with the help of the root-locus diagrams of Fig. 4.
1) When the zere-1/T; is placed between the origin andaigorithm 1
the double poles-1/7, i.e.,T; > 7, [Fig. 4(a)], the feed- 1. Apply to the plant a step of amplitudeand record the outpug(t).
back system step response will be underdamped, whictej€ompute;.. [the steady-state value oft)] and the areaA, of Fig. 2.
undesirable because, as far as overshoot is concerned,3ngbt the integral time &8, = Ao/ (2y..).
all transient performance specifications will be met. 4. set nitially the proportional gaidk, as follows: @)k, = A/(4y..) fora
2) If the zero is placed over the double poles iEB.,= 7 critically damped step response; and k), = A[1 + (7/ In 6)?]/(4ye.) for
[Fig. 4(b)], thenk,, can be set in such a way that the step percent overshoot equal fox 100%.
response of the closed-loop system may be monotonicmith the controller embedded in the real system, increase or decféase
underdamped. order to change the transient response of the compensated system with the view
3) When the zero is placed on the left-of /7, it is possible  to meeting transient performance specifications.
to setk, in order for the feedback system to have either
underdamped or monotonic step response, as in the RES-Design of a PID Controller

vious case; however, since the root-locus diagram usually_l_h bl ¢ setting th ; f 2 PID roll
repels the poles, then whef, increases, the closed-loop € problem of setling the parameters ot a controfier,

poles will get closer to the imaginary axis, as shown i s in the case of tuning PI controllers studied previously, can
Fig. 4(c). Thus, the feedback system will have worse r )e turned into a problem of placing the open-loop zeros of a

ative stability margins than that obtained in 2) and also@@Mpensated system. In order to do so, (2) can be rewritten as
larger settling time. =~ (s +21)(s+ 22) )

: K(s) =K,
Therefore, the controller zero must equdl/T or, equivalently, s

T; = 7. The choic€l; = 7 for the integral time implies that the where—z; and — 25(|z2| > |z1|, by assumption) are the con-
closed-loop system will have a second-order transfer functi@ller zeros and

with no poles, namely _ 1 1
Kp=K,2T4, z1+z=7, znz= )
Y (s) w? Ty TiTy
T(s) = R(s) 82+ 2Cwns + w2 This discovery implies that the correct setting of parameters

K,,1;, and1,; depends on the choice &, z;, andz,. This
wherew,, = /KK,/T and( = 1/(2 \/m) The impli- choice can be made with the help of the root-locus diagram of
cation is that the transient response to a step reference sidriélt 5 It should be noted that since the open-loop transfer func-
will depend on the choice ok,. It is easy to show that for tiON
K, = 1/(4K), the feedback system will be critically damped; KK,(s+21)(s + 22)
whereas fot,, greater (smaller) thah/(4K), the closed-loop Q(s) = G(s)K(s) = s(ts + 1)2




BASILIO AND MATOS: DESIGN OF PI AND PID CONTROLLERS WITH TRANSIENT PERFORMANCE SPECIFICATION 367

Im(p)

y(®) [

07F

051

04F

0.3

Fig. 5. Root-locus diagram for the tuning of PID controllers. o1l

has a pole at the origin and a double pole &f r, then animme-
diate choice for; is1/7. This choice will make the closed-loopFig. 6. Unit step response 6i(s) = 1/(s + 1)8.
system behave as a second-order system, and thus, the choice of

the closed-loop poles will be easier. In addition, by placing the TABLE I
zero—z, on the left of—zy, the root-locus diagram will deviate PIAND PID PARAMETERS FOR THEPLANT G/(s) = 1/(s + 1)°
toward—z» and, therefore, away from the imaginary axis. Thi~
condition will improve both the transient response and the rel Method Controller K, T; T4
tive stability margins. Pl (6=0) 0.25 4.00

The choice of the zere 25 is, therefore, the ne_xt step on the Proposed (6 = 0.05) | 0.5249 4.00
setting of PID controllers. Based on several simulation exe PID (5=0) 0.6699 | 6.6667 16

cises, it has been concluded that the best choiegis 1.5/,

. X . =0. .84 . 1.
and therefore, the open-loop transfer function will be given a (6 =0.05) | 0.8460 | 6.6667 6

Ziegler- | P 14025 | 12.9205
Qs) = KEols + 22) Nichols  "pp 1.8699 | 8.6137 | 2.1534
Sy

whereK = K/72. It can be seen from the root-locus diagrarﬁ'ng”trm 2h | el of amplitudennd record th
of Fig. 5 that the choice ak),, can make the closed-loop systen‘}' pply to the p:m aStjp S1gna OI amplt dn hrecor ; © ?f_p@;t)'
have either damped or underdamped step response. Itis not gif:omPute/=- [the steady-state value of )] and the aread, of Fig. 2.

ficult to check that the closed-loop polynomial is given by ; SEtTe/z(:mm)”er parameters &, = 0.6699/K., Ti = 540/ (6y.-). and
d = A0/\9Yeo)-

4. With the controller embedded in the real system, increase or decféase
order to change the transient response of the compensated system with the view
to meeting the performance specifications.

pe(s) =s(s+1/7) + KK,(s + 22)

and thusp.(s) = 0 will have double roots when

_ 1 2o 1 C. Example
K,=—=1|2(z2E/22-=)-—]|. (20) D . .
K T The results of the methodology proposed in this section will

be illustrated by the design of Pl and PID controllers for the
It should be noted that the smaller (larger) valuekgf corre-  following plant [3] (assumed unknown):
sponds to the gain for poitit, (P,) of the root-locus diagram of
Fig. 5. The smaller value df, will be adopted, since it leads to G(s) = 1 )
a smaller control signal. Moreover, since the plants to be con- (s+1)*
trolled do not necessarily have the model given by (3), a hi . . . -
gain may be undesirable from the stability point of view becau%,Ihe plant response to a unit-step input is shown in Fig. 6, from

it may lead to violation of the Nyquist stability criterion at highW%'Ch itcan be seen that, = 1, and thusK' = 1. In addition,

frequencies, making the actual feedback system unstable according to Algorithms 1 and 2, all the parameters necessary to
Finally, nc;ting that, = 1/r, 2 = 1.5/7, and K = K/r” " tune Pl and PID controllers for this plant can be obtained from
) “1 — s <2 — L. ) — )

and substituting these expressions in (9) and (10), the paragr'rq' 6. For the tuning of Pl and PID controllers according to the

etersK,, 1;, and1y of the PID controller can be expressed in |eg|er_—N|cho_Is method, it is necessary to fmand.L, Wh'Ch.
according to Fig. 6, are equal to 0.6417 and 4.3068, respectively.
terms of the plant parametekS andr as

In order to set the parameters in accordance with Algorithms
1 and 2, it is necessary to compute numerically the atga
which is equal to 8.0. The parameters of Pl and PID controllers
adjusted via Ziegler—Nichols and Algorithms 1 and 2 are given
Therefore, the tune of a PID controller for a plant with montonim Table Il, and the corresponding responses of the closed-loop
step response can be carried out as follows: systems to a unit-step reference signal are shown in Fig. 7

0.6699 5T
P K ’ 37 d

N}

T

5
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— . : TABLE Il
PR ] TRANSIENT PERFORMANCE INDEXES FOR THECOMPENSATED SYSTEM
WITH Pl AND PID CONTROLLERS OFTABLE |l

Method Controller ty tp ts PO(%) | ¢max

. ], pr (6=0) [243] — | 498 [ — 1.0

(a) Proposed (6=0.05) | 12.6 | 16.8 | 340 | 164 | 1.2

pp =0 83| — | 338 — 1.0

(6=005) | 11.4 [ 13.2 | 24.7 5.0 1.2

Ziegler- | PI 86 | 11.6 | 138.8 | 354 1.7

Nichols  "prp 75 | 221 | 678.3 | 49.7 | 23

> ) 00 150 { X . . . .

(b) value of the control signal. Notice that in Fig. 7, the unit-step

_ _ response of the closed-loop system with a Ziegler—Nichols
T e e o e e b onea s, b aeiBY controller (dotted fine) is more oscillatory, has a higher
methodology withi, = 0.25 (dashed lines)i’, = 0.5249 (solid lines). percent overshoot, and a larger settling time than those of the
feedback systems with PI compensators tuned in accordance
with Algorithm 1.

In addition, Algorithm 1 allows the designer to vary the
y(t) proportional gain in a systematic way, accelerating the system
responses. When PID controllers are used as compensators, the
o8 l performance of the system with PID tuned with the proposed
methodology is also superior to that with a Ziegler—Nichols
(a) compensator. The unit-step response of a closed-loop system
with a PID controller tuned in accordance with Ziegler—Nichols
(see Table Il, bottom row) is shown in Fig. 8. It can been
seen that this response is highly oscillatory, has a high-percent
overshoot(= 50 %), and has an extremely large settling time
(see Table lll, bottom row). It is, therefore, unacceptable. On

— - the other hand, the same feedback system with PID controllers
(b) tuned according to Algorithm 2 have unit-step responses with
little oscillation, low-percent (or no) overshoot, and short
Fig. 8. (a) Step response and (b) control signal for the closed-loop systg@tt”ng time, as can be seen from Fig. 9 and in rows 3 and 4 of
with the Ziegler—Nichols PID controller given in Table II. . . .
Table Ill. As in the case of PI controllers, the settling time of
the closed-loop response can also be made smaller by allowing
U a larger overshoot. For instance, according to Table lll, for
y(t) W ] 6 = 0.05, the settling time is 24.7 s, but fér= 0, it is 33.8 s.

I1l. DESIGN OFPID CONTROLLERS FORPLANTS WITH
UNDERDAMPED STEP RESPONSE

(a) Systems with underdamped step response may be approxi-
t4— —— mated by a second-order system with the transfer function [9]

u(t) 1.2-.,1 \\ 1 Kw2
HAY s G(s) = ——F—F"— 11
! () §2 4+ 2Cwps + w2 (11)

where0 < ( < 1. For an ideal second-order system with
transfer function (11), the response to a step input with ampli-
tude A is given as [9]

. R . L . . A .
o 10 20 30 40 0 70 0 s 100 f

%
(b)
Fig. 9. (a) Step response and (b) control signal for the closed-loop system

with PID controllers tuned by following the proposed methodology ith= 1 —Cwnt o
0.6699 (solid lines) andk, = 0.8460 (dashed lines). y(t) = KA |1— \/T—Cze “rtsin (w1 — (2t + )

12
(closed-loop system with Pl controllers) and Figs. 8 and 9 (12)
(closed-loop system with PID controllers). The performandeward appropriately tuning the controller gain.where
indexes are given in Table Ill, whetg, t,, andt, denote the ¢ = arccos({). Thus the dc-gaink, the damping coeffi-
rise time, peak time, and 2% settling time, respectively; PO(%ient ( and the natural frequenay, can be determined as
is the percent overshoot; ang,.. is the maximum absolute follows [3].
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signal. Therefore, this choice df, can only serve as a first

y(t) step.
a It is important to note that, in a recent book [3], the problem
Yoo /T\ad of designing PID controllers for systems with underdamped step
response has been tackled. Indeed, the same choigdmdT;
\T/ as those given in (14) has been proposed in [3] for a plant model

4 slightly different from (11). However, the problem of choosing
the controller gaink,, has not been pursued in [3].

In this paper, a systematic way to tufig will be proposed.
The idea behind the approach is that since the controller design
is based on an approximate model, not all desired settling time
will be achieved. Thus, it is recommended to start with a con-
Fig. 10. Typical step response of an underdamped second-order system. yrq||er that does not considerably change the plant performance.

This procedure can be accomplished by choosingpproxi-
1) Apply a step signal with amplitudel and record the mately equal to the settling time of the step response of the plant
outputy(t). to be controlled.

2) Lety,, denote the steady-state valueydt) and find  The results of this section can be summarized in the following
the oscillation periodl;, and the decay ratid given in  g|gorithm:

Fig. 10.
3) Compute! andw,, as follows:

Algorithm 3
¢ 1 o2 1. Apply to the plant a step of amplitudeand record the outpug(t).
=T Wn= 2. Determiney. [the steady-state value @f(t)], the settling timet,, of the
L1 (212 T, /1-2 yeo [the y of(1)] g timet,,, of th
+ (md) plant response, the first two peak value,, and,,, and the corresponding

time instants,,, andt,, .
In order to obtain a PID controller for this system, it shoul@ Computel = (M, — yoo )/ (M, — yoo) ANAT, = 1, — by,

be noted that (2) can be rewritten as 4. Compute = 1/+/1 4 (27/Ind)? andw, = 27 /(Tp/1 - (7).
5.Setly, = 1/(2¢wn), Ty = 2(/w,) , and K, = 4T, /(Kt,,).
K(s) = K, Ty <52 + is + 1 ) ' (13) 6. With the controller embedded in the real system, incrédsep to a value for
Ty T, Ty which either the settling time starts to increase again or the percent overshoot

. . becomes higher than a prescribed value.
Since system (11) has a pair of complex poles, namély,, +

jwny/1 — (2, anatural choice for the controller zeros would be
such that the numerator polynomial Af(s) and the denomi-

nator polynomial ofG(s) cancel. In order for this condition to A. Example
happen:; and7; must satisfy To illustrate the methodology proposed in this section, one
may consider the problem of finding a PID controller for a plant
T, = 1 T = K (14) with the (assumed unknown) transfer function found in (15) at
2wy’ Wn, the bottom of the page. This transfer function is not associated

This choice forl; andT; would make the closed-loop systemWlth any physical process and was chqsen at random W'.th the
! . .restrictions to be stable and to have dominant complex conjugate
behave exactly as a first-order system with the transfer functign

poles.
Y(s 1 According to Algorithm 3, the first step for the tuning of PID
_Y(s) _ _ ! ;
T(s) = R(s)  7s+1 controllers is to obtain the plant step response. For this plant, the

unit-step response is shown in Fig. 11, from which it is possible
where7 = T;/(K,K). The relationship between the settlingo verify thatt,, = 21.25y. = 1.28, M,,, = 1.40,M,, =
time (¢,) and the time constaritr) of a first-order system is 1.34,¢,, = 9.05 s, and,,, = 15.45 s. Following steps 3 and
t, = 47, and, therefore, for a given settling timg the con- 4 of Algorithm 3, one obtaing” = 1.2857,( = 0.1169, and
troller gain should be adjusted &, = 47;/(Kt;). How- w, = 0.9885. Therefore, according to step 5, the controller in-
ever, in practice, the closed-loop system will never behave t@gral and derivative times afie = 0.2366 andT,; = 4.3251,
a first-order one because the plant is not exactly a second-ordespectively. The controller gain adjustment is carried out by
system and also because, in the actual controller, the derivatigéng the plant settling time (, = 21.2 s) as the initial choice
action is performed not on the error signal but on the outpfdr the desired settling time of the closed-loop system. Thus,

28.5052 4+ 6.93s + 18.20
$6 4 17.4785 4+ 46.785% + 67.5253 + 64.8652 + 43.30s + 14.16°

G(s) = (15)
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T - T T T T signer is concerned with the speed of the system to reach steady
state.

IV. CONCLUSION

In this paper, methodologies for tuning Pl and PID controllers
have been proposed. Like the well-known Ziegler—Nichols
method, they are based on the plant step response. Unlike the
Ziegler—Nichols step response method, they provide systematic
means to adjust the proportional gain in order to have no

P N S

G m i ,, ,s w e t overshoot on the closed-loop step response. In addition, PID
controllers can be designed for plants with underdamped step
Fig. 11. Unit-step response of the plant of Section II-A. response. Examples are given to illustrate the efficiency of the

methodology. The paper also provides a didactic contribution
since the proposed methodology is based on root-locus dia-
grams and, therefore, can be used in an undergraduate control

y(t) .l course.
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u(t) |

K, tr | t, | ts |P.O. (%)

0.0333 | 12.5s | 16.5s | 19.7s 4.4

0.0399 | 9.65s | 15.3s | 19.1s 6.7

0.0482 | 8.44s | 11.0s | 17.9s 13.7 J. C. Basiliowas born on March 15, 1962 in Juiz de Fora, Brazil. He received
the electrical engineering degree in 1986 from the Federal University of Juiz de

0.0499 | 8.265 | 10.9s | 21.0s 15.0 Fora, Juiz de Fora, Brazil, the M.Sc. degree in control from the Military Institute

of Engineering, Rio de Janeiro, Brazil, in 1989, and the Ph.D. degree in control

from Oxford University, Oxford, U.K., in 1995.

KPU = 0.0333 is the initial value for the controller gain. The In 198_9, he bggan_hls career as an Asslstant Lectl_Jrer at the_Depe_\rtment
| d-| t it-st f . lis sh of Electrical Engineering of the Federal University of Rio de Janeiro, Rio de
closed-loop response 1o a unit-step reference signal 1S s Oﬂﬁ'eiro, Brazil. Since 1996, he has been an Adjunct Professor in control at the

in Fig. 12 (solid lines), and the corresponding transient pefame department. His main interests are multivariable control, robust control,

formance indexes,, t,,t,, and PO are given in Table IV. It PID controllers, and the development of benchmarks and experiments for
hould b d hr/ ]f’o’,}‘,s'_ he closed-I control laboratories.

shou e noted that P — 0.0333, the closed-loop response_ Dr. Basilio is the recipient of the Correia Lima Medal.

has a small percent overshoot (4.4%), and the actual settling

time (19.7 s) is smaller than the desired one (22.1 s). In the se-

quel, by increasing the gaii,,, one can see from Fig. 12 and

Table IV that, as predicted in Algorithm 3, the settling time o§. R. Matoswas born on March 23, 1976 in Rio de Janeiro, Brazil. She received

the cIosed-Ioop response decreases up to approximately 17(_@ glectrical engineering degree from the Federal University of Rio de Janeiro,
for K. — 4182 d th . in. Th Rio de Janeiro, Brazil, in 2000. She is currently pursuing the M.Sc. degree in

(Or p - 0.048 ) and then starts to Increase a_gayn. UZontrol at the Federal University of Rio de Janeiro.

K, = 0.0482 can be adopted as the controller gain if the de-Her main interests are multivariable control systems and PID controllers.




	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


