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Design of PI and PID Controllers With
Transient Performance Specification

J. C. Basilio and S. R. Matos

Abstract—Proportional-integral-derivative (PID) controllers
are widely used in industrial control systems because of the
reduced number of parameters to be tuned. The most popular
design technique is the Ziegler–Nichols method, which relies
solely on parameters obtained from the plant step response.
However, besides being suitable only for systems with monotonic
step response, the compensated systems whose controllers are
tuned in accordance with the Ziegler–Nichols method have
generally a step response with a high-percent overshoot. In this
paper, tuning methods for proportional-integral (PI) and PID
controllers are proposed that, like the Ziegler–Nichols method,
need only parameters obtained from the plant step response. The
methodology also encompasses the design of PID controllers for
plants with underdamped step response and provides the means
for a systematic adjustment of the controller gain in order to
meet transient performance specifications. In addition, since all
the development of the methodology relies solely on concepts
introduced in a frequency-domain-based control course, the paper
has also a didactic contribution.

Index Terms—Control education, control system design, process
control, proportional-integral-derivative (PID) controllers,
root-locus diagram.

I. INTRODUCTION

PROPORTIONAL-integral-derivative (PID) controllers [1]–[3]
are widely used in industrial control systems because of the

reduced number of parameters to be tuned. They provide control
signals that are proportional to the error between the reference
signal and the actual output (proportional action), to the integral
of the error (integral action), and to the derivative of the error
(derivative action), namely

(1)

where and denote the control and the error signals,
respectively, and , and are the parameters to be tuned.
The corresponding transfer function is given as

(2)

The main features of PID controllers are the capacity to elimi-
nate steady-state error of the response to a step reference signal
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Fig. 1. Step response for the tuning of PID controllers according to
Ziegler–Nichols method.

TABLE I
TUNING OF PID CONTROLLER PARAMETERS ACCORDING TO

ZIEGLER–NICHOLS METHOD

(because of integral action) and the ability to anticipate output
changes (when derivative action is employed).

The most employed PID design technique used in the industry
is the Ziegler–Nichols method [1], which avoids the need for a
model of the plant to be controlled and relies solely on the step
response of the plant. The parameter setting, according to the
Ziegler–Nichols method, is carried out in four steps.

1) Obtain the plant step response.
2) Draw the steepest straight-line tangent to the response.
3) Obtain the measuresand , as shown in Fig. 1.
4) Set the parameters , and according to Table I.
It is well known that feedback systems with PID controllers

tuned according to the Ziegler–Nichols step response method
has good disturbance rejection. However, the compensated
system response to a step signal has, in general, a high-percent
overshoot, and the control signal is usually high, which may
lead the actuator to saturation. In several processes (such as
chemical process), high-percent overshoot is not a problem,
providing that the system returns rapidly to the neighborhood
of the steady-state value. However, in other processes (such as
in the manufacture of plastic gloves1 ), it is desirable to have no

1In the process of manufacturing plastic gloves, the positioning of a double
plastic film is necessary; thus, if an overshoot occurs, the plastic films wrinkle.
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overshoot at all; therefore, the Ziegler–Nichols method cannot
be used to tune PID controllers for these systems. Another
restriction of Ziegler–Nichols is that it is only suitable for
systems with monotonic step response (S-shape response).

More recently, there has been a renewed interest in PID con-
trol, and the number of publications in the last ten years has
overcome the total number of papers published before 1990
[4]. New tuning rules based on time-domain specifications have
been proposed (e.g., [5], [6] and the references therein). Hang
et al.[5] have reexamined the Ziegler–Nichols method and pro-
posed new tuning formulas for proportional-integral (PI) con-
trollers and the introduction of a setting-point weight for sys-
tems with PID controllers. Zhuang and Atherton [6] propose an
optimal design of PID controllers based on the minimization
of an integral criterion [integral of the square of the product of
time and error (ISTE)]. The main purpose of such approaches
was to reduce the excessive overshoot of systems compensated
with Ziegler–Nichols controllers. The main drawbacks of these
methodologies are: 1) no constraint is made on the maximum
value for the response overshoot; and 2) like the Ziegler–Nichols
method, they are suitable only for plants with monotonic step
response.

In this paper, tuning methods for PI and PID controllers are
proposed such that the response of the compensated system
has overshoot below a prescribed value. The methodology also
encompasses the design of PID controllers for plants with un-
derdamped step response. All the development of the method-
ologies is simple and relies solely on concepts introduced in
a frequency-domain-based control course. For this reason, the
paper also has a didactic contribution.

This paper is organized as follows. The tuning of PI and PID
controllers for plants with monotonic step response is consid-
ered in Section II, and the design of PID controllers for plants
with underdamped step response is carried out in Section III.
Examples are given in Sections II and III to illustrate the pro-
posed strategies. Finally, conclusions are drawn in Section IV.

II. DESIGN OFPI AND PID CONTROLLERS FORPLANTS WITH

MONOTONIC STEP RESPONSE

Initially, the design of PI and PID controllers for plants
with monotonic step response are considered. These systems
are better modeled by second-order systems (with or without
delay). Systems with monotonic step response whose derivative
is clearly different from zero at the vicinity of the time instant
when the step change occurs should be modeled as first-order
systems. Immediately, one can see that, in this case, the values
of and of Fig. 1 are both zero, precluding the use of the
Ziegler–Nichols method. When this situation happens, the
design of PI and PID controllers is straightforward [3], [7], [8].

Let denote the transfer function model of the plant to
be controlled, and assume that the system has a step response
with the same shape as that shown in Fig. 2. Then may be
modeled as [9]

(3)

The parameter can be computed as follows [3].

Fig. 2. Step response for the identification of the plant transfer function.

Fig. 3. Block diagram of a feedback control systems.

1) Apply to the plant a step signal with amplitude, and
record the response , as shown in Fig. 2.

2) Compute numerically the area and the steady-state
value of .

3) Compute .
For the computation of, one case see that for an ideal, critically
damped second-order system with transfer function (3), the re-
sponse to a step with amplitudeis given by [9], as follows:

Therefore, since , then

After some straightforward calculation, one can check to see
that , and thus

(4)

A. Design of a PI Controller

Consider the feedback system of Fig. 3 and suppose that
is given by (3). When the controller to be designed is a PI, the
derivative time is made equal to zero; therefore, (2) assumes
the form

(5)

or, equivalently,

(6)

where . The problem of setting the PI controller pa-
rameters of a critically damped second-order system can then
be stated as follows: find a gain and place the zero



366 IEEE TRANSACTIONS ON EDUCATION, VOL. 45, NO. 4, NOVEMBER 2002

Fig. 4. Root-locus diagram for the design of PI controller. (a)T > � . (b)
T = �e. (c) T < � .

such that the feedback system satisfies some transient perfor-
mance specification. The solution to this problem can be found
with the help of the root-locus diagrams of Fig. 4.

1) When the zero is placed between the origin and
the double poles , i.e., , [Fig. 4(a)], the feed-
back system step response will be underdamped, which is
undesirable because, as far as overshoot is concerned, not
all transient performance specifications will be met.

2) If the zero is placed over the double poles i.e.,
[Fig. 4(b)], then can be set in such a way that the step
response of the closed-loop system may be monotonic or
underdamped.

3) When the zero is placed on the left of , it is possible
to set in order for the feedback system to have either
underdamped or monotonic step response, as in the pre-
vious case; however, since the root-locus diagram usually
repels the poles, then when increases, the closed-loop
poles will get closer to the imaginary axis, as shown in
Fig. 4(c). Thus, the feedback system will have worse rel-
ative stability margins than that obtained in 2) and also a
larger settling time.

Therefore, the controller zero must equal or, equivalently,
. The choice for the integral time implies that the

closed-loop system will have a second-order transfer function
with no poles, namely

where and . The impli-
cation is that the transient response to a step reference signal
will depend on the choice of . It is easy to show that for

, the feedback system will be critically damped;
whereas for greater (smaller) than , the closed-loop

system will be underdamped (overdamped). In addition, by re-
placing in the expression for the percent
overshoot of a second-order system [9]

% %

it is not difficult to obtain the following relationship between
% and :

(7)

At this point, it is important to note that in this development,
it is assumed that the plant to be controlled is modeled exactly
as a critically damped second-order system. However, in prac-
tice, the system under consideration is not necessarily an exact
critically damped second-order system; therefore, the transfer
function model (3) is only an approximation for the actual plant.
The implication is that the transient performance indexes for
this case will not be exactly those used to set in (7); the
closer the model step response is to the actual system response,
the more accurate will be the setting as far as overshoot is con-
cerned. Thus, a final adjustment on is required in order for
the compensated system to meet the performance specifications.

Thus, the tuning of parameters and of a PI controller
for a system with a monotonic step response can be carried out
according to the following algorithm:

Algorithm 1

1. Apply to the plant a step of amplitudeA and record the outputy(t).

2. Computey [the steady-state value ofy(t)] and the areaA of Fig. 2.

3. Set the integral time asT = A =(2y ).

4. Set initially the proportional gainK as follows: a)K = A=(4y ) for a

critically damped step response; and b)K = A[1 + (�= ln �) ]=(4y ) for

a percent overshoot equal to� � 100%.

5. With the controller embedded in the real system, increase or decreaseK in

order to change the transient response of the compensated system with the view

to meeting transient performance specifications.

B. Design of a PID Controller

The problem of setting the parameters of a PID controller,
as in the case of tuning PI controllers studied previously, can
be turned into a problem of placing the open-loop zeros of a
compensated system. In order to do so, (2) can be rewritten as

(8)

where and , by assumption) are the con-
troller zeros and

(9)

This discovery implies that the correct setting of parameters
, and depends on the choice of , and . This

choice can be made with the help of the root-locus diagram of
Fig. 5. It should be noted that since the open-loop transfer func-
tion
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Fig. 5. Root-locus diagram for the tuning of PID controllers.

has a pole at the origin and a double pole at , then an imme-
diate choice for is . This choice will make the closed-loop
system behave as a second-order system, and thus, the choice of
the closed-loop poles will be easier. In addition, by placing the
zero on the left of , the root-locus diagram will deviate
toward and, therefore, away from the imaginary axis. This
condition will improve both the transient response and the rela-
tive stability margins.

The choice of the zero is, therefore, the next step on the
setting of PID controllers. Based on several simulation exer-
cises, it has been concluded that the best choice is ,
and therefore, the open-loop transfer function will be given as

where . It can be seen from the root-locus diagram
of Fig. 5 that the choice of can make the closed-loop system
have either damped or underdamped step response. It is not dif-
ficult to check that the closed-loop polynomial is given by

and thus, will have double roots when

(10)

It should be noted that the smaller (larger) value of corre-
sponds to the gain for point of the root-locus diagram of
Fig. 5. The smaller value of will be adopted, since it leads to
a smaller control signal. Moreover, since the plants to be con-
trolled do not necessarily have the model given by (3), a high
gain may be undesirable from the stability point of view because
it may lead to violation of the Nyquist stability criterion at high
frequencies, making the actual feedback system unstable.

Finally, noting that and ,
and substituting these expressions in (9) and (10), the param-
eters , and of the PID controller can be expressed in
terms of the plant parameters and as

Therefore, the tune of a PID controller for a plant with montonic
step response can be carried out as follows:

Fig. 6. Unit step response ofG(s) = 1=(s+ 1) .

TABLE II
PI AND PID PARAMETERS FOR THEPLANT G(s) = 1=(s+ 1)

Algorithm 2

1. Apply to the plant a step signal of amplitudeA and record the outputy(t).

2. Computey [the steady-state value ofy(t)] and the areaA of Fig. 2.

3. Set the controller parameters asK = 0:6699=K; T = 5A =(6y ), and

T = A =(5y ).

4. With the controller embedded in the real system, increase or decreaseK in

order to change the transient response of the compensated system with the view

to meeting the performance specifications.

C. Example

The results of the methodology proposed in this section will
be illustrated by the design of PI and PID controllers for the
following plant [3] (assumed unknown):

The plant response to a unit-step input is shown in Fig. 6, from
which it can be seen that , and thus, . In addition,
according to Algorithms 1 and 2, all the parameters necessary to
tune PI and PID controllers for this plant can be obtained from
Fig. 6. For the tuning of PI and PID controllers according to the
Ziegler–Nichols method, it is necessary to findand , which
according to Fig. 6, are equal to 0.6417 and 4.3068, respectively.
In order to set the parameters in accordance with Algorithms
1 and 2, it is necessary to compute numerically the area,
which is equal to 8.0. The parameters of PI and PID controllers
adjusted via Ziegler–Nichols and Algorithms 1 and 2 are given
in Table II, and the corresponding responses of the closed-loop
systems to a unit-step reference signal are shown in Fig. 7
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Fig. 7. (a) Step response and (b) control signal for the closed-loop system
with the PI controllers of Table II. Ziegler–Nichols (dotted lines). Proposed
methodology withK = 0:25 (dashed lines).K = 0:5249 (solid lines).

Fig. 8. (a) Step response and (b) control signal for the closed-loop system
with the Ziegler–Nichols PID controller given in Table II.

Fig. 9. (a) Step response and (b) control signal for the closed-loop system
with PID controllers tuned by following the proposed methodology withK =

0:6699 (solid lines) andK = 0:8460 (dashed lines).

(closed-loop system with PI controllers) and Figs. 8 and 9
(closed-loop system with PID controllers). The performance
indexes are given in Table III, where , and denote the
rise time, peak time, and 2% settling time, respectively; PO(%)
is the percent overshoot; and is the maximum absolute

TABLE III
TRANSIENT PERFORMANCEINDEXES FOR THECOMPENSATEDSYSTEM

WITH PI AND PID CONTROLLERS OFTABLE II

value of the control signal. Notice that in Fig. 7, the unit-step
response of the closed-loop system with a Ziegler–Nichols
PI controller (dotted line) is more oscillatory, has a higher
percent overshoot, and a larger settling time than those of the
feedback systems with PI compensators tuned in accordance
with Algorithm 1.

In addition, Algorithm 1 allows the designer to vary the
proportional gain in a systematic way, accelerating the system
responses. When PID controllers are used as compensators, the
performance of the system with PID tuned with the proposed
methodology is also superior to that with a Ziegler–Nichols
compensator. The unit-step response of a closed-loop system
with a PID controller tuned in accordance with Ziegler–Nichols
(see Table II, bottom row) is shown in Fig. 8. It can been
seen that this response is highly oscillatory, has a high-percent
overshoot 50 %), and has an extremely large settling time
(see Table III, bottom row). It is, therefore, unacceptable. On
the other hand, the same feedback system with PID controllers
tuned according to Algorithm 2 have unit-step responses with
little oscillation, low-percent (or no) overshoot, and short
settling time, as can be seen from Fig. 9 and in rows 3 and 4 of
Table III. As in the case of PI controllers, the settling time of
the closed-loop response can also be made smaller by allowing
a larger overshoot. For instance, according to Table III, for

, the settling time is 24.7 s, but for , it is 33.8 s.

III. D ESIGN OFPID CONTROLLERS FORPLANTS WITH

UNDERDAMPED STEP RESPONSE

Systems with underdamped step response may be approxi-
mated by a second-order system with the transfer function [9]

(11)

where . For an ideal second-order system with
transfer function (11), the response to a step input with ampli-
tude is given as [9]

(12)

toward appropriately tuning the controller gain.where
. Thus the dc-gain , the damping coeffi-

cient and the natural frequency can be determined as
follows [3].
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Fig. 10. Typical step response of an underdamped second-order system.

1) Apply a step signal with amplitude and record the
output .

2) Let denote the steady-state value of and find
the oscillation period and the decay ratio given in
Fig. 10.

3) Compute and as follows:

In order to obtain a PID controller for this system, it should
be noted that (2) can be rewritten as

(13)

Since system (11) has a pair of complex poles, namely
, a natural choice for the controller zeros would be

such that the numerator polynomial of and the denomi-
nator polynomial of cancel. In order for this condition to
happen, and must satisfy

(14)

This choice for and would make the closed-loop system
behave exactly as a first-order system with the transfer function

where . The relationship between the settling
time and the time constant of a first-order system is

, and, therefore, for a given settling time, the con-
troller gain should be adjusted to . How-
ever, in practice, the closed-loop system will never behave as
a first-order one because the plant is not exactly a second-order
system and also because, in the actual controller, the derivative
action is performed not on the error signal but on the output

signal. Therefore, this choice of can only serve as a first
step.

It is important to note that, in a recent book [3], the problem
of designing PID controllers for systems with underdamped step
response has been tackled. Indeed, the same choice forand
as those given in (14) has been proposed in [3] for a plant model
slightly different from (11). However, the problem of choosing
the controller gain has not been pursued in [3].

In this paper, a systematic way to tune will be proposed.
The idea behind the approach is that since the controller design
is based on an approximate model, not all desired settling time
will be achieved. Thus, it is recommended to start with a con-
troller that does not considerably change the plant performance.
This procedure can be accomplished by choosingapproxi-
mately equal to the settling time of the step response of the plant
to be controlled.

The results of this section can be summarized in the following
algorithm:

Algorithm 3

1. Apply to the plant a step of amplitudeA and record the outputy(t).

2. Determiney [the steady-state value ofy(t)], the settling timet of the

plant response, the first two peak valuesM andM , and the corresponding

time instantst and t .

3. Computed = (M � y )=(M � y ) andT = t � t .

4. Compute� = 1= 1 + (2�= ln d) and! = 2�=(T
p
1� � ).

5. SetT = 1=(2�! ); T = 2�=! ) , andK = 4T =(Kt ).

6. With the controller embedded in the real system, increaseK up to a value for

which either the settling time starts to increase again or the percent overshoot

becomes higher than a prescribed value.

A. Example

To illustrate the methodology proposed in this section, one
may consider the problem of finding a PID controller for a plant
with the (assumed unknown) transfer function found in (15) at
the bottom of the page. This transfer function is not associated
with any physical process and was chosen at random with the
restrictions to be stable and to have dominant complex conjugate
poles.

According to Algorithm 3, the first step for the tuning of PID
controllers is to obtain the plant step response. For this plant, the
unit-step response is shown in Fig. 11, from which it is possible
to verify that 21.2 s

9.05 s, and 15.45 s. Following steps 3 and
4 of Algorithm 3, one obtains , and

. Therefore, according to step 5, the controller in-
tegral and derivative times are and ,
respectively. The controller gain adjustment is carried out by
using the plant settling time ( 21.2 s) as the initial choice
for the desired settling time of the closed-loop system. Thus,

(15)
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Fig. 11. Unit-step response of the plant of Section III-A.

Fig. 12. Step response (a) and control signal (b) for the closed-loop system for
K = 0:0033 (solid lines),K = 0:0399 (dashed lines), andK = 0:0482

(dotted lines).

TABLE IV
TRANSIENT PERFORMANCEINDEXES FOR THECLOSED-LOOPSYSTEM

WITH PID PARAMETERS T = 0:2366 andT = 4:3251 WITH

DIFFERENTVALUES OF GAIN K

is the initial value for the controller gain. The
closed-loop response to a unit-step reference signal is shown
in Fig. 12 (solid lines), and the corresponding transient per-
formance indexes , and PO are given in Table IV. It
should be noted that for , the closed-loop response
has a small percent overshoot (4.4%), and the actual settling
time (19.7 s) is smaller than the desired one (22.1 s). In the se-
quel, by increasing the gain , one can see from Fig. 12 and
Table IV that, as predicted in Algorithm 3, the settling time of
the closed-loop response decreases up to approximately 17.9 s
(for ) and then starts to increase again. Thus,

can be adopted as the controller gain if the de-

signer is concerned with the speed of the system to reach steady
state.

IV. CONCLUSION

In this paper, methodologies for tuning PI and PID controllers
have been proposed. Like the well-known Ziegler–Nichols
method, they are based on the plant step response. Unlike the
Ziegler–Nichols step response method, they provide systematic
means to adjust the proportional gain in order to have no
overshoot on the closed-loop step response. In addition, PID
controllers can be designed for plants with underdamped step
response. Examples are given to illustrate the efficiency of the
methodology. The paper also provides a didactic contribution
since the proposed methodology is based on root-locus dia-
grams and, therefore, can be used in an undergraduate control
course.
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