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Abstract The design of automatic control systems nowadays requires a great deal of theoretical
knowledge. The consequence of this fact is that a large number of new concepts have to be introduced
in a first course in control systems. However, these concepts are in general introduced somehow
independently and this poses serious problems when the students are required to deal with the whole
design of a control system. In this paper a control laboratory is proposed with the view to putting
together all the concepts previously introduced in a theoretical course. Experiments are suggested
such that all the stages of a control system design, namely modeling/identification, design/simulation
and implementation are covered.
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In accordance with a recent paper,1 the main objectives of control education are: (i)
to provide the basis for the future control engineer to be able to deal with the design
of control systems for different plants and (ii) to establish and maintain high 
standards in the presentation of the main concepts of control. The latter is generally
the goal of a first course in control while the former, although relying on a strong
background, can only be achieved with the help of a good control laboratory. It is
well accepted that a good control laboratory must not only illustrate the concepts
introduced in the theoretical course but have to be realistic as well.2

Motivated by these facts, a control laboratory3 for the Electrical Engineering
Course of the Federal University of Rio de Janeiro (UFRJ) has been developed and
successfully used. The plant consists of a d.c. motor-generator group represented in
Fig. 1, where va(t) is the input voltage, vt(t) is the voltage at the tachometer termi-
nals and ig(t) denotes the current supplied by the generator when a load is connected

Fig. 1 Equivalent circuit for a d.c. motor-generator group with a tachometer.



to its terminals. The problem here is to control the shaft velocity in the presence of
plant uncertainties and external disturbance signals.

A d.c. motor-generator group has been chosen for the plant and the shaft 
velocity as the control variable because they allow the following concepts to be 
illustrated:

1 Modeling;
2 Linearity, identification and measurement noise;
3 The effects of parameter identification errors and external disturbance in an

open-loop control system;
4 The benefits of feedback;
5 The need for dynamic compensation.

Nowadays it is almost impossible to carry out a control system design without
the help of a computational program. In this laboratory the students are strongly
encouraged to use MATLAB and SIMULINK.4 MATLAB is well known for its
capacity in dealing with matrices and therefore can be used in identification, con-
troller design and in the analysis of performance of compensated systems.
SIMULINK plays an important role during controller design since it allows the
system performance to be evaluated (through simulation) immediately after a con-
troller has been designed. Furthermore, when data acquisition is carried out through
a digital oscilloscope or a digital computer, SIMULINK becomes a powerful tool to
compare the results obtained during simulation and those actually reached with the
real plant.

This paper is structure as follows. The section below presents two linear models
for a d.c. motor-generator group: a second-order model, and a simpler one, which
is obtained from the previous model by neglecting the fast dynamic. The next section
deals with identification, covering the following topics: (i) the definition of the static
characteristics of the system and as consequence a nonlinearity (dead zone) will be
introduced in the model; (ii) the definition of a region of operation in which the
system can be considered linear and (iii) experiments for the determination of the
gains and the system dynamics. The fourth section presents the design of a control
system for the d.c. motor-generator with step input tracking and step disturbance
rejection objectives. These objectives make the control problem more interesting
since they can only be achieved with a dynamic compensator, more precisely, a com-
pensator with integral action. Finally, in the fifth section, a very simple electronic
network will be introduced for the physical implementation of the controller derived
in the previous section. Since this laboratory is meant for a first course in control,
analog devices are deployed. However, it is important to note that the same con-
troller could be easily implemented by using a digital controller if this laboratory
takes place after a course in discrete-time control systems.

Modeling

A mathematical model for the d.c. motor-generator group depicted in Fig. 1 can be
obtained simply by considering the equivalent circuit of the armature-controlled d.c.
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motor of Fig. 2, where va(t) and ia(t) denote, respectively, the input voltage and the
current in the armature circuit, w(t) is the shaft velocity and J and f are, respectively,
the load inertia and the bearing friction. It is not difficult to show that:5

(1)

where te = La/Ra, tm = J/f, Km is the torque constant, Ke is the counter electro-motor
force and td(t) denotes the disturbance torque which, in this case, appears when a
load is connected to the generator terminals. However, since La/Ra << 1 then for low
and intermediate frequencies tes + 1 ª 1 and, therefore, a simpler model for this
system is given by:

(2)

where

In order to obtain a complete model for the system, it remains to take into account
the effects of the disturbance current (ig(t)) and the tachometer as well. The former
can be accounted for, with the help of Fig. 1, by remembering that td(t) = ig(t) while
the latter is usually modeled as a constant gain system, i.e. vt(t) = Ktw(t). Finally,
defining Kg = Kd, the transfer function which relates va(t) and ig(t) to vt(t) can be
written as follows:

(3)

leading to the block diagram of Fig. 3.
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Fig. 2 Equivalent circuit of an armature-controlled d.c. motor.



Identification

The model presented in Fig. 3 assumes that the plant is linear. However, in general,
this is not true for all values of va(t) and so the students are recommended to first
study the static behaviour of the system and as a consequence to obtain the range
of va(t) for which the system is linear. Once a linear region of operation has been
defined, the students can carry out experiments to determine the system gains and
the time constant. With this in mind, experiments for model parameter identification
are proposed in the sequel:

Experiment to find the linear region of operation and the static gain KaKt

The linear region can be determined as follows: (i) apply constant d.c. voltages (Va)
to the armature terminals and record the corresponding steady-state values of the
voltages (Vt) at the tachometer terminals; (ii) plot the points (Va,Vt) and use least-
squares to fit the points to a polynomial (p(Va)) of a desired order; (iii) compute the
derivative of p(Va) with respect to Va. Thus the linear region corresponds to the inter-
val where the derivative is nearly flat. This procedure is illustrated in Fig. 4, from
where it is possible to conclude that, for the d.c. motor-generator group of the control
laboratory of UFRJ, the linear region is between 3 and 16V. Note that, in addition
to the determination of a linear region, this experiment has also brought to light the
need for a nonlinear model in order to take into account the dead zone, shown in
Fig. 4(a), which is caused by backslash and variable friction. Mathematically, the
dead zone can be expressed as:

(4)

The consequence of the introduction of dead zone (4) is that the linear model of 
Fig. 3 is only valid in the linear region and, therefore, a better description of the
system will be provided by a model with a block diagram such as that depicted in
Fig. 5.

Finally, notice that the static gain KaKt and the dead zone value V0 can also be
determined from the data obtained in this experiment. The computation of KaKt can
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Fig. 3 Block diagram for the d.c. motor-generator group with tachometer included.



be carried out in several ways. The simplest one is to take the mean value of
dp(Va)/dVa for the values of Va in the linear region determined above.

Once KaKt has been calculated, we can use least-squares theory to obtain the fol-
lowing expression for V0:

(5)

where i ranges for values of (Va,Vt) belonging to the linear region. The application
of this procedure to the d.c. motor-generator group of UFRJ has led to the follow-
ing values: KaKt = 1.4906 and V0 = 1.0857V.
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Fig. 4 Data obtained from the experiment to determine the linear region: (a) Points 
(Va, Vt) (+), p (Va) (-.) and Vt = KaKtVt + b (-); (b) dp(Va)/dVa(-.) and KaKt(-).
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Fig. 5 Block diagram with a nonlinear block (dead zone).



Experiment to determine the parameters Ka and Kg

With the value of KaKt previously determined and since the tachometer gain Kt is 
in general known* then Ka can be given by:

(6)

The tachometer used in the control laboratory of UFRJ has a gain Kt = 0.007V/rpm
and therefore Ka = 218.01 rpm/V.

The gain Kg is determined with the help of (3) as follows: (i) apply a step input
of amplitude Va and note that its steady-state value is Vt = KaKtVa; (ii) with the same
input, consider a perturbation of amplitude Ig and note that the steady-state value is
now V¢t = Vt - KgIg and therefore

(7)

(iii) repeat steps (i) and (ii) for several values of Va and Ig and use least square fitting
to find Kg. The application of this procedure to the d.c. motor-generator group of
UFRJ is illustrated in Fig. 6 and has led to Kg = 496.54 rpm/A.

Experiments for the determination of the system time constant t
From (3), assuming that Ig(s) = 0, the transfer function from Va(s) to Vt(s) can be
written as:
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Fig. 6 Data obtained from the experiment for the determination of Kg.

* If Kt is unknown then it can be determined by least square fitting of the points (wi, Vti), i = 1, 2, . . . ,
n, where w is the shaft velocity and Vt is the voltage at the tachometer terminals.



(8)

which represents a first order system with time constant t. There are several ways
to determine t but basically these methodologies depend on either step or sinusoids
responses,6 as will be shown in the sequel.

Identification of t from the transient response of a step input
The response of the first order system (8) to a unit step input is given by:

(9)

Notice that:

(10)

and, therefore, a straight line with slope equal to (10) would take t (units of time)
to reach the steady-state value of (9). This allows us to propose the following algo-
rithm for the determination of t: (i) with the system operating in the linear region,
apply a step input with amplitude such that the system remains operating in the linear
region and acquire the output signal; (ii) compute Vto and Vtinf, the steady-state output
mean values before and after the application of the step; (iii) use least-squares to fit
the very first points of the transient response to a straight line which necessarily goes
over the point (0, Vto) and let its slope be a; (iv) the system time constant will be
given by:

(11)

The application of the procedure described above to the d.c. motor-generator group
of UFRJ is illustrated in Fig. 7, leading to t = 0.0437 s.

Identification of t from the frequency response
Since the system has been modeled as a first order (eqn (3)), the students only have
to find the corner frequency of the Bode magnitude diagram which is numerically
equal to 1/t. The plot of Bode diagrams requires the knowledge of the system fre-
quency response, which can experimentally be obtained by applying sinusoidal
signals of different frequencies va(t) = Vam + Vamax sin(wf t), where Vam and Vamax are
such that [Vam - Vamax, Vam + Vamax] is in the linear region. The output corresponding
to this input will be vt(t) = Vtm + Vtmax sin(wf t + f) and, theoretically, the gain in dB
can be computed as follows:

(12)

However, as shown in Fig. 8, the presence of measurement noise makes the com-
putation of Vtmax more complicated and therefore the students should be encouraged

G j
V

dB

tw( ) = 20 log .max

maxVa

  
t

a
=

-V Vt toinf

   
d

dt
t

K K
t t

a t� ( ) == 0 t
,

   � t a t
tt K K e( ) = -( )-1 t .

  
G s

K K

s
a t( ) =
+t 1

,

60 J. C. Basilio

International Journal of Electrical Engineering Education 39/1



A laboratory for control systems 61

International Journal of Electrical Engineering Education 39/1

Fig. 7 Data obtained from the experiment for the determination of t from 
the transient response of a step input.

Fig. 8 Input and output signals (solid lines) and the fundamental components 
(dash-dotted lines) of the corresponding Fourier series.



to use Fourier series to find the fundamental component of the signal. Notice that a
periodic function v(t) with period T = 2pwf defined in an interval [t0, t0 + T] has a
Fourier series representation given as:

where

Therefore, in order to obtain the d.c. and the fundamental frequency components of
the input and output signals, all is needed is to compute a0, a1 and b1, which are
given by the formulae above. However, there is a minor problem: the functions va(t)
and vt(t) are not known analytically but described by sets of pairs [tk, va(tk)] and [tk,
vt(tk)] for tk Œ [t0, t0 + T]. With the help of MATLAB, this problem can be easily
handled and the students may write their own functions to compute a0, a1 and b1.
This function should have the following steps: (i) collect one period from the
acquired points (this can be easily done with the help of functions such as ginput
and find; (ii) compute sin(wf tk) and cos(wf tk) for all tk in the interval [t0, t0 + T]; (iii)
use the vector operation ·* together with the MATLAB function trapz to find the
values of a0, a1 and b1 for va(t) and vt(t). Figure 8 shows one period of the input and
output signals for the dc motor-generator group of UFRJ for approximately 1.35 Hz.
Note that the input signal is very close to an ideal sinusoid whereas the output has
been corrupted by noise, showing the need for computing the Fourier series. The
reader should note that the use of Fourier analysis also makes easier the computa-
tion of the phase difference between output and input signals. Although this is not
necessary in the present work, this point should be made clear to the students. The 
identification of t from the Bode diagram has also been carried out for the dc 
motor-generator group of UFRJ leading to the diagram depicted in Fig. 9. The value
of t obtained from this experiment was approximately 0.0416s, being therefore very
close to that estimated from the step response.

Controller design

Once a mathematical model for the d.c. motor-generator group has been obtained
and all the parameter values have been determined, the next step is to design a con-
troller which satisfies the following requirements:

1 Stability;
2 Zero Steady-state error, i.e. the voltage in the tachometer terminals vt(t) must be,

in steady-state, equal to a given reference voltage vtr(t) (which corresponds to
the desired angular velocity);

3 Low sensitivity to identification errors in the model parameters;
4 Disturbance rejection, i.e. for a load connected to the generator terminals, the
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voltage in the tachometer terminals must, in steady-state, remain equal to the
reference voltage;

5 Good transient response.

Notice that control objective 2 requires that the reference signal to be used be a
voltage step of amplitude Vr (volts), which can be mathematically expressed as
follows:

(13)

In addition, since the system to be controlled is already stable, this plant provides a
good opportunity to highlight the benefits of feedback.1 For this reason the design
of an open-loop control system for the d.c. motor-generator group will be consid-
ered first.

An open-loop control system for the d.c. motor-generator group
Let us now consider the block diagram of Fig. 10 where K(s) denotes the controller
transfer function to be designed in order to satisfy requirements 1 to 5 above. Notice
that the nonlinear block used to consider the effect of the dead zone has been
removed from the diagram since the system will be supposed to be operating in the
linear region. Moreover, since one of the control objectives is low sensitivity to para-
meter variation and modeling errors, the controller to be designed will indirectly
consider the error introduced by neglecting the dead zone effect from the model.
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Fig. 9 Bode diagram for the d.c. motor-generator group of UFRJ.



As mentioned before, item 1 (stability) has already been satisfied. In addition since
this is a didactic experiment, transient performance specification will be given by
the settling time (ts) of the uncontrolled system. Therefore requirement 4 will be 
satisfied if, for the compensated system, ts £ 4t.

Therefore, it suffices to use a static compensator,

(14)

where K will be determined in order to satisfy requirement 2. It is easy to check that

(15)

makes the output signal track the input signal in steady-state providing there is no
load connected to the generator terminals.

Once the controller has been designed, the next step is to check the performance
of the compensated system. In order to do so, construct a SIMULINK model, equiv-
alent to the block diagram of Fig. 10, using as values of Ka, Kt, Kg and t those
obtained from the identification process and the value of K computed according to
(15). Since the open-loop system is already stable and the settling time of the uncom-
pensated plant has been chosen as the measure for good transient response, require-
ments 1 and 5 have already been met. Thus the main goal of this simulation exercise
is to verify whether requirements 2 to 4 are being properly satisfied. In order to do
so, the students should proceed as follows:

(i) Suppose, initially, that there is no load connected to the generator terminals
i.e. ig(t) = 0 (Ampère) for all t. Next, apply the input (13). The students will be able
to verify after the simulation that the zero steady-state error objective was success-
fully met.

(ii) Assume, now, that there was a 5% error in the identification of the parame-
ter Ka and make this change in the SIMULINK model. Repeat the previous step.
This time the students will see that there is a steady-state error of 5%, which shows
that the controller has not satisfied objective 3.

(iii) Return the value of Ka in the SIMULINK model to that obtained in the 
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Fig. 10 Block diagram for the design of an open-loop control system for a d.c. 
motor-generator group.



identification. Now excite the system with the reference signal (13) and with a dis-
turbance current given by

(16)

where t0 is any time instant larger than the settling time. This simulation will show
that the open-loop system is not able to reject the disturbance.

A closed-loop control system for the d.c. motor-generator group
Feedback is therefore the proper way to overcome the deficiencies of the open-loop
controller. However, before going into the details involved in the controller design
it is important to remark that the problem of controlling the shaft velocity of a d.c.
motor-generator group also provides an opportunity to illustrate another point,
namely the need for a dynamic compensator.1 In order to do so, consider the feed-
back system depicted in Fig. 11 and let G(s) = nG(s)/dG(s) and K(s) = nK(s)/dK(s)
denote the plant and controller transfer functions, respectively, where nG(s) and dG(s)
are known polynomials and nK(s) and dK(s) are polynomials to be determined. In
addition let R(s), D(s) and Y(s) be the Laplace transforms of the reference, distur-
bance and output signals. Notice that Y(s) may be written as:

(17)

where

(18)

Note that the component YR(s) accounts for tracking and must be such that 
limtÆ• r(t) - yR(t) = 0 while the component YD(s) is the response to load disturbance
and must satisfy limtÆ• yD(t) = 0. The following result may be stated.

Theorem 1 (The internal model principle) Assume that R(s) = a(s)/b(s) and 
D(s) = g (s)/d(s) where b(s) and d(s) are known. Write b(s) = b -(s)b +(s) 
and d(s) = d -(s)d +(s) where b -(s) and d -(s) are Hurwitz polynomials and b +(s) and 
d +(s) has, respectively, all the zeros of b(s) and d(s) with real part greater than or
equal 0. Under the assumption that K(s) stabilizes G(s) then:
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1 The output y(t) will converge asymptotically to r(t), i.e. limtÆ• r(t) - yR(t) = 0 if
and only if dG(s)dK(s) = h(s)b+(s), where h(s) is an arbitrary polynomial.

2 The system will reject asymptotically the disturbance signal d(t) i.e. limtÆ• yD(t)
if and only if nG(s)dK(s) = c(s)d +(s), where c(s) is an arbitrary polynomial.

Proof: See Refs. [3] and [7].

From theorem 1 it is possible to conclude that when the reference and disturbance
are both step signals then output tracking and disturbance rejection will be achieved
provided dG(s)dK(s) = sh(s) and nG(s)dK(s) = sc(s), respectively. The only possibil-
ity for both conditions be satisfied is dK(s) = s K(s), where K(s) is an arbitrary poly-
nomial used to achieve closed-loop stability and ‘good’ transient performance.
Therefore it is necessary to have a dynamic compensator with an integral action.

After this brief review, we may now return to the motor-generator group. There-
fore consider the feedback system of Fig. 12 where K(s) is the controller transfer
function to be designed. Since K(s) has to be dynamic with an s factor in the denom-
inator, there are several possible controllers, but lower order ones are to be preferred.
For this reason the design of a pure integral controller will be considered initially
and if necessary K(s) will be changed later.

Design of an integral controller for the d.c. motor-generator group
In this case,

(19)

where KI is to be chosen in order to make the closed-loop system stable with good
transient performance.

At this point, another important tool will be used by the students, namely, the root
locus. In order to do this notice that the open-loop transfer functions is given by
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Fig. 12 Block diagram for the design of a feedback control system of 
a d.c. motor-generator group.



(20)

leading to the root locus diagram shown in Fig. 13(a). From the figure it is imme-
diate to see that the closed-loop system is stable for all values of KI. In addition, it
can be seen that when KI < 1/(4KaKtt) the closed-loop system will be over-damped,
KI = 1/(4KaKtt) makes the closed-loop system critically damped while for 
KI > 1/(4KaKtt) the closed-loop response will be under-damped. Another conclusion
that can be drawn from the diagram is that even for arbitrary large values of KI, the
real part of the closed-loop poles will be -1/(2t) which makes the settling time of
the step response for the closed-loop system be approximately 8t, which is nearly
the double of what is required.

Therefore a more complex controller structure, which makes the root locus
diagram deviates towards the negative direction of the real axis, is necessary. This
can be achieved by a proportional plus integral (PI) controller as will be shown in
the sequel.

Design of a PI controller for the d.c. motor-generator group
Notice that by placing a zero -z on the left of the pole -1/t, as shown in Fig. 13(b)
the root locus diagram will actually deviate towards -z. This requires K(s) to be as
follows:

(21)

where Ti = 1/z, being a PI controller. Therefore the control problem can be stated as
follows: find KP > 0 and z > 0 (z > 1/t) such that the closed-loop poles have real
part equal -1/t. It is not hard to check that this is achieved with KP = 1/(KaKt) In
addition notice that the choice of z dictates the response overshoot, i.e. the closer to
1/t the lower the overshoot will be. It is also important to remark that the closed-
loop system has now a zero at -z and therefore the settling time may not be 
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Fig. 13 Root locus diagram for the design of a controller for 
the d.c. motor-generator group.



approximately equal 4t. However, this approach serves as a good starting point for
the controller design.

Once a PI controller has been designed the students should now build a
SIMULINK model equivalent to the block diagram of Fig. 12, using the values of
K, Kt, Kg and t, obtained from the identification experiments, and KP and z, calcu-
lated as above, and carry out simulations to verify that all the design objectives have
been satisfied. Another point to be checked is the influence of the position of z in
the closed-loop response.

Controller implementation

The last stage of this control laboratory is the controller implementation. Since we
are dealing with a first course on control systems, an analog controller will be imple-
mented. The basic structure of a control system is as follows: (i) a sum circuit; (ii)
a circuit to perform proportional + integral action; (iii) a power amplifier circuit and
(iv) plant (d.c. motor-generator group) with a sensor (tachometer), as shown in Fig.
14. It is important to remark that parts (i) and (ii) can be implemented by means of
a very simple circuit if 741 or LF356 operational amplifiers are used, as seen in Fig.
15. The student’s final task is to choose appropriately values for Rf, Ri and Cf such
that the analog circuit to perform the control action has approximately the same
transfer function as that obtained theoretically. In addition, it is important to remark
that the power amplifier should be adjusted in order that the real open-loop gain be
KPKaKt.

Having the controller been implemented, the students will be able to verify that
the behavior of the actual compensated system is very close to that obtained in the
simulation. The step response of the real compensated system is shown in Fig. 16
(solid lines). The values of Ri, Rf and Cf used in the control circuit are, respectively,
100kW, 35kW and 0.95mF, and the power amplifier has been adjusted to give a gain
equal 2, leading to KP = 0.7 and z ª 30.1. In the same figure (dashed line) it is
depicted the response obtained from a SIMULINK model by applying the same
signal as the one applied to the real system. It can be seen that, as expected, they
approximately match each other.
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Fig. 14 Control system for the d.c. motor-generator group.



A laboratory for control systems 69

International Journal of Electrical Engineering Education 39/1

Fig. 15 Analog circuit for controller implementation.

Fig. 16 Response of the actual feedback system (solid line) and from simulation using 
the model of Fig. 5 (dashed line) to the same step input and disturbance.



Conclusions

In this paper, a model for a laboratory for a first course in control systems has been
proposed, whose main advantages are: (i) it illustrates all the concepts and tools
taught in a first theoretical course in control systems; (ii) it gives the students the
opportunity to get in touch with all the stages of the design of a control system and
(iii) it is general enough to be used in other plants besides the one deployed in this
laboratory.

Acknowledgment

This work was supported in part by the Brazilian Research Council (CNPq) under
grant number 520190/96.

References

1 N. A. Kheir, K. J. Aström, D. Auslander, K. C. Cheok, G. F. Franklin, M. Masten and M. Rabins,
‘Control Systems Engineering Education’, Automatica, 32 (1991), 147–166.

2 J. G. Balchen, M. Ha
.
ndlykken and A. Tysso, ‘The need for better laboratory experiments in control

engineering education’, in Proc. 8th. IFAC Triennial World Congress, vol. XIII (1981), pp. 42–47.
3 J. C. Basilio, Laboratório de Sistemas de Controle I (in Portuguese), UFRJ – Escola de Engenharia,

1999.
4 Math Works, Using Matlab (The Math Works Inc., 1996).
5 R. C. Dorf, Modern Control Systems (Addison-Wesley, 1986).
6 K. J. Aström and T. Haglund, PID Controllers: Theory, Design and Tuning (Instrument Society of

America, 1995).
7 W. A. Wolovich, Automatic Control Systems: Basic Analysis and Design (Saunders College Publish-

ing, 1994).

70 J. C. Basilio

International Journal of Electrical Engineering Education 39/1


