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Abstract Failure diagnosis is a crucial task in modern industrial systems, and several works
in the literature address this problem by modeling the system as a Discrete-Event System
(DES). Most of them assume perfect communication between sensors and diagnosers, i.e.,
no loss of observation of events, or event communication delays between the measurement
sites and the diagnosers. However, industrial systems can be large and physically distributed,
in which cases, communication networks are used to provide an efficient way to establish
communication between devices. In diagnosis systems, the use of networks can introduce
delays in the communication of event occurrences from measurement sites to the local
diagnosers, leading to an incorrect observation of the order of occurrence of events gener-
ated by the system and, as a consequence, to an incorrect diagnosis decision by the local
diagnoser. In this paper, we address the problem of decentralized diagnosis of networked
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Discrete-Event Systems subject to event communication delays, and we introduce the defi-
nition of network codiagnosability of the language generated by a DES subject to both event
communication delays and intermittent loss of observation, and present necessary and suf-
ficient conditions for a language to be network codiagnosable, for short. We also propose
an algorithm to verify this property.

Keywords Language codiagnosability · Automaton · Networked discrete-event systems ·
Communication delays

1 Introduction

Modern industrial plants can be large and physically distributed, with several devices
exchanging information among them. In these cases, the conventional structure of dedicated
point-to-point communication is complex, expensive, difficult to maintain due to the large
quantity of cables and connectors (Huo et al. 2004), and, in some cases, impossible to be
implemented in a real system. In order to reduce the costs of implementation and main-
tenance, and also to provide an efficient way to establish communication between several
devices in an industrial system, communication networks are used.

In diagnosis systems based on communication networks, the intense data traffic in
communication channels, or the long distance between measurement sites and diagnosers,
can delay the reception by a local diagnoser of the information communicated through
the channel. Moreover, measurement sites can route their messages to several diagnosers,
which can also delay the reception of the information by the local diagnosers, and, con-
sequently, the diagnoser receives the information about the occurrence of the events in
an order different from the order the events have been transmitted by the different mea-
surement sites (Debouk et al. 2003; Park and Cho 2006). Other factors, such as sensor
faults and communication channel problems, may prevent a signal issued by a sensor from
reaching the local diagnosers. In both cases, the diagnoser can either make a wrong deci-
sion regarding a failure occurrence, or it can observe an event that is not feasible in its
current state and gets stuck. The problem of delay in communication networks has been
addressed in Debouk et al. (2003) and Qiu and Kumar (2008) for fault diagnosis of DES,
and the problem of discrete-event systems subject to unreliable observations of events
has been addressed in Athanasopoulou et al. (2010); Carvalho et al. (2011, 2012, 2013);
Takai (2012).

In this paper, we address the problem of failure diagnosis of networked DES with the
decentralized diagnosis structure proposed in Protocol 3 of Debouk et al. (2000), i.e.: (i)

there is no communication between local diagnosers; (ii) each local diagnoser infers the
occurrence of the failure event based on its own observations; (iii) the failure event is diag-
nosed when at least one of the local diagnosers identifies its occurrence. We also consider
that the observation of event occurrences is distributed in the plant, i.e., the plant has sev-
eral measurement sites, and each site has exclusive communication channels to send the
information regarding event occurrences to local networked diagnosers, as shown in Fig. 1.
In addition, we assume the existence of communication delays between measurement sites
and local networked diagnosers, which may result in an observation order different from the
actual order of event occurrences in the plant.

The problem addressed in this paper is different from the diagnosis problems of net-
worked systems proposed in the literature. The problem of decentralized failure diagnosis
subject to communication delays between local diagnosers and the coordinator, under
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Fig. 1 Networked decentralized diagnosis scheme

Protocols 1 and 2 of Debouk et al. (2000), is proposed in Debouk et al. (2003). In Debouk
et al. (2003), it is assumed that the events received by the coordinator can be observed out
of their original order of occurrence; however, no delay between the measurement sites and
the diagnoser is assumed in Debouk et al. (2003). Here we consider Protocol 3 of Debouk
et al. (2000) and assume communication delays between the measurement sites and the local
diagnosers. Finite delays in the communication between local diagnosers and coordinator
are not assumed here since they do not affect the diagnosis decision. The problem proposed
in this paper is also different from the so-called distributed diagnosis scheme proposed
in Qiu and Kumar (2008), where each local diagnoser can exchange information with the
other local diagnosers to infer the failure event occurrence. In addition, in Qiu and Kumar
(2008) the communication delay between two local diagnosers is considered equal, and it is
assumed that there is no delay between the measurement sites and diagnosers.

It is important to remark that the problem of communication delays has also been
addressed in the context of supervisory control of DES by Balemi (1994); Park and Cho
(2006, 2007b); Lin (2014); Shu and Lin (2015), for the monolithic case, and by Park and
Cho (2007a) and Shu and Lin (2014), for the decentralized/distributed case. In the afore-
mentioned works, it is assumed that there is only one communication channel between the
plant and supervisor, and, thus, no change in the order of event observations by the super-
visor occurs. Since codiagnosability is not time critical, i.e., the diagnoser can detect the
fault after an arbitrarily large number of event occurrences, bounded communication delays
that cannot change the order of event observation are not important in the context of failure
diagnosis. We consider here decentralized diagnosis of networked DES assuming that com-
munication delays can be large enough that it can modify the order of observation of the
events received by the local diagnosers. Still in the context of supervisory control, Tripakis
(2004) and Sadid et al. (2015) assume that communication delays may change the order
of event observation. One important restriction of these approaches is that the same delay
upper bound is assumed for all communication channels. In addition, Sadid et al. (2015)
restricts the problem to those systems whose automaton models have no loops of communi-
cation events (events that are subject to communication delays) in the original system. None

Author's personal copy



218 Discrete Event Dyn Syst (2018) 28:215–246

of these assumptions are assumed here. Figure 2 shows the main differences between our
approach and others previously presented in the literature regarding the location of the com-
munication channels subject to delays, and the number of communication channels/effect
of communication delays. Not directly related to our work, we cite the works by Rohloff
(2005), Sánchez and Montoya (2006), Lin (2014), Alves et al. (2014), and Ushio and Takai
(2016), that consider the problem of loss of observations (permanent or intermittent), in the
context of supervisory control.

In this paper, we first introduce the definition of network codiagnosability with respect to
event communication delays and intermittent loss of observation, to be referred here simply
to as network codiagnosability, and then, we propose an algorithm to construct deterministic
automata that capture the effect of event communication delays in the communication chan-
nels between the measurement sites and the local diagnosers. The problem of intermittent
loss of observation is addressed by using the dilation function proposed in Carvalho et al.
(2012). Based on the model of the system obtained to represent the effect of the commu-
nication delays and intermittent loss of observation, we present a necessary and sufficient
condition for network codiagnosability, and develop an algorithm for its verification.

This paper is organized as follows. In Section 2 we present preliminary concepts on DES
necessary in the sections that follow. In Section 3 we formulate the problem of decentral-
ized diagnosis of systems with network communication subject to event delays and loss of
observation, and, in the sequel, we present an algorithm to obtain automata that model all
possible delays in the communication of events to local diagnosers. The problem of inter-
mittent loss of observation is considered in the sequel, by using the dilation function in the
model of the system with communication delays. The definition of network codiagnosabil-
ity is also presented in Section 3. In Section 4 we present an algorithm to verify the network
codiagnosability of DESs. In Section 5 we analyze the computational complexity of the

Fig. 2 Comparison among different networked DES regarding the location of the communication channels
subject to delays, and the number of communication channels/effect of communication delays
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algorithm for the verification of the network codiagnosability. Finally, in Section 6 we list
the main contributions of the paper. A running example is used to illustrate the main results
of the paper.

A preliminary version of this paper was presented at WODES2016 (Nunes et al. 2016).
Here, besides presenting the proofs of the theorems stated in the conference paper, we also
consider intermittent loss of observation (Section 3.3) and make appropriate changes in the
sections that follow.

2 Preliminaries

2.1 Definitions and notations

Let G = (X, �, f, �, x0, Xm) be a deterministic automaton that models a DES, where
X is the state space, � is the set of events, � : X → 2� is the active event function,
f : X × �∗ → X is the state transition function partially defined in X × �∗, where �∗
denotes the Kleene closure of �, Xm is the set of marked states, and x0 is the initial state
(Cassandras and Lafortune 2008). Assume that event set � is partitioned as � = �o∪̇�uo,
where �o and �uo denote, respectively, the observable and unobservable event sets. The
language generated by G will be denoted by L(G) or simply by LG.

Let K be a language defined over �∗. The prefix closure of K is denoted by K . If
K = K , then K is said to be prefix-closed. A language M ⊆ �∗ is said to be live if, for all
traces s ∈ M , there exists an event σ ∈ �, such that sσ ∈ M . In this regard, the language
generated by G is live if �(x) �= ∅, for all x ∈ X.

The accessible part of G, denoted as Ac(G), is the automaton obtained by deleting all
states of G, and their related transitions, that are not reachable from the initial state x0.
The coaccessible part of G, denoted as CoAc(G), is the automaton obtained by deleting all
states of G from which it is not possible to reach a marked state.

The projection Pls : �∗
l → �∗

s , where �s ⊂ �l is defined as: (i) Pls(ε) = ε; (ii)

Pls(σ ) = σ if σ ∈ �s ; (iii) Pls(σ ) = ε, if σ ∈ �l \ �s ; (iv) Pls(tσ ) = Pls(t)Pls(σ ), for
t ∈ �∗

l and σ ∈ �l , where ε denotes the empty trace. The inverse projection P −1
ls : �∗

s →
2�∗

l is defined as P −1
ls (q) = {t ∈ �∗

l : Pls(t) = q}.
Let G1 and G2 be two automata. The parallel composition between G1 and

G2 is denoted by G1‖G2, and is defined as: G1‖G2 = Ac(X1 × X2, �1 ∪
�2, f1‖2, �1‖2, (x0,1, x0,2),Xm1 ×Xm2), where f1‖2((x1, x2), σ ) = (f1(x1, σ ), f2(x2, σ )),
if σ ∈ �1(x1) ∩ �2(x2), f1‖2((x1, x2), σ ) = (f1(x1, σ ), x2), if σ ∈ �1(x1) \ �2,
f1‖2((x1, x2), σ ) = (x1, f2(x2, σ )), if σ ∈ �2(x2) \ �1, or, undefined, otherwise.

The observer Obs(G,�o) is defined as Obs(G,�o) =
(Xobs, �o, fobs, �obs, x0obs

, Xmobs
), where Xobs ⊆ 2X and Xmobs

= {B ∈ Xobs : B∩Xm �=
∅}. In order to define x0obs

, �obs and fobs , it is necessary to introduce the definition of
unobservable reach of a state x ∈ X, denoted as UR(x,�o)

UR(x, �o) = {y ∈ X : (∃t ∈ �∗
uo)[f (x, t) = y]}.

The unobservable reach can be extended to a set B ∈ 2X as:

UR(B, �o) =
⋃

x∈B

UR(x, �o).
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Thus, x0,obs = UR(x0, �o), and for all xobs ∈ Xobs , �obs(xobs) = ⋃
x∈xobs

�(x),
fobs(xobs, σ ) = ⋃

(x∈xobs )∧(f (x,σ )!) UR[f (x, σ ), �o], if σ ∈ �obs(xo,obs), or, undefined,
otherwise, f (x, σ )! denotes that f (x, σ ) is defined, i.e., ∃y ∈ X such that f (x, σ ) = y.

Let �o = �ilo∪̇�nilo be a partition of �, where �ilo is the set of observable events
subject to intermittent loss of observations and �nilo is the set of observable events that
are not subject to intermittent loss of observation. In addition, let �′

ilo = {σ ′ : σ ∈ �ilo}
be a set of unobservable events, and �dil = � ∪ �′

ilo. The dilation function is defined as
D : �∗ → 2(�dil )

∗
, where, D(ε) = {ε}, D(σ) = {σ }, if σ ∈ � \ �ilo, D(σ) = {σ, σ ′},

if σ ∈ �ilo and D(sσ) = D(s)D(σ) where s ∈ �∗ and σ ∈ �. The dilation operation
D can be extended to languages as follows: D(L) = ⋃

s∈L D(s). The reader is referred to
Carvalho et al. (2012) for more insights into the definition of dilation operation.

Let σ ∈ � and s ∈ �∗. Then, with a slight abuse of notation, σ ∈ s denotes that event σ
is one of the events that form trace s, and σ (l) denotes the l-th occurrence of event σ ∈ s,
that is, σ (l) ∈ s implies that there are, at least, l occurrences of event σ in trace s.

2.2 Codiagnosability of discrete event systems

Let �f ⊆ �uo be the set of failure events. For the sake of simplicity, and without loss of
generality, we assume in this paper that there is only one failure event, i.e., �f = {σf }.
Definition 1 (normal and failure traces): Let s ∈ LG, and define Ls = {s}. Then s is a
failure trace if ∃sp ∈ Ls such that sp = s̃pσf for some s̃p ∈ �∗. Otherwise, s is a normal
trace.

According to Definition 1, a failure trace is a sequence of events s such that σf is one of
its events and a normal trace, on the other hand, does not contain the event σf .

The set of all normal traces generated by the system is the prefix-closed language LN ⊂
LG. Thus, the set of all failure traces is given by LG \ LN .

Let GN be the subautomaton of G that models the normal language of the system with
respect to the failure event set �f . Then, the language generated by GN is LN .

In this paper, we adopt the decentralized diagnosis scheme presented in Protocol 3 of
Debouk et al. (2000), that consists of a set of n local diagnosers that do not communicate
with each other. In addition, each local diagnoser infers the occurrence of the failure event
based on its own set of observable events �oi

⊂ �o, where i = 1, 2, . . . , n, i.e., the set
of events is partitioned, for each local diagnoser, as � = �oi

∪̇�uoi
, where �uoi

denotes
the set of events that are unobservable by the i-th local diagnoser. In this architecture, each
local diagnoser is not capable of distinguishing all failure traces of the system from normal
ones; thus it is necessary that all local diagnosers cooperate with each other in order to
diagnose the occurrence of the failure event. A failure event is diagnosed when at least one
of the local diagnosers identifies its occurrence. This notion of decentralized diagnosability
is referred to in the literature as codiagnosability (Qiu and Kumar 2006). The definition of
codiagnosability of a language LG is as follows.

Definition 2 (Debouk et al. 2000) Let LG and LN ⊂ LG be prefix-closed languages gen-
erated by G and GN , respectively, and let Poi

: �∗ → �∗
oi
, i = 1, . . . , n, be projection

operations. Then, LG is codiagnosable with respect to projections Poi
and �f if

(∃z ∈ N)(∀s ∈ LG \ LN)(∀st ∈ LG \ LN, ||t || ≥ z) ⇒
(∃i ∈ {1, 2, . . . , n})(Poi

(st) �= Poi
(ω), ∀ω∈LN)

where ||.|| denotes the length of a trace.
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Remark 1 Notice that, when n = 1, Definition 2 is equal to the definition of language
diagnosability (Sampath et al. 1995).

According to Definition 2, LG is codiagnosable with respect to Poi
and �f if, and only

if, for all failure traces sF = st of arbitrarily long length after the occurrence of the failure
event, there do not exist traces sNi

∈ LN , where sNj
is not necessarily different from sNk

for j �= k, such that Poi
(sNi

) = Poi
(sF ), for all i ∈ {1, 2, . . . , n}.

2.3 Codiagnosability verification of DES

The codiagnosability verification of LG is the first step for the failure decentralized diagno-
sis of a DES, and several works in the literature address this problem (Debouk et al. 2000;
Qiu and Kumar 2006; Moreira et al. 2011, 2016). In this work, we use the algorithm pro-
posed by Moreira et al. (2011) as the basis for the construction of a verifier automaton GV

for network codiagnosability verification.

3 Network codiagnosability of discrete-event systems

3.1 Problem formulation

In general, different sensors in distributed systems do not share the same communication
channel. This is so because, either the measurement sites are far away from each other, or
a single communication channel may not have enough capacity to transmit all data from a
measurement site to a local diagnoser. Thus, the implementation of several communication
channels between measurement sites and diagnosers is, in general, necessary in network-
controlled systems.

In this paper, we introduce a network decentralized diagnosis scheme for a plant with
different measurement sites MSj , j = 1, . . . , m, where each measurement site MSj reads
the signals associated with a subset �MSj

⊂ �o of the observable events of the system. In
this scheme, events of �MSj

are communicated to a local diagnoser LDi , i = 1, 2, . . . , n,
by an exclusive communication channel chij , i.e., only the events detected by measurement
site MSj can be communicated through channel chij between measurement site MSj and
local diagnoser LDi . Let us denote the set of events communicated to local diagnoser LDi ,
through communication channel chij , as �oij

⊆ �MSj
. It is important to remark that if

the communication channel chyx , between a measurement site MSx and a local diagnoser
LDy , does not exist, then �oyx = ∅. Thus, the set of observable events of LDi , �oi

, is
given by:

�oi
=

m⋃

j=1

�oij
. (1)

It is important to notice that �o = ⋃n
i=1 �oi

.
In Fig. 3, we show the network decentralized diagnosis scheme proposed in this paper for

a plant with distributed observation with four measurement sites and two local diagnosers.
Notice that measurement site MS1 is capable of communicating to local diagnoser LD1
through channel ch11 only the events in �o11 ⊆ �MS1 , and that measurement site MS3
communicates the events in �o13 ⊆ �MS3 and �o23 ⊆ �MS3 to local diagnosers LD1 and
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Fig. 3 Network decentralized diagnosis architecture

LD2, respectively, through communication channels ch13 and ch23. It is important to remark
that in the network architecture proposed in this paper, a measurement site can transmit a
different set of observable events to different local diagnosers, which implies that, in the
example depicted in Fig. 3, �o13 can be different from �o23 .

The communication between measurement sites and local diagnosers through a com-
munication network can introduce two problems for the failure diagnosis as follows: (i)

loss of data transmitted through communication channels; and (ii) delay in the communi-
cation of an event occurrence to a local diagnoser. When either one of the situations above
occurs, the diagnoser may send a wrong diagnosis decision to the coordinator, and then, the
implemented diagnosis scheme is no longer reliable.

Regarding event communication delays, we make the following assumptions:

A1. The delay in the communication of an event σ ∈ �o is measured by steps (Tripakis
2004), where one step is the occurrence of an event, i.e., the delay is measured by the
number of events that are executed by the plant after the occurrence of σ and before
its observation by a local diagnoser.

A2. The event communication delays are bounded.
A3. The communication channels follow first-in first-out (FIFO) rule as far as sending

and reception of events are concerned.
A4. There is one and only one channel chij between measurement site MSj and local

diagnoser LDi , and the maximum communication delay of channel chij , denoted
by kij , is previously known. If a channel chyx does not exist, then by convention,
kyx = 0.

A5. The event sets �MSi
and �MSj

are disjoint for all i, j ∈ {1, 2, . . . , m}, i �= j .

Regarding loss of data in communication channels, we make the following assumption:

A6. The loss of observation of events occurs in the communication channels that connect
measurement sites and local diagnosers.

Therefore, according to assumption A6, the loss of observation of an event does not change
the plant behavior, but only the observation.
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3.2 Model of the plant subject to communication delays

In the system structure shown in Fig. 3, a datum transmitted by a communication channel,
chip , can delay with respect to another communication channel chiq , where p �= q and
p, q ∈ {1, 2, . . . , j}. As a consequence, in the communication of the events to the local
diagnoser LDi , they can be observed in an order different from their actual occurrence in
the system. Thus, in order to address the problem of failure diagnosis in networked DES
with communication delays, it is necessary to construct automata Gi , i = 1, 2, . . . , n, that
represent all possible ordering of observation of the traces executed by the plant by the local
diagnosers LDi .

To distinguish an event σ ∈ �oij
that occurs in the plant, from its observation by local

diagnoser LDi , we create an event σsi that represents the successful observation of σ by
local diagnoser LDi . In this regard, let

�s
oij

= {σsi : σ ∈ �oij
} (2)

denote the set of events that are observable to local diagnoser LDi and whose occurrence
are recorded at MSj , and let

�s
oi

=
m⋃

j=1

�s
oij

(3)

denote the set of observable events that are successfully communicated to local diagnoser
LDi . Then, the following sets of events can be defined

�i = � ∪ �s
oi

, i = 1, . . . , n, (4)

where the events in � are now unobservable for all local diagnosers LDi , i = 1, . . . , n, and
the events in �s

oi
are observable for local diagnoser LDi .

The following example illustrates the observation of a trace in LG by a local diagnoser
in the presence of communication delays.

Example 1 Consider the network decentralized diagnosis scheme depicted in Fig. 4a, which
consists of two local diagnosers, LD1 and LD2, and three measurement sites, MS1, MS2
and MS3. The plant with distributed observation is modeled by automaton G depicted in
Fig. 4b, where � = {a, b, c, d, e, σf }. Let �MS1 = {a}, �MS2 = {c} and �MS3 = {b, e},
be the sets of events that are recorded by measurement sites MS1, MS2 and MS3, respec-
tively. Assume that the set of observable events of local diagnoser LD1 is �o1 = {a, c}.
Thus, �s

o1
= {as1 , cs1}, where as1 and cs1 denote the successful observation of events a and

c, respectively, by local diagnoser LD1. The occurrences of the events in �o1 are trans-
mitted through communication channels ch11 and ch12, which implies that, �o11 = {a}
and �o12 = {c}. Assume now that the set of observable events of LD2 is �o2 = {b, c, e}.
Thus, �s

o2
= {bs2 , cs2 , es2}, where bs2 , cs2 , and es2 denote the successful observation of

events b, c, and e, respectively, by local diagnoser LD2. The occurrences of the events in
�o2 are communicated through channels ch22 and ch23, which implies that �o22 = {c}
and �o23 = {b, e}. Let σf be the failure event, and assume that the delay bounds of the
communication channels are k12 = 2, k23 = 1 and k11 = k22 = 0.

Notice that automaton G generates failure traces sF1 = σf abecp and sF2 = σf bcacp−1,
and normal trace sN = bdacp, where p ∈ {1, 2, . . .}. Since the sets of observable events
of LD1 and LD2 are �o1 = {a, c} and �o2 = {b, c, e}, respectively, and assuming that
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(a) (b)

Fig. 4 Network diagnosis scheme (a) and automaton G (b) of Example 1

the system works perfectly, i.e, there is neither observation delays nor losses of events, the
traces observed by LD1 are Po1(sN ) = Po1(sF1) = acp and Po1(sF2) = cacp−1 and the
traces observed by LD2 are Po2(sN ) = Po2(sF2) = bcp and Po2(sF1) = becp. This implies
that none of the local diagnosers can diagnose LG alone. However, since LD1 diagnosis
trace sF2 , and LD2 diagnosis trace sF1 , we conclude that the system is codiagnosable.

Let us now suppose that the plant generates trace s = σf bca in the presence of com-
munication delays. Since, k23 = 1 and k22 = 0, local diagnoser LD2 may observe the
occurrence of event b delayed by, at most, one step (Interval 1 of Fig. 5), and LD2 observes
the occurrence of event c without step delays, i.e., after the occurrence of c and before the
occurrence of event a (Interval 2 of Fig. 5). Notice that, since the occurrences of b and c

are transmitted through different channels, and there is an intersection between Intervals 1
and 2, LD2 may observe event c before observing event b. As a consequence, the following
traces represent all possible observations of trace s = σf bca by LD2:

– Trace bs2cs2 that models the case when there is zero delay in the observation of event
b, or the case when the delay in the observation of b is equal to one step, but LD2
still receives the information about the occurrence of b before receiving the information
about the occurrence of c;

– Trace cs2bs2 that models the case when the delay in the observation of b is equal to one
step, and LD2 receives the information about the occurrence of event c before receiving
the information about the occurrence of b.

Fig. 5 Intervals 1 and 2, where
LD2 can observe events b and c,
respectively, when trace
s = σf bca is generated by the
system considered in Example 1
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In order to obtain all possible observations of a trace s ∈ LG by a local diag-
noser LDi , we introduce a function that inserts events belonging to �s

oi
based on the

communication delay bounds kij and event sets �oij
. Let us first define the following

projections:

Pi : �∗
i → �∗, (5)

Pi,oij
: �∗

i → �∗
oij

, (6)

Pi,sij : �∗
i → �s∗

oij
. (7)

In addition, let wσ(l) denote the prefix of a trace w ∈ �∗
i whose last event is the l-th

occurrence of σ , and let w
σ

(l)
s

be the prefix of w whose last event is the l-th occurrence of

σsi , if σ
(l)
si ∈ w, or w, if σ

(l)
si �∈ w.

Definition 3 (Insertion function) An insertion function associated with local diagnoserLDi

and observable events in �oij
, transmitted through communication channels chij that have

communication delay bound kij , j = 1, 2, . . . , m, is a mapping

χi : �∗ → 2�∗
i

s �→ χi(s)

where w ∈ χi(s) if w satisfies the following conditions:

1. Pi(w) = s;
2. For all σ ∈ �oij

, and σ (l) ∈ w:

‖Pi(wσ
(l)
s

)‖ − ‖Pi(wσ(l) )‖ ≤ kij , (8)

3. For all σsi ∈ �s
oij
, and σ

(l)
si ∈ w:

σ (l) ∈ w
σ

(l)
s

, (9)

and

‖Pi,oij
(wσ(l) )‖ = ‖Pi,sij (wσ

(l)
s

)‖, (10)

The extension of χi to the domain 2�∗
is defined as χi(L) := ⋃

t∈L χi(t).

Condition 1 ensures that w is obtained from s by inserting events only from �s
oi
. Condi-

tion 2 ensures that the delay between the occurrence of event σ ∈ �oij
, and its observation

σsi ∈ �s
oij

is smaller than or equal to the maximum delay bound kij . Finally, condition 3
ensures that the observation of an event σsi can only occur after event σ has occurred in
s (Eq. 9), and that the observation of events transmitted through the same communication
channel must be in the same order of their occurrence in s (Eq. 10). The following example
illustrates the usefulness of insertion function χi .

Example 2 Consider the network decentralized diagnosis scheme depicted in Fig. 4a, and
the plant modeled by automaton G depicted in Fig. 4b, where � = {a, b, c, d, e, σf }. Let
us assume that �o2 = {b, c, e}, which implies that �o22 = {c} and �o23 = {b, e}, and that
k22 = 0 and k23 = 1, i.e., the observation of event c is not delayed, and the observation of
events b and e can be delayed by at most one step for local diagnoser LD2.
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Let us assume that trace s = σf bca ∈ LG has been executed by the system. Then,
by applying Definition 3, we obtain the following set of traces in �∗

2 associated with all
possible observations of trace s by local diagnoser LD2 due to communication delays:

χ2(s) = {σf bbs2ccs2a, σf bcbs2cs2a, σf bccs2bs2a}.
Notice that the projections in �s

o2
of the traces in χ2(s) are, either bs2cs2 or cs2bs2 , as

expected.
Consider now trace t = σf abec ∈ LG, and traces

w1 = σf abees2cbs2cs2 , w2 = σf abebs2es2bs2ccs2 and w3 = σf abees2bs2ccs2 .

Notice that traces w1, w2 and w3 do not correspond to possible observations of trace t by
local diagnoser LD2 since: (i) the observation of event b, modeled by event bs2 , is delayed
by two steps in w1, which is captured by condition 2 (Eq. 8); (ii) w2 has two occurrences of
event bs2 , indicating that event b is observed twice by LD2, which is not possible since there
is only one occurrence of event b in trace t — this is captured by condition 3 (Eq. 9), and;
(iii) the observation of events b and e are in an incorrect order in w3, since these events are
transmitted through the same communication channel and event e has occurred after event
b in t , which is captured by condition 3 (Eq. 10).

In order to obtain an algorithm for the computation of automaton models Gi , i =
1, . . . , n, such that L(Gi) = χi(LG) we first propose an algorithm for the construction of
automata Di , i = 1, . . . , n, that model the communication network between the plant and
local diagnoser LDi . In order to do so, the states of Di must store the information about the
occurrence of the events in �oi

whose observations are being transmitted to local diagnoser
LDi , and the number of steps that have elapsed after the occurrence of these events. Thus,
the states of Di are labeled with traces formed with events in �oi

and a symbol ν, that either
represents the occurrence of an unobservable event in �uoi

, or replaces an event in �oi
that

has been successfully observed by LDi , i.e., ν is used to represent a step delay when it is
not important to memorize which event has occurred. Symbol ν is also used to denote the
initial state of Di , since, at this state, no event occurrence is being transmitted to LDi .

In the following definition, we propose some operations over traces belonging to (�o ∪
{ν})∗, and also define two functions that associate each event in �o with its measurement
site and its equivalent events in �s

oi
, i = 1, . . . , n.

Definition 4 Let � = �o∪̇�uo. Define �oν = �o ∪{ν} and the set of states Q, where each
state q ∈ Q is labeled with a trace s ∈ �∗

oν . Then, the following functions can be defined:

a. The replacement function rep is defined as:

rep : Q × N → Q

where for all q = q1q2...q	 ∈ Q,

rep(q, i) =
{

q1q2...qi−1νqi+1...q	, if i ≤ 	

undefined, otherwise.

b. The elimination function cut is defined as:

cut : Q → Q
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where for all q = q1q2...q	 ∈ Q,

cut (q) =
{

qiqi+1...q	, if (∃i ≤ 	)[(qi �= ν) ∧ (qk = ν, ∀k ∈ {1, 2, ..., i − 1})]
ν, if qk = ν,∀k ∈ {1, 2, . . . , 	}.

c. The measurement site index function ms is defined as:

ms : �oν → {1, 2, ..., m}

where for all σ ∈ �oν ,

ms(σ) =
{

j : if σ ∈ �oij
for some i ∈ {1, 2, ..., n}

undefined, otherwise.

d. The bijective function φi is defined, for i = 1, . . . , n, as:

φi : �s
oi

→ �oi
,

σsi �→ φi(σsi ) = σ,

and φi is extended to sets of events as

φi(�
s
oi

) =
⋃

σsi
∈�s

oi

φi(σsi ).

According to Definition 4, function rep(q, i) replaces the i-th element of state q with
element ν. This function is introduced to represent that an event has occurred but the knowl-
edge of which event has occurred is not important. Function cut (q) eliminates the largest
prefix of state q formed only with elements ν, and function ms(σ) returns the index j which
corresponds to the measurement site (MSj ) that detects the occurrence of event σ . Function
φi(σsi ) returns event σ whose successful observation is represented by σsi .

Algorithm 1 describes the construction of automaton Di , associated with local diagnoser
LDi , that models all possible delays in the communication of events to LDi , from measure-
ment site MSj , j = 1, 2, . . . , m. Automaton Di will be referred to as the communication
network delay model.

Notice that, Algorithm 1 can be divided in three parts: (i) initialization of automaton
Di , Steps 1 to 4.2.1, where we define the initial state and the associated transition func-
tions; (ii) check of how many events can occur in the plant, with respect to communication
delay kij , before one of them is observed, Step 4.2.7, and; (iii) modeling of observa-
tion of the events by LDi , Step 4.2.9. The correctness of Algorithm 1 will be ensured by
Lemma 2.
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It is important to remark that Steps 4.2.9(a) and 4.2.9(b) are important when there are
more than one event to be processed. Notice that, when more than one event of u belong
to set �s

oij
, only the first occurred event is feasible to reach the new state defined in Step

4.2.9(b). This condition is a direct consequence of Assumption A3, which establishes that
each communication channel follows FIFO rules, i.e., there is no change in the order among
events transmitted in the same communication channel.

Remark 2 In Qiu and Kumar (2008), a nondeterministic model is proposed to represent
the effects of communication delays between local diagnosers in a distributed diagnosis
architecture, assuming that there exists a unique delay bound k for all communication chan-
nels between diagnosers. This model was called k-delaying&masking model. It is worth
remarking that, differently from Qiu and Kumar (2008), we address here the problem of
decentralized diagnosis using Protocol 3 of Debouk et al. (2000), assuming that each com-
munication channel between a measurement site and a local diagnoser can have different
delay bounds kij . The effects of these communication delays are captured by automaton
Di , computed according to Algorithm 1. It is also important to remark that, differently
from the k-delaying&masking model, the communication delay model Di proposed here
is deterministic.

The following example illustrates the construction of automaton Di according to
Algorithm 1.

Example 3 Consider the network decentralized diagnosis scheme depicted in Fig. 4a, and
the plant modeled by automaton G depicted in Fig. 4b, where � = {a, b, c, d, e, σf }.
Assume, as in Example 1, that the set of observable events of LD1 and LD2 are, respec-
tively, �o1 = {a, c} and �o2 = {b, c, e}. Thus, for local diagnoser LD1, �o11 = {a} and
�o12 = {c}, and, for local diagnoser LD2, �o22 = {c} and �o23 = {b, e}. Assume that
the system is subject to communication delays, where, as in Example 1, k11 = k22 = 0,
k12 = 2 and k23 = 1. Then, for local diagnoser LD1, the observation of occurrences of
event c may be delayed by at most two steps, and, for local diagnoser LD2, the observation
of occurrences of events b and e can be delayed by at most one step.

In order to model the observation delays associated with LD1 we need to construct
automaton D1, which is shown in Fig. 6a, by following the steps of Algorithm 1. In Step 1,
the initial state q01 is defined as ν and the set of states Q1 is defined as the empty set. In
Step 2, sets �s

o1
= {as1 , cs1} and �1 = {a, b, c, d, e, σf , as1 , cs1} are formed. In Step 3,

queue F is created and state q01 = ν is added to F . While queue F is not empty, the first
element of F is assigned to variable u according to Step 4.1, and, since u = ν, in Step 4.2.1,
transitions from ν will be defined for all σ ∈ �, as follows: δ1(ν, a) = a, δ1(ν, c) = c and
δ1(ν, σf ) = δ1(ν, b) = δ1(ν, d) = δ1(ν, e) = ν. Next, states a and c are added to the end of
queue F , that is F = (ν, a, c), and, in Step 4.2.2, state ν is added to set Q1, i.e., Q1 = {ν}.
At Step 4.2.3, the first element of F is removed, and the queue becomes F = (a, c).

In the second iteration, the first element of the queue is then assigned to variable u, i.e,
u = a, and since u is different from ν in Step 4.2, the length of u is computed and assigned
to variable 	 and set I	 = {1} is formed in Step 4.2.4. Then, sets Iν = ∅ and I	\ν = I	 are
computed in Steps 4.2.5 and 4.2.6. Notice that, the conditions in Steps 4.2.7(a) and 4.2.8(a)

check if the length of the suffixes of u = σ1σ2 . . . σ	, is less than or equal to the delay of
the communication channel that transmits event σy for all y in I	\ν . Thus, in Steps 4.2.7(a)

and 4.2.8(a), no transition from state a is defined, since channel ch11, which transmits
a, is not subject to communication delays. On the other hand, according to Step 4.2.9, a
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transition from state a to state ν labeled with as1 is created, which represents the successful
observation of a by LD1. To end this iteration, state a is added to set Q1, i.e., Q1 = {ν, a}
and is removed from queue F , which becomes F = (c).

In the third iteration of Step 4, u = c. The length of u is computed and assigned to
variable 	 and set I	 = {1} is formed. Then, sets Iν = ∅ and I	\ν = I	 are computed. Since
channel ch12, which transmits c, is subject to communication delays of at most two steps, in
Step 4.2.7(a), transitions from state c are defined for all σ ∈ �o1 as follows: δ1(c, a) = ca

and δ1(c, c) = cc, and in Step 4.2.7(b), states ca and cc are added to the end of the queue
F , i.e., F = (ca, cc). After this, in Step 4.2.8(a), transitions from state c are defined for all
σ ∈ �uo1 as follows: δ1(c, b) = δ1(c, d) = δ1(c, σf ) = cν, and in Step 4.2.8(b), state cν

is added to the end of the queue F , i.e., F = (ca, cc, cν). Step 4 will be repeated for all
elements of queue F until F = ∅.

In order to model observation delays for LD2, we need to construct automaton D2 shown
in Fig. 6b, which is constructed in a similar way as D1. It is important to remark that, since

(a)

(b)

Fig. 6 Communication network delay model D1 (a) and D2 (b)

Author's personal copy



Discrete Event Dyn Syst (2018) 28:215–246 231

events b and e are communicated through the same channel ch23, the order of observation
of these events cannot be changed, i.e., if substring be or eb is executed by the plant, then
LD2 receives bs2es2 or es2bs2 , respectively, as shown in Fig. 6b.

Based on automaton Di obtained in Algorithm 1, we may state the following results.

Lemma 1 Let w ∈ L(Di), and define state u = δi(q0i
, w). Then, u = ν if, and only if,

every event σ ∈ w, where σ ∈ �oi
, has its corresponding observation σsi ∈ w. Otherwise,

u = σ1σ2 . . . σl , where σ1 �= ν, and every event σy , y = 1, 2, . . . , l, that is different from ν,
accounts for the occurrence of event σy in w that belongs to �oi

and has not been observed
yet, with l − y being equal to the number of events that have occurred in the system after
the occurrence of σy .

Proof The proof is done by induction in the length of the traces w ∈ L(Di).

Basis step. According to Step 1 of Algorithm 1, the initial state of Di is equal to q0i
= ν.

Thus, for w = ε, δi(q0i
, w) = ν, which agrees with the fact that there is no event in w,

that belongs to �oi
, whose observation has not been transmitted.

Induction hypothesis. For all w ∈ L(Di), such that ‖w‖ ≤ k, δi(q0i
, w) = ν if, and

only if, every event σ ∈ w, where σ ∈ �oi
, has its corresponding observation σsi ∈ w.

Otherwise, δi(q0i
, w) = σ1σ2 . . . σl , where σ1 �= ν, and every event σy , y = 1, 2, . . . , l,

that is different from ν, accounts for the occurrence of event σy in w that belongs to �oi

and has not been observed yet, with l − y being equal to the number of events that have
occurred in the system after the occurrence of σy .

Inductive step. Consider a trace wσ ∈ L(Di) such that ‖w‖ = k and σ ∈ �i .
Let us first consider the case that δi(q0i

, w) = ν. Then, according to the induction
hypothesis, w is such that every occurrence in w of events belonging to �oi

are observed
in w. Notice that, transitions from state ν of Di are defined in Step 4.2.1 of Algo-
rithm 1 for events σ ∈ �, and the reached state will be equal to σ , if σ ∈ �oi

, or ν, if
σ ∈ �uoi

. Notice also that there are no transitions labeled by events in �s
oi

defined in
state ν. Therefore, it can be concluded that the proposition of the lemma holds true for
δi(q0i

, w) = ν.

Let us now consider the case that δi(q0i
, w) = σ1σ2 . . . σl . Thus, according to the induction

hypothesis, every event σy , y ∈ {1, 2, . . . , l}, that is different from ν, accounts for the
occurrence of event σy in w that belongs to �oi

and has not been observed yet, with l − y

being equal to the number of events that have occurred in the system after the occurrence of
σy . According to Algorithm 1, the state reached from state δi(q0i

, w) by a transition labeled
by an event σ ∈ �i can be determined as follows:

(i) If σ ∈ �oi
, then, according to Step 4.2.7, the reached state is

δi(q0i
, wσ) = δi(q0i

, w)σ = σ1 . . . σy . . . σlσ.

(ii) If σ ∈ �uoi
, then, according to Step 4.2.8, the reached state is

δi(q0i
, wσ) = δi(q0i

, w)ν = σ1 . . . σy . . . σlν.

(iii) If σ ∈ �s
oi
, then, according to Step 4.2.9, the reached state is

δi(q0i
, wσ) = cut (rep(u, ŷ)),
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where, according to Step 4.2.9(a), ŷ is the index of the first occurrence of event φi(σ ) in
δi(q0i

, w) and, according to Definition 4, function rem replaces σŷ in δi(q0i
, w) by ν, and

function cut removes the largest prefix formed only with events ν.
Notice that, in cases (i) and (ii), δi(q0i

, wσ) is equal to the concatenation of δi(q0i
, w)

with σ and ν, respectively, which agrees with the fact that the number of event occurrences
in the plant, after the occurrence of event σy , y = 1, . . . , l, is increased by one after the
occurrence of σ in the plant; in addition, in case (i), δi(q0i

, w) must be concatenated with
σ , since σ ∈ �oi

and, clearly, its occurrence has not been observed in wσ , whereas, in case
(ii), δi(q0i

, w) must be concatenated with ν since σ ∈ �uoi
. In case (iii), the occurrence of

event σ ∈ �s
oi
represents the observation of an event in w, namely, it models the successful

observation of event σŷ stored in δi(q0i
, w). Thus, it is straightforward to conclude that

we must replace σŷ by ν to obtain the reached state. This is done in Algorithm 1 by using
function rem. In addition, function cut removes prefixes formed only by ν from rep(u, ŷ),
i.e., it guarantees that the first element of δi(q0i

, wσ) is different from ν, if there is more
than one element in δi(q0i

, w) different from ν, or that δi(q0i
, wσ) = ν, otherwise. In both

cases, the lemma statement holds true, and the proof is complete.

Lemma 2 L(Di) = χi(�
∗).

Proof Notice that, for a trace w ∈ �∗
i to be in χi(s), where s ∈ ��, Pi(w) = s, and w

must satisfy conditions 2 and 3 of Definition 3. Let us define language A = {w ∈ �∗
i :

w satisfies conditions 2 and 3 of Definition 3}. We will first prove that (i) χi(�
∗) = A and,

in the sequence, we will prove that (ii) L(Di) = A.
(i) It is straightforward to conclude that χi(�

∗) ⊆ A since, in accordance with Defini-
tion 3, every trace w ∈ χi(�

∗) is such that w ∈ �∗
i and satisfies conditions 2 and 3 of

Definition 3, which implies that w ∈ A. On the other hand, since A ⊂ �∗
i , for all w ∈ A,

there exists s ∈ �∗ such that Pi(w) = s. Therefore, w satisfies condition 1 of Definition 3
for s = Pi(w), which implies that w ∈ χi(s), and, consequently, w ∈ χi(�

∗).
(ii) Since, by the construction of Di according to Algorithm 1, L(Di) ⊆ �∗

i , we can
show that L(Di) = A by proving that the following statement holds true:

∀w ∈ �∗
i , w ∈ L(Di) ⇔ w satisfies conditions 2 and 3 of Definition 3. (11)

The proof of Statement (11) is by induction in the length of strings w ∈ �∗
i .

Basis step. Let w = ε. Then, w satisfies conditions 2 and 3 of Definition 3. Moreover,
since the initial state ofDi is defined (which is equal to ν), we can conclude thatw ∈ L(Di).

Induction hypothesis. For all w ∈ �∗
i such that ‖w‖ ≤ k, w ∈ L(Di) if, and only if, w

satisfies conditions 2 and 3 of Definition 3.
Inductive step. Let wσ ∈ �∗

i be such that ‖w‖ = k and σ ∈ �i .
Let us consider the case when δi(q0i

, w) = ν. According to Lemma 1, if δi(q0i
, w) = ν,

then every event in w that belongs to �oi
has been observed in w. Thus, if σ ∈ �, trace

wσ satisfies conditions 2 and 3 of Definition 3 since, in accordance with the induction
hypothesis, w satisfies these conditions. On the other hand, if σ ∈ �s

oi
, then trace wσ

does not satisfy Eq. 9 of condition 3. Notice that, according to Algorithm 1, a transition
labeled by σ from state δi(q0i

, w) = ν is defined only if σ ∈ � (Step 4.2.1). Therefore,
when δi(q0i

, w) = ν, trace wσ ∈ L(Di) if, and only if, wσ satisfies conditions 2 and 3 of
Definition 3.

Let us now consider that δi(q0i
, w) = u = σ1σ2 . . . σl , and σ ∈ �. In this case, condition

3 of Definition 3 is satisfied for wσ , since it is satisfied for w. Thus, it remains to verify if
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condition 2 is also satisfied for trace wσ . In order to do so, let ny denote the delay bound of
the channel that communicates the occurrence of event σy to diagnoser LDi , and consider
the problem of evaluating the possibility of the occurrence of event σ ∈ � before the
observation of one of the events that form u. According to Steps 4.2.7(a) (if σ ∈ �oi

) and
4.2.8(a) (if σ ∈ �uoi

), this evaluation is made in a recursive way through the suffixes of
u. Thus, the transition labeled with σ from state u is defined if, and only if, for all suffixes
of u whose first element is not ν, the delay bound ny of the first element σy is bigger than
the length of the suffix. Notice that, in accordance with Lemma 1, verifying this condition
is equivalent to check if every event in �oi

, that has occurred in w and whose observation
has not occurred, satisfies Eq. 8. In addition, since w satisfies condition 2, every event
in w whose occurrence has been observed in w also satisfies Eq. 8. Therefore, we can
conclude that, when σ ∈ �, wσ ∈ L(Di) if, and only if, wσ satisfies conditions 2 and 3 of
Definition 3.

Let us now consider the case when δi(q0i
, w) = u = σ1σ2 . . . σl , and σ ∈ �s

oi
. In this

case, wσ also satisfies condition 2 of Definition 3, since w satisfies it. Thus, it remains to be
verified if condition 3 holds true for trace wσ . In order to do so, consider the possibility of
creating a transition from state u, labeled by event σ ∈ �s

oi
, carried out in Step 4.2.9, which

is repeated for each communication channel chij , j = 1, 2, . . . , m. In Step 4.2.9(a), the set
of indexes Y is computed with respect to state u and set �s

oij
. Notice that, in accordance

with Lemma 1, wσ satisfies Eq. 9 if, and only if, there exists φi(σ ) in u. Thus, when Y

is nonempty, index ŷ = min(Y ) determines event σŷ that corresponds to the first event in

u transmitted through communication channel chij . Consequently, φ−1
i (σŷ) is the unique

event in �s
oij

such that wφ−1
i (σŷ) satisfies Eqs. 9 and 10, and, according to Step 4.2.9(b), it

is also the unique event in�s
oij

that is used to create a new transition from state u. Therefore,
it can be concluded that, when σ ∈ �s

oi
, wσ ∈ L(Di) if, and only if, wσ satisfies conditions

2 and 3 of Definition 3.

Based on Algorithm 1 and Lemmas 1 and 2, we can state the following result.

Theorem 1 Let L denote a language defined over � and let χi be the insertion func-
tion defined with respect to communication delay bounds kij and event sets �oij

, for

j = 1, 2, . . . , m. Then, χi(L) = P −1
i (L) ∩ L(Di).

Proof (⊆) According to Lemma 2, L(Di) = χi(�
∗), which implies that χi(L) ⊆ L(Di).

In addition, from condition 1 of Definition 3, we can conclude that χi(L) ⊆ P −1
i (L).

Therefore, χi(L) ⊆ P −1
i (L) ∩ L(Di).

(⊇) Let w ∈ P −1
i (L) ∩ L(Di). Then, there exists s ∈ L such that s = Pi(w). Moreover,

since w ∈ L(Di), according to Lemma 3, w satisfies conditions 2 and 3 of Definition 3,
which implies thatw ∈ χi(s) ⊆ χi(L). Thus, it can be concluded that χi(L) ⊇ P −1

i (L)∩
L(Di).

After the computation of automata Di , i = 1, . . . , n, we can obtain automata Gi , i =
1, 2, . . . , n, that model all possible ordering of observation of the traces of LG by local
diagnoser LDi due to communication delays, by performing the parallel composition of
automata G and Di , i.e.:

Gi = G‖Di = (Xi,�i, fi, �i, x0i
,∅). (12)
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Notice that the observable event set of Gi is �io = �s
oi
and not �oi

, and its unobservable
event set is �iuo = �, i.e., the occurrence of an event σsi ∈ �s

oi
represents the successful

observation of event σ ∈ �oi
by the local diagnoser LDi .

Since Gi = G‖Di , then the language generated by Gi is given by:

L(Gi) = Pi
−1(LG) ∩ L(Di), (13)

where Pi is the projection defined in Eq. 5 and L(Di) denotes the language generated by
automaton Di .

The following results regarding the language generated by Gi can be stated.

Corollary 1 L(Gi) = χi(LG).

Proof The proof comes directly from Theorem 1 and Eq. 13.

Corollary 2 L(Gi) ∩ (�i − �f )∗ = χi(LN).

Proof Notice that LN = LG ∩ (� \ �f )∗. Then, according to Theorem 1,

χi(LN) = P −1
i (LN) ∩ L(Di)

= P −1
i (LG ∩ (� \ �f )∗) ∩ L(Di)

= P −1
i (LG) ∩ P −1

i ((� \ �f )∗) ∩ L(Di).

Since, P −1
i ((�\�f )∗) = (�i\�f )∗, and, according to Eq. 13,L(Gi) = P −1

i (LG)∩L(Di),
we can conclude that χi(LN) = L(Gi) ∩ (�i \ �f )∗.

A direct consequence of Corollary 2 is that all possible observations of the normal traces
executed by the system, due to event communication delays, can be easily obtained from
automaton Gi .

Let us now define the following projection

Pisi : �∗
i → �s∗

oi
. (14)

The possible observations of a trace s ∈ LG by local diagnoser LDi is represented in Gi as
a set formed with those traces t ∈ L(Gi) such that Pi(t) = s. Thus, Pisi (t) corresponds to
a possible observation of s by LDi , as illustrated in the following example.

Example 4 Consider the same plant and decentralized diagnosis architecture presented in
Example 3. Automata G1 and G2, depicted in Fig. 7a and b, respectively, are computed
according to Eq. 12 as Gi = G‖Di , for i = 1, 2. The sets of observable events and unob-
servable events of G1 are �1o = {as1 , cs1}, and �1uo = {a, b, c, d, e, σf }, respectively, and
the sets of observable events and unobservable events of G2 are �2o = {bs2 , cs2 , es2}, and
�2uo = {a, b, c, d, e, σf }, respectively.

Notice that, languages L(G1) and L(G2) represent all possible ordering of observation
of traces s ∈ LG with respect to �oij

and kij , for j ∈ {1, 2, 3}. For instance, let us consider
the occurrence of trace s = σf bca in the plant, and its possible observations by local
diagnoser LD2. The traces in L(G2) that are associated with the occurrence of s are those
traces t ∈ L(G2) such that P2(t) = σf bca, which are t1 = σf bbs2ccs2a, t2 = σf bcbs2cs2a,
and t3 = σf bccs2bs2a. Thus, as expected, all possible observations of trace s by LD2 are
bs2cs2 and cs2bs2 , since P2s2(t1) = P2s2(t2) = bs2cs2 and P2s2(t3) = cs2bs2 .
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(a)

(b)

Fig. 7 Automaton G1 (a) and automaton G2 (b)

3.3 Model of the plant subject to communication delays and intermittent loss
of observations

After the computation of automata Gi , for i = 1, 2, . . . , n, that represent all possible obser-
vations by local diagnosers LDi , i = 1, 2, . . . , n, of the language generated by G due to
communication delays of events, we will now model the intermittent loss of observation of
events in the communication channels. In order to do so, we will use the dilation function
introduced in Carvalho et al. (2012).

Consider the partition of the set of observable events associated with diagnoser LDi ,
�io = �i,ilo∪̇�i,nilo, where �i,ilo and �i,nilo denote, respectively, the set of events that
are subject to intermittent loss of observation, and the set of events that are not subject to
intermittent loss of observation. Let �s

i,ilo = φ−1(�i,ilo) and �s
i,nilo = φ−1(�i,nilo). Then,
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since the observable event set of Gi is given by �io = �s
oi
, we can make the following

partition of the observable event set of Gi :

�s
oi

= �s
i,ilo∪̇�s

i,nilo, (15)

where the events of �s
i,ilo and �s

i,nilo denote the successful transmission to diagnoser LDi

of the events of �i,ilo and �i,nilo, respectively.
Let us define now the set of unobservable events that models the intermittent loss of

observation of events σ ∈ �s
i,ilo as �s′

i,ilo = {σ ′ : σ ∈ �s
i,ilo} and set �′

i = �i ∪ �s′
i,ilo.

Then, the dilation function Dsi : �∗
i → 2(�′

i )
∗
is defined in a recursive way as:

Dsi (ε) = {ε},
Dsi (σ ) =

{ {σ }, if σ ∈ �i \ �s
i,ilo

{σ, σ ′}, if σ ∈ �s
i,ilo

Dsi (siσ ) = Dsi (si)Dsi (σ ),∀si ∈ �∗
i ,∀σ ∈ �i.

The dilation operation Dsi is extended to languages in a straightforward way as Dsi (L) =⋃
s∈L Dsi (s).
We can now obtain automaton G′

i that generates language Dsi [L(Gi)], and that models
both, all possible ordering of observation of events σ ∈ �o due to communication delays
and the intermittent loss of observation of events σ ∈ �i,ilo. This automaton will be defined
as follows:

G′
i = (Xi,�

′
i , f

′
i , �

′
i , x0i

, ∅),

where �′
i (xi) = Dsi [�i(xi)], ∀xi ∈ Xi , and f ′

i (xi , σ
′) = fi(xi, σ ), if σ ′ ∈ �s′

i,ilo, and

f ′
i (xi , σ ) = fi(xi, σ ), if σ ∈ �i \�s′

i,ilo. Notice that, if �i,ilo = ∅, G′
i = Gi , which implies

that Dsi [L(Gi)] = L(Gi).
The following example illustrates the construction of G′

i .

Example 5 Let us consider the problem addressed in Example 4, and assume that automata
G1 and G2 have been calculated. In addition, suppose that event e is subject to intermittent
loss of observation by local diagnoser LD2. Thus, for local diagnoser LD1, �1,ilo = ∅
and �1,nilo = {a, c}, which implies that automaton G′

1 is equal to automaton G1 shown
in Fig. 7a. For local diagnoser LD2, �2,ilo = {e} and �2,nilo = {b, c}. Automaton G′

2
that models the communication delay and intermittent loss of observations of the events in
�2,ilo is shown in Fig. 8. Notice that, as expected, L(G′

1) = Ds1 [L(G1)] = L(G1) and
L(G′

2) = Ds2 [L(G2)].

3.4 Definition of network codiagnosability of discrete-event systems

The network codiagnosability of the language generated by a DES is defined as follows.

Definition 5 LetLG andLN ⊂ LG be the prefix-closed languages generated byG andGN ,
respectively. Then, LG is said to be network codiagnosable with respect to χi : �∗ → 2�∗

i ,
Dsi , projection P ′

si
: �′∗

i → �s∗
oi
, for i = 1, . . . , n, and �f if

(∃z ∈ N)(∀s ∈ LG \ LN)(∀st ∈ LG \ LN, ||t || ≥ z) ⇒
(∃i ∈ {1, . . . , n})[P ′

si
[Dsi (χi(st))] ∩ P ′

si
[Dsi (χi(ωi))] = ∅, ∀ωi ∈ LN ].
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Fig. 8 Automaton G′
2

According to Definition 5, language LG is not network codiagnosable if there exist a
failure trace s and an arbitrarily long length trace t , such that there exist traces si ti ∈
Dsi (χi(st)), i = 1, 2, . . . , n, where si ti is not necessarily different from sj tj for i, j ∈
{1, 2, . . . , n} and siN ∈ Dsi (χi(ωi)), with ωi ∈ LN , satisfying P ′

si
(si ti ) = P ′

si
(siN ), for all

i ∈ {1, . . . , n}. In words, a language LG is not network codiagnosable if there exist a failure
trace st , with arbitrarily long length after the occurrence of the failure event, and there exist
normal traces ωi , for i = 1, . . . , n, such that, the change in the order of observation and the
loss of observation of events create ambiguous observations in all local diagnosers.

4 Verification of network codiagnosability of discrete-event systems

We present in the sequel an algorithm for the verification of network codiagnosability of
DES based on the verification algorithm proposed in Moreira et al. (2011). In order to do
so, we first present the definition of the one-to-one event renaming function

ρi : �′
iN

→ �′
iρ

, (16)

σ �→ ρi(σ ) =
{

σρi
, if σ ∈ (� ∪ �s′

i,ilo) \ �f

σ, if σ ∈ �s
oi

.

where �′
iN

= �′
i \ �f , for i = 1, . . . , n. The domain of function ρi can be extended to �′∗

iN

as usual, i.e., ρi(sσ ) = ρi(s)ρi(σ ), for all s ∈ �′∗
iN

and σ ∈ �′
iN
. Function ρi can also be

applied to a language K as ρi(K) = ∪s∈Kρi(s).
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Remark 3 Notice that the renamed events of verifier Vp are different from the renamed
events of a verifier Vq , where p �= q.

Lemma 3 Let G′
i,N and G′

i,F be computed according to Steps 1 and 2 of Algorithm 2,
respectively. Then, L(G′

i,F ) = ⋃
s∈LG\LN

Dsi (χi(s)), and L(G′
i,N ) = ⋃

ω∈LN
Dsi (χi(ω)).

Proof The proof is straightforward from the construction of G′
i , G′

i,N and G′
i,F , and

Theorem 1.
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Theorem 2 Language LG is network codiagnosable with respect to χi , Dsi , P ′
si
, for

i = 1, . . . , n, and �f if, and only if, there does not exist a cyclic path cl =
(xk

V , σk, x
k+1
V , σk+1, . . . , x

	
V , σ	, x

k
V ), 	 ≥ k > 0 in GV satisfying the following condition:

x
q
V ∈ XVm, ∀q ∈ {k, k + 1, . . . , 	}, and for some

q ∈ {k, k + 1, . . . , 	}, σq ∈ �.
(19)

Proof (⇒) Suppose that language LG is not network codiagnosable with respect to χi ,
Dsi , P ′

si
, for i = 1, . . . , n, and �f . Thus, according to Definition 5, there exists at least

one arbitrarily long length trace st ∈ LG \ LN and traces ωi ∈ LN , i = 1, . . . , n,
where ωi is not necessarily distinct from ωj , for j = 1, . . . , n and i �= j , such that
P ′

si
[Dsi (χi(st))] ∩ P ′

si
[Dsi (χi(ωi))] �= ∅ for all i ∈ {1, 2, . . . , n}. Thus, according to

Lemma 3, if LG is not network codiagnosable, there exist traces si ti ∈ L(G′
i,F ) and

siN ∈ L(G′
i,N ) such that, P ′

si
(si ti ) = P ′

si
(siN ) for all i ∈ {1, 2, . . . , n}. As shown in

Moreira et al. (2011), the existence of traces si ti and siN such that P ′
si
(si ti ) = P ′

si
(siN )

for all i ∈ {1, 2, . . . , n}, implies in the existence of a path pi in Vi , that ends with a
cyclic path cli that satisfies condition (17), whose associated trace vi ∈ L(Vi) satisfies
PVii(vi) = si ti and PViρ(vi) = siNρ

, where siNρ
= ρi(siN ), PVii : �∗

Vi
→ �∗

i and
PViρ : �∗

Vi
→ �∗

iρ
.

Notice that, if the states of the cyclic path cli are marked, then vi ∈ Lm(Vi), where
Lm(Vi) denotes the marked language of Vi . Since GV = ||ni=1Vi , then Lm(GV ) =⋂n

i=1 P −1
V Vi

[Lm(Vi)], where PV Vi
: �∗

V → �∗
Vi
. Thus,

⋂n
i=1 P −1

V Vi
(vi) ⊆ Lm(GV ). Let

v ∈ ⋂n
i=1 P −1

V Vi
(vi). Since vi ∈ Lm(Vi), PVii(vi) = si ti and Pi(si ti ) = st , for all

i ∈ {1, . . . , n}, and the common events that synchronize the traces vi , for i = 1, . . . , n, in⋂n
i=1 P −1

V Vi
(vi) are in �, then there will be a cyclic path in GV , associated with v with all

states marked, with at least one transition labeled with an event σ ∈ �.
(⇐) Suppose that there exists a path p in GV that ends with a cyclic path cl that satisfies

condition (19), and let v ∈ Lm(GV ) be the trace associated with p. Notice that, since
GV = ‖n

i=1Vi , then Lm(GV ) = ⋂n
i=1 PV Vi

−1[Lm(Vi)], and PV Vi
(v) = vi ∈ Lm(Vi),

for i = 1, 2, ..., n. Notice also that, the common events of traces vi ∈ Lm(Vi), for i =
1, 2, ..., n, are events σ ∈ �. Thus, since condition (19) is verified, then at least one event
in the cyclic path cl belongs to �, which implies that all traces vi are associated with a
path pi that ends with a cyclic path cli , formed with marked states, that has an event in
�. According to Algorithm 2, the states of a cyclic path cli in Vi are marked only if the
failure has occurred. Thus, associated with the cyclic path cl of GV there exists one cyclic
path cli in each verifier Vi , for i = 1, . . . , n, that satisfies condition (17), i.e., there exists
a failure trace si ti ∈ L(Gi), with arbitrarily long length, and a normal trace siN ∈ L(Gi),
such that P ′

si
(si ti ) = P ′

si
(siN ), for all i ∈ {1, . . . , n}. In order to show that LG is not network

codiagnosable, notice that, since condition (19) is verified, then there exists an arbitrarily
long length failure trace st ∈ �∗, such that PV (v) = st , where PV : �∗

V → �∗. Since the
events in � are common events of all verifiers Vi and GV = ‖n

i=1Vi , then PVi
(vi) = st ,

where PVi
: �∗

Vi
→ �∗, which shows that there exists an arbitrarily long length failure

trace st such that si ti ∈ Dsi (χi(st)) for i ∈ {1, . . . , n}. Thus, according to Definition
5, LG is not network codiagnosable with respect to χi , Dsi , P ′

si
, for i = 1, . . . , n, and

�f .
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Example 6 Let us verify the network codiagnosability of the system presented in Exam-
ple 1. Following Steps 1 to 3 of Algorithm 2, automata G′

1,ρ and G′
1,F , shown in Fig. 9a

and b, respectively, and automata G′
2,ρ and G′

2,F , shown in Fig. 10a and b, respectively, are
computed. In Steps 4 to 6 of Algorithm 2, verifiers V1 and V2 are computed. Due to the size
of these automata, we show in Fig. 11a and b only one path of V1 and V2, respectively, that
contain cyclic paths, referred to as cl1 and cl2, that satisfy condition (17). After the compu-
tation of V1 and V2, automaton GV = V1||V2 can be computed, in accordance with Step 7.
We show in Fig. 12 only the path of GV that contains a cyclic path cl associated with the
cyclic paths cl1 and cl2. Notice that cl is formed by marked states and contains an event
c ∈ �. Thus, according to condition (18), language LG is not network codiagnosable with
respect to χi : �∗ → 2�∗

i , Dsi , P
′
si

: �′∗
i → �s∗

oi
, for i = 1, 2, and �f .

5 Complexity analysis of algorithm 2

The computational complexity in the construction of verifier GV , according to Algorithm
2, depends on the complexity of the computation of automata Di , Gi , G′

i , and Vi , for i =
1, . . . , n. Table 1 shows the maximum number of states and transitions of the automata
computed in order to obtain the verifier automaton GV for n local diagnosers according to
Algorithm 2.

In the first step for the construction of automaton Di according to Algorithm 1, only one
initial state is created. Then, from the initial state, |�o| states can be reached in the worst
case, and for each one of these states, |�o| + 1 states can be reached. The number of states
created at each step of the construction of Di depends on the delays of the communication
channels. Thus, assuming that the maximum delay for all communication channels is k,
then, in the worst case, the number of states of automaton Di is

|XDi
| = 1 +

⎡

⎣
k∑

j=0

(|�o| + 1)j

⎤

⎦ × |�o|. (20)

Since Di is a deterministic automaton, then the maximum number of transitions of Di is
equal to |XDi

| × (|�| + |�o|).

(a)

(b)

Fig. 9 Automata G′
1,ρ (a) and G′

1,F (b)
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(a)

(b)

Fig. 10 Automata G′
2,ρ (a) and G′

2,F (b)

(a) (b)

Fig. 11 Path of V1 with cyclic path cl1 embedded (a), and path of V2 with cyclic path cl2 embedded (b)
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Fig. 12 Path of GV with an embedded cyclic path cl that violates the network codiagnosability of LG

Automaton Gi is computed by the parallel composition of automata G and Di . Since |X|
is the number of states ofG, then the number of states and transitions ofGi are, respectively,
|X| × |XDi

| and |X| × |XDi
| × |�i |.

Since automaton G′
i is computed by introducing a transition labeled with an event

σ ′ ∈ �s′
i,ilo in parallel with the transitions of Gi labeled with σ ∈ �s

i,ilo, the number of
states and transitions of G′

i are, in the worst case, |X| × |XDi
| and |X| × |XDi

| × |�′
i |,

respectively. Since �′
i = � ∪ �s

oi
∪ �s′

i,ilo, the maximum number of events in �′
i is

|�| + 2 × |�o|. Thus, the number of transitions in G′
i is, in the worst case, |X| × |XDi

|×
(|�| + 2 × |�o|).

Table 1 Computational Complexity of Algorithm 2

Number of states Number of transitions

G |X| |X| × |�|
Di |XDi

| = 1 +
[

k∑
j=0

(|�o| + 1)j
]

× |�o| |XDi
| × (|�| + |�o|)

Gi |X| × |XDi
| |X| × |XDi

| × (|�| + |�o|)
G′

i |X| × |XDi
| |X| × |XDi

| × (|�| + 2|�o|)
Vi 2

(|X| × |XDi
|)2 2

(|X| × |XDi
|)2 × (2|�| + 3|�o| − |�f |)

Gv 2n × |X|2n ×
n∏

i=1

|XDi
|2 2n × |X|2n ×

n∏

i=1

|XDi
|2 × [

(n + 1)|�| + 3n|�o| − n|�f |]

Complexity O
(
n × 24n × |X|2n × |�|2n+1 × (|�| + 1)2nk

)
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Following the complexity analysis presented inMoreira et al. (2011), each verifier Vi has,
in the worst case, 2×(|X|×|XDi

|)2 states and 2×(|X|×|XDi
|)2×(2×|�|+3×|�o|−|�f |)

transitions. Thus, since GV = ‖n
i=1Vi , the maximum number of states and transitions of GV

are, respectively, 2n × |X|2n × �n
i=1|XDi

|2 and 2n × |X|2n × �n
i=1|XDi

|2 × [(n + 1)|�| +
3n|�o| − n|�f |]. We can conclude, from Eq. 20, that the complexity of Algorithm 2 is
O(n×24n×|X|2n×|�|2n+1×(|�|+1)2nk), i.e., it grows exponentially with the number of
local diagnosers n and maximum communication delay k. From the authors knowledge there
is no other way of obtaining a network delay model guaranteeing the same features and with
the same modeling power as the one presented in this work. It is also important to remark
that the intermittent loss of observations does not significantly increase the computational
complexity, since the dilation operation, in the worst case, multiplies by two the number of
observable transitions of automata Gi , i = 1, . . . , n.

6 Conclusions

In this work, we address the problem of language codiganosability of networked DES sub-
ject to event communication delays and loss of observation. A necessary and sufficient
condition for the network codiagnosability of the language generated by the system with
respect to communication delays and loss of observation is presented. In addition, we pro-
pose an algorithm to verify this property. The computational complexity of the proposed
algorithm is also presented.

References

Alves MVS, Basilio JC, Cunha AEC, Carvalho LK, Moreira MV (2014) Robust supervisory control against
intermittent loss of observations. In: 12th workshop on discrete event systems, vol 12. Elsevier, Cachan,
pp 294–299

Athanasopoulou E, Lingxi L, Hadjicostis C (2010) Maximum likelihood failure diagnosis in finite state
machines under unreliable observations. IEEE Trans Autom Control 55(3):579–593

Balemi S (1994) Input/output discrete event processes and communication delays. Discrete Event Dyn Syst
4(1):41–85

Carvalho LK, Basilio JC, Moreira MV (2012) Robust diagnosis of discrete event systems against intermittent
loss of observations. Automatica 48(9):2068–2078

Carvalho LK, Moreira MV, Basilio JC (2011) Generalized robust diagnosability of discrete event systems.
In: 18th IFAC World Congress, pp 8737–8742, Milan. Elsevier

Carvalho LK, Moreira MV, Basilio JC, Lafortune S (2013) Robust diagnosis of discrete-event systems
against permanent loss of observations. Automatica 49(1):223–231

Cassandras CG, Lafortune S (2008) Introduction to discrete event systems, 2nd edn. Springer, New York
Debouk R, Lafortune S, Teneketzis D (2000) Coordinated decentralized protocols for failure diagnosis of

discrete event systems. Discrete Event Dyn Syst 10(1):33–86
Debouk R, Lafortune S, Teneketzis D (2003) On the effect of communication delays in failure diagnosis of

decentralized discrete event systems. Discrete Event Dyn Syst 13(3):263–289
Huo Z, Fang H, Ma C (2004) Networked control system: state of the art. In: Proceedings of the 5th world

congress on intelligent control and automation. IEEE, Hangzhou, pp 1319–1322
Lin F (2014) Control of networked discrete event systems: dealing with communication delays and losses.

SIAM J Control Optim 52(2):1276–1298
Moreira MV, Basilio JC, Cabral FG (2016) Polynomial time verification of decentralized diagnosability

of discrete event systems versus decentralized failure diagnosis of discrete event systems: a critical
appraisal. IEEE Trans Autom Control 61(1):178–181

Author's personal copy



244 Discrete Event Dyn Syst (2018) 28:215–246

Moreira MV, Jesus TC, Basilio JC (2011) Polynomial time verification of decentralized diagnosability of
discrete event systems. IEEE Trans Autom Control 56(7):1679–1684

Nunes C, Moreira MV, Alves MVS, Basilio JC (2016) Network codiagnosability of discrete-event systems
subject to event communication delay. In: 13th workshop on discrete event systems. IEEE Xian, pp 217–
223

Park SJ, Cho KH (2006) Delay-robust supervisory control of discrete event systems with bounded
communication delays. IEEE Trans Autom Control 51(5):911–915

Park S-J, Cho K-H (2007a) Decentralized supervisory control of discrete event systems with communication
delays based on conjunctive and permissive decision structures. Automatica 43(4):738–743

Park S-J, Cho K-H (2007b) Supervisory control of discrete event systems with communication delays and
partial observations. Syst Control Lett 56(2):106–112

Qiu W, Kumar R (2006) Decentralized failure diagnosis of discrete event systems. IEEE Trans Syst Man
Cybern Part A 36(2):384–395

Qiu W, Kumar R (2008) Distributed diagnosis under bounded delay communication of immediately
forwarded local observations. IEEE Trans Syst Man Cybern Part A 38(3):628–642

Rohloff KR (2005) Sensor failure tolerant supervisory control. In: 44th IEEE conference on decision and
control. IEEE, Seville, pp 3493–3498

Sadid WH, Ricker L, Hashtrudi-Zad S (2015) Robustness of synchronous communication protocols with
delay for decentralized discrete-event control. Discrete Event Dyn Syst 25(1):159–176

Sampath M, Sengupta R, Lafortune S, Sinnamohideen K, Teneketzis D (1995) Diagnosability of discrete-
event systems. IEEE Trans Autom Control 40(9):1555–1575

Sánchez AM, Montoya F (2006) Safe supervisory control under observability failure. Discrete Event Dyn
Syst 16(4):493–525

Shu S, Lin F (2014) Decentralized control of networked discrete event systems with communication delays.
Automatica 50(8):2108–2112

Shu S, Lin F (2015) Supervisor synthesis for networked discrete event systems with communication delays.
IEEE Trans Autom Control 60(8):2183–2188

Takai S (2012) Verification of robust diagnosability for partially observed discrete event systems. Automatica
48(8):1913–1919

Tripakis S (2004) Decentralized control of discrete-event systems with bounded or unbounded delay
communication. IEEE Trans Autom Control 49(9):1489–1501

Ushio T, Takai S (2016) Nonblocking supervisory control of discrete event systems modeled by mealy
automata with nondeterministic output functions. IEEE Trans Autom Control 61(3):799–804

Carlos E. V. Nunes was born on July 4th, 1984 in Aracaju, Sergipe, Brazil. He received the Electronic
Engineer and theM.Sc. degrees in Control at the Federal University of Sergipe in 2009 and 2012, respectively,
and the D.Sc. degree from the Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, in 2016. He is
currently an Associate Professor at the Department of Electrical Engineering of the Federal University of
Bahia, Salvador. His main interests are supervisory control and failure diagnosis of discrete event systems.

Author's personal copy



Discrete Event Dyn Syst (2018) 28:215–246 245

Marcos V. Moreira was born on May 11, 1976 in Rio de Janeiro, Brazil. He received the Electrical Engineer
degree, the M.Sc. degree and the D. Sc. degree in Control from the Federal University of Rio de Janeiro, Rio
de Janeiro, Brazil, in 2000, 2002 and 2006, respectively. Since 2007, he has been an Associate Professor at
the Department of Electrical Engineering at the Federal University of Rio de Janeiro. His main interests are
robust failure diagnosis of discrete-event systems, cyber-attacks, smart grids, and the development of control
laboratory techniques.

Marcos V. S. Alves was born on March 5th, 1988 in Aracaju, Sergipe, Brazil. He received the Electronic
Engineer degree at the Federal University of Sergipe in 2011 and the M.Sc. and D.Sc. degrees in Control
from the Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, in 2014 and 2017 respectively. His
main interests are supervisory control, failure diagnosis of discrete event systems, and cyber-physical system
security.

Author's personal copy



246 Discrete Event Dyn Syst (2018) 28:215–246

Lilian K. Carvalho was born on March 11, 1979 in São Paulo, Brazil. She received the Electronic Engineer
degree, the M.Sc. degree and the D. Sc. degree in Control from the Federal University of Rio de Janeiro, Rio
de Janeiro, Brazil, in 2003, 2005 and 2011, respectively. Since 2011, she has been an Associate Professor at
the Department of Electrical Engineering at the Federal University of Rio de Janeiro. From September, 2014,
to December, 2015, she spent a sabbatical year at the University of Michigan, Ann Arbor. Her main inter-
ests are fault diagnosis of discrete-event systems, cyber-attacks and the development of control laboratory
techniques.

João Carlos Basilio was born on March 15, 1962 in Juiz de Fora, Brazil. He received the Electrical Engi-
neering degree in 1986 from the Federal University of Juiz de Fora, Juiz de Fora, Brazil, the M.Sc. degree
in Control from the Military Institute of Engineering, Rio de Janeiro, Brazil, in 1989, and the Ph.D. degree
in Control from Oxford University, Oxford, U.K., in 1995. He began his career in 1990 as an Assistant Lec-
turer at the Department of Electrical Engineering of the Federal University of Rio de Janeiro, Rio de Janeiro,
Brazil, and, since 2014, has been a Full Professor in Control at the same department. He served as Academic
Chair for the Control and Automation Engineering course of Polytechnic School of the Federal University
of Rio de Janeiro from January, 2005, to December, 2006, as Chair for the Electrical Engineering Post-
graduation Program (COPPE) from January, 2008, to February, 2009, as Head of the Electrical Engineering
Department, from May, 2012 to February, 2014, and since 2014 he has been the Dean of Polytechnic School.
From September, 2007, to December, 2008, he spent a sabbatical leave at the University of Michigan, Ann
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