
1732 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 4, APRIL 2018

Supervisory Control-Based Navigation
Architecture: A New Framework for Autonomous

Robots in Industry 4.0 Environments
Antonio G. C. Gonzalez , Marcos V. S. Alves , Gustavo S. Viana ,

Lilian K. Carvalho , Member, IEEE, and João C. Basilio , Senior Member, IEEE

Abstract—Industry 4.0 is characterized by an increasing
dependence on automation and interconnection of systems
due to the need for more efficient, autonomous, and cus-
tomizable processes, and so, mobile robot navigation be-
comes an important tool. In this paper, we present a gen-
eral methodology for mobile robot navigation in industrial
environments in which the open-loop behavior of the robot
and the specifications are based on automata. We build a
modular supervisor, which is the conjunction of two super-
visors: the first one that enforces the robot to follow the path
defined by a planner and the second one that guarantees
the satisfaction of the specifications such as prevention of
collisions and task and movement management. The pro-
posed navigation architecture allows decentralized imple-
mentation, in which the modular supervisor is embedded in
the mobile robot, whereas the planner runs in an external
agent. Such a feature makes the adaptation of the proposed
navigation architecture to different environments easy. The
navigation architecture proposed in this paper is illustrated
by means of a simulation in a hypothetical environment that
resembles a smart factory.

Index Terms—Discrete event systems (DES), industry 4.0,
mobile robots, supervisory control.

I. INTRODUCTION

IN RECENT years, new challenges to make production pro-
cesses more efficient, autonomous, and customizable have

led to a new industrial revolution. A new concept of industry,
called Industry 4.0 [1], has emerged and is currently adopted to
denominate the current trend of automation and data exchange in
manufacturing technologies by creating a “smart factory” [2].
The fundamentals of Industry 4.0 are cyber-physical systems
[3], Internet of things [1], [4], cloud computing, big data [5],
and mobile robots [6].

Manuscript received June 13, 2017; revised September 21, 2017, De-
cember 11, 2017, and December 21, 2017; accepted December 22,
2017. Date of publication December 29, 2017; date of current version
April 3, 2018. This work was supported in part by the Brazilian Research
Council (CNPq) under Grant 310980/2013-5 and Grant 462307/2014-0
and in part by the Carlos Chagas Foundation (FAPERJ) under Grant
204872. Paper no. TII-17-1253. (Corresponding author: João Carlos
Basilio.)

The authors are with the Department of Electrical Engineering, Uni-
versidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900,
Brazil (e-mail: angacego@poli.ufrj.br; mvalves@poli.ufrj.br; gustavo.
viana@poli.ufrj.br; lilian.carvalho@poli.ufrj.br; basilio@poli.ufrj.br).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2017.2788079

In this paper, we consider factories with smart machines that
are part of a distributed production line that requires a mobile
robot in order to carry the parts they produce either to store
them or to take them to another machine for further processing.
The robot is connected remotely to computer systems. Our work
focuses on providing intelligence to the mobile robot so as it
correctly establishes the connection between the machines. To
this end, we propose a navigation architecture based on modular
supervisory control that, besides establishing the connection
between the machines, it also performs the supervision of the
robot navigation.

Autonomous mobile robot navigation consists of four stages:
mapping, localization, planning, and execution [7]. We consider
industrial environments where the structure rarely undergoes
major modification, and thus it is reasonable to assume that the
environment map is known a priori. Since there exist several
techniques to deal with the robot localization, we will not ad-
dress this issue in this paper, focusing only on planning and
execution. Finally, regarding the navigation architecture classi-
fication usually deployed in the literature [8], we mention that
the architecture used in this paper can be regarded as hybrid:
being predominantly deliberative with reactive elements to deal
with obstacles and sudden changes in the environment where
robot navigation takes place.

A. Objective of the Paper

The objective of this paper is to propose a supervisory control
approach for mobile robot navigation in industrial environments,
such as warehouses and smart factories. We model the environ-
ment, the planning structure, and the robot as automata and use
modular supervisory control theory [9] to develop a navigation
system for mobile robots. The modular supervisory controller
ensures the correct navigation of the robot in the presence of
unpredictable obstacles and is obtained by the conjunction of
two supervisors: a first one that enforces the robot to follow the
path defined by the planner and a second one that imposes other
specifications such as prevention of collisions, task and move-
ment management, and distinction between permanent and in-
termittent obstacles. The idea is to develop a general approach
that allows the implementation of specifications by means of
modules that depend on the task the robot will perform and
on the industrial environment. As will become clear, when the

1551-3203 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2869-1715
https://orcid.org/0000-0001-8752-2933
https://orcid.org/0000-0002-9444-9372
https://orcid.org/0000-0003-0629-7194
https://orcid.org/0000-0002-3737-0617

GONZALEZ et al.: SUPERVISORY CONTROL-BASED NAVIGATION ARCHITECTURE: A NEW FRAMEWORK FOR AUTONOMOUS ROBOTS 1733

environment is changed, the only changes that are needed to
design a new supervisor are those related to the new event set
associated with the new environment.

B. Related Works

Discrete event systems (DES) are systems whose behavior
is determined by the asynchronous occurrence of certain event
types [10]. Several important practical problems have been ad-
dressed using DES theory, ranging from theoretical issues, such
as fault diagnosis [11] and supervisory control theory [12], to
real systems applications [13]–[15]. The DES formalism has
also been proved suitable to deal with mobile robot naviga-
tion [16]–[22]. In [16], a DES-based supervisory controller that
ensures collision and deadlock avoidance for a group of robots
that work in order to concurrently accomplish their missions in
a two-dimensional space is proposed. However, it is not clear
in [16] how to plan and execute the movements necessary to
reach the goal location. In [17], the path planning problem for
decentralized systems—not necessarily robot path planning—
with action costs was addressed by using several weighted au-
tomata. Although such an approach could be adapted to compute
robot trajectories for the case of several cooperative robots, it is
not suitable when only one robot is being used, since the param-
eters are assumed to be distributed in [17], which is not the case
in our work. In [18], a formal method based on linear temporal
logic (LTL) has been employed to describe and model specifi-
cations in mobile robot navigation. However, the disadvantage
of this approach is the computational effort to convert such log-
ics into Büchi automata, which is not required in our work.
In [19], Iqbal et al. outlined an integration between graph the-
ory, automata, and Z notation in order to propose a supervisory
control design framework for robot navigation systems. Struc-
tures for representing the environment and some specifications
were presented in [19], but further investigation is still needed
in order to use the proposed approach to trajectory planning and
execution. In [20], automaton-based models for mobile robot
navigation were used to show the viability of using DES theory
in the modeling, analysis, and synthesis of behaviors applied
to the navigation of a mobile robot using visually guided nav-
igation in an unknown or partially known environment. Since
the focus was on execution rather than on planning, the optimal
path to reach the goal location was not computed in [20]. A
formal synthesis of supervisory control software for multiple
robot systems was developed in [21] and subsequently in [22],
where scalability was improved. Since the main goal was to
manage task planning, the problem considered in [21] and [22]
is different from the one addressed here.

C. Structure of the Paper

In Section II, we review some basic concepts on DES. In
Section III, we present automaton-based models for the envi-
ronment, planning structures, and robot motion. In Section IV,
we present a formulation for the robot navigation problem, and
propose a navigation architecture that is based on modular su-
pervisory control, and, in Section V, we carry out a performance
analysis of the algorithm proposed here. In Section VI, we

illustrate the paper results by means of simulation carried out
using MobileSim version 0.7.5, that can be directly inserted in
real platforms such as Pioneer P3DX. Finally, we draw some
conclusion and outline future research works in Section VII.

II. BACKGROUND PRELIMINARIES

A. Discrete Event Systems

DES are dynamic systems with discrete state space whose
state evolution is entirely determined by the occurrence of asyn-
chronous events over time [10]. In this paper, we adopt automata
as the model formalism to describe DES behavior, and, to this
end, we present now a brief review of automaton theory. Read-
ers not familiar with automaton theory are referred to [10] for
further details.

Let G = (X,Σ, f,Γ, x0 ,Xm) denote a deterministic finite
automaton that models a DES, where X is the finite set of
states, Σ is the finite set of events, f : X × Σ→ X is the
transition function, partially defined over its domain, function
Γ : X → 2Σ (where 2Σ denotes the power set of Σ) determines
the set of active events of the states of G, i.e., Γ(x) = {σ ∈ Σ :
f(x, σ) is defined}, x0 is the initial state, and Xm is the set of
marked states. Throughout the text, Σ∗ denotes the Kleene clo-
sure of Σ, which is the set of all finite strings formed by events in
Σ including the empty string, denoted by ε. The transition func-
tion f is extended to f : X × Σ∗ → X in the following man-
ner: f(x, ε) = x and f(x, sσ) = f(f(x, s), σ), for all x ∈ X ,
s ∈ Σ∗ and σ ∈ Σ. The languages generated and marked by
G are, respectively, L(G) = {s ∈ Σ∗ : f(x0, s) is defined} and
Lm (G) = {s ∈ L(G) : f(x0, s) ∈ Xm}. The prefix-closure of
a language L is defined as L = {s ∈ Σ∗ : (∃t ∈ Σ∗)[st ∈ L]},
and, if L = L, L is said to be prefix-closed.

Let Σs and Σl be two sets of events such that Σs ⊆ Σl . The
natural projection [12] from Σ∗l to Σ∗s is a function that removes
from strings in Σ∗l those events that are not in Σs , and is denoted
as P : Σ∗l → Σ∗s . The inverse projection P−1 is the function that
recovers those strings in Σ∗l that generate a given projection in
Σ∗s , being formally defined as P−1(t) = {s ∈ Σ∗l : P (s) = t}.
The projection and the inverse projection operations are both
extended to languages by applying P and P−1 to all strings in
the language.

The accessible (or reachable) part of automaton G, denoted by
Ac(G), is the automaton obtained by removing from G all states
that are not reachable from the initial state and those transitions
that either initiate or end at the removed states. The coaccessi-
ble (or coreachable) part of automaton G, denoted by CoAc(G),
is the automaton obtained by removing from G all states from
which it is not possible to reach some marked state and their re-
spective transitions. The parallel composition [10] between two
automata G1 and G2 is denoted as G1‖G2, and is performed to
synchronize the behaviors of two automata by allowing common
events to occur only when they are in the active event sets of the
current states of both automata and private events, i.e., events
that belong to only one of the automata, to freely occur. The
languages generated and marked by G1‖G2 are, respectively,
L(G1‖G2) = P−1

1 [L(G1)] ∩ P−1
2 [L(G2)] and Lm (G1‖G2) =

1734 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 4, APRIL 2018

P−1
1 [Lm (G1)] ∩ P−1

2 [Lm (G2)], where Pi : (Σ1 ∪ Σ2)∗ → Σ∗i ,
for i = 1, 2.

B. Supervisory Control of DES

Let G = (X,Σ, f,Γ, x0 ,Xm) be the automaton that mod-
els the “uncontrolled behavior” of a DES. In some cases, this
behavior is unsatisfactory and needs to be “modified” by some
control action. The task of restricting the behavior of a DES can
be done by using a structure called supervisor. A supervisory
control system is a feedback control system that, through the
action of a supervisor S acts by enabling (or disabling) event
occurrences based on the strings generated by plant G so as
to make the closed-loop behavior equal to a given applicable
language requirement K ⊆ L(G). In that case, we say that the
closed-loop system S/G (read S controlling G) is such that
L(S/G) = K.

The supervisor is a mapping S : L(G)→ 2Σ , where, for a
given string s ∈ L(G), Γ[f(x0, s)] ∩ S(s) are the events that are
enabled by S at state f(x0, s). The set of events Σ may be parti-
tioned as Σ = Σc ∪̇ Σuc, where Σc and Σuc are, respectively, the
sets of controllable events, which can be disabled by the supervi-
sor, and uncontrollable events, whose occurrence cannot be pre-
empted by the supervisor. In this regard, we say that a supervisor
is admissible if for all s ∈ L(G), Γ[f(x0, s)] ∩ Σuc ⊆ S(s). The
language achieved by the closed-loop system S/G is, therefore,
recursively characterized as ε ∈ L(S/G), and sσ ∈ L(S/G)⇔
s ∈ L(S/G) ∧ sσ ∈ L(G) ∧ σ ∈ S(s). The language marked
by the closed-loop system is equal to the part of Lm (G) that
remains after the supervisory control action, i.e., Lm (S/G) =
L(S/G) ∩ Lm (G). A supervisor is said to be nonblocking if
L(S/G) = Lm (S/G).

A realization of a supervisor S is an automaton R =
(Xr ,Σ, fr ,Γr , x0r

, Xr) whose states are all marked, and is
such that, for all s ∈ L(G), S(s) = Γr [fr (x0r

, s)]. Thus, the
closed-loop behavior is characterized by R‖G, since L(S/G) =
L(R‖G) and Lm (S/G) = Lm (R‖G).

A language K ⊆ L(G) is controllable with respect to L(G)
and uc if KΣuc ∩ L(G) ⊆ K, and it is said to be closed with
respect to Lm (G) (or Lm (G)-closed) if K = K ∩ Lm (G). For
a given language K ⊆ Lm (G), there exists a nonblocking su-
pervisor S such that Lm (S/G) = K if, and only if, K is con-
trollable and Lm (G)-closed.

The applicable language requirement K is frequently given as
the intersection of two (or more) elementary specification lan-
guages, i.e., K = K1 ∩K2, where K1,K2 ⊆ Lm (G). In this
case, the state space of the automaton that marks K is, in the
worst case, equal to the Cartesian product of the state spaces
of automata that mark K1 and K2. In order to circumvent the
drawback of computing K, we can investigate the possibility
of synthesizing nonblocking supervisors S1 and S2 such that
Lm (S1/G) = K1 and Lm (S2/G) = K2, and thus, construct the
modular control architecture where modular supervisor S1 ∧ S2

is obtained by computing the conjunction of S1 and S2, i.e., for
all s ∈ L(G), S1 ∧ S2(s) = S1(s) ∩ S2(s). As a consequence,
Lm (S1 ∧ S2/G) = K1 ∩K2. Moreover, supervisor S1 ∧ S2 is

nonblocking if, and only if, languages K1 and K2 are noncon-
flicting, i.e., K1 ∩K2 = K1 ∩K2.

III. SYSTEM MODELS

A. Environment Automaton Model Ge

This paper deals with the mobile robot navigation problem
in industrial environments where the structure rarely undergoes
major modifications and, thus, it is reasonable to assume a priori
knowledge of the environment and, also, that the visitable places
do not change; for example, in a warehouse, the visitable places
correspond to those places associated with all possible shelves
the robot must access. We leverage this feature to model the en-
vironment by an automaton Ge = (Xe,Σe , fe ,Γe , x0e

, Xme
),

where the states in Xe are all possible robot poses (visitable
places together with robot orientation in the navigation environ-
ment), Σe is the set of command events that correspond to those
movements that connect the poses in Xe , the transition function
fe and the set of active events Γe are defined according to the
environment connectivity. Finally, in order to compute a path
to be followed by the mobile robot, x0e

is defined as the robot
pose at the beginning of the task and Xme

is defined as the set
of states that represent the complete execution of the task.

Notice that, although automaton Ge models the environment,
its states represent the possible robot poses (positional coordi-
nates and orientation) in the navigation environment, i.e., those
poses the robot can visit when executes a string of command
events formed from Σ∗e . Notice that, since the robot must trans-
port products, parts and raw materials around the plant, the po-
sitioning of the possible robot poses is dictated by both the envi-
ronment structure and the places where machinery is laid in the
plant. Automaton Ge can be constructed by using some roadmap
construction technique, e.g., vertical cell decomposition [23],
reduced visibility graphs [24], and generalized Voronoi dia-
grams [25], [26].

Let x1, xn+1 ∈ Xe . A path in automaton Ge that takes
the robot from state x1 to state xn+1 has the form
x1σ1x2σ2x3 . . . σnxn+1, where, ∀k ∈ {1, . . . , n}, xk ∈ Xe ,
σk ∈ Σe , and fe(xk , σk) = xk+1. Notice that there may ex-
ist several different paths that connect state x1 to state xn+1,
and each of them is characterized by its corresponding string of
command events σ1σ2 . . . σn ∈ Σ∗e . In order to compare differ-
ent paths, we define the weight function

w : Σe → R

σ
→ w(σ) = c (1)

where c ∈ R+ represents the cost of executing the robot move-
ment corresponding to command event σ. We, then, define the
cost of executing a string s = σ1σ2 . . . σn ∈ Σ∗e as follows:

J(s) =
n∑

i=1

w(σi). (2)

B. Robot Model Gr

In order to construct a discrete event model for the robot, the
features that are important for the correct planning and execution

GONZALEZ et al.: SUPERVISORY CONTROL-BASED NAVIGATION ARCHITECTURE: A NEW FRAMEWORK FOR AUTONOMOUS ROBOTS 1735

Fig. 1. Robot movement module Grm . Dashed lines represent transi-
tions labeled with uncontrollable events.

TABLE I
ROBOT MOVEMENT MODULE EVENTS

Event Description Controllable

Σe Set of environment automaton events �
sr Stop the robot �
ret Return to the last visited state �
go Complete the last movement �
rs Robot stopped ×

Fig. 2. Robot sensing module Grs . Dashed lines represent transitions
labeled with uncontrollable events.

of the navigation task are separately modeled by using automata.
In this paper, we propose a robot automaton model, denoted by
Gr , which is obtained by performing the following parallel
composition:

Gr = Grm
‖Grs

‖Gr tm (3)

where Grm
, Grs

, and Gr tm model the robot movement, sensing,
and task manager modules, respectively.

1) Robot Movement Module: Automaton Grm
, depicted in

Fig. 1, models the robot movement resources. The events of
Grm

are listed in Table I. In order to navigate in a given indus-
trial environment, the robot must be able to execute the events
in Σe , which is the set of events of automaton Ge that models
the industrial environment. In addition, it also requires other
command events to deal with unpredictable obstacles. When an
obstacle is detected, command event sr is used to stop the robot
in order to prevent a collision. Command events ret and go are
used to return the robot to the last visited state and, to com-
plete the movement interrupted by the obstacle, respectively.
Automaton Grm

has also the uncontrollable event rs, which is
due to sensor readings, and represents the transition from state
M , where the robot is moving, to state S, where the robot is
stopped.

It is assumed that the robot has low level controllers that are
able to execute the movement commands presented in Table I
and, if the robot is performing some movement and receives
a new movement command, it cancels the current movement
command and executes the new one. Nevertheless, the events
belonging to Σe remain controllable since the supervisors are
able to prevent their occurrences.

2) Robot Sensing Module: Automaton Grs
, depicted in

Fig. 2, models the robot sensing resources. It is assumed that the
robot has wheel encoders and at least one sensing system that

TABLE II
ROBOT SENSING MODULE EVENTS

Event Description Controllable

rs Robot stopped ×
msr Obstacle sensor information request �

while the robot is moving
ssr Obstacle sensor information request �

when the robot has stopped
od Obstacle detected ×
od No obstacle detected ×
t Timeout ×

Fig. 3. Robot task manager module Gr tm . Dashed lines represent tran-
sitions labeled with uncontrollable events.

is able to detect obstacles, such as sonars, laser rangefinders,
or vision-based systems. The wheel encoders are used to deter-
mine when event rs occurs, that is, when the robot stops after
finishing the last movement command. The obstacle detection
sensors are used to monitor the presence of unpredictable ob-
stacles that block the robot path by means of command events
msr and ssr. Command event msr is used when the robot is
moving to request the execution of a sensing routine, which,
then, returns event od, od, or rs (active event set of state Sm).
Event od (resp od) indicates that an obstacle is detected (resp. no
obstacle detected), and event rs indicates that the robot stopped
and, consequently, the sensor reading is no longer necessary.
Command event ssr is used, when the robot is stopped, to start
a sensing routine that keeps Grs

in state Ss until either a timeout
event t or no obstacle detection represented by event od occurs.
The complete list of events of Gr2 is presented in Table II. No-
tice that events msr and ssr are controllable, whereas events
rs, od, od and t are uncontrollable.

3) Robot Task Manager Module: Automaton Gr tm , depicted
in Fig. 3, models the robot resources associated with the man-
agement of the robot task. It has four states which represent the
current robot status regarding task management, as follows:

1) robot available (A);
2) planning the robot trajectory (P);
3) executing the task (W); and
4) waiting for the removal of an obstacle (B).

The events of Gr tm are listed in Table III. Event nt is issued
by an external agent requesting the execution of a new task by
the robot. Command event p is used to start the path planning
procedure. After that, the planner starts to execute the path
planning and when it is completed, the planner sends to the
robot a signal, which corresponds to the occurrence of event pe.
Command event ru (request for unblocking the path) is a robot
request to an external agent to remove the obstacle between

1736 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 4, APRIL 2018

TABLE III
ROBOT TASK MANAGER MODULE EVENTS

Event Description Controllable

nt New task received ×
tc Robot reports task completion �
p Execute the planning �
pe Planning concluded ×
ru Request for unblocking the last path �
pf The last path is free ×

the current robot position and the last visited state. When the
external agent removes the obstacle, it issues event pf , meaning
that the path is free. Thus, events tc, p, and ru are controllable,
and events nt, pe, and pf are uncontrollable.

IV. DES-BASED ROBOT NAVIGATION ARCHITECTURE

A Robot navigation architecture is an structure composed
by the modules that constitute a mobile robot navigation system
(e.g., path planning, obstacle avoidance, etc.) and the framework
used to combine them [7]. In this paper, we address the problem
of the navigation of a mobile robot modeled by an automaton
Gr , that navigates in an industrial environment modeled by an
automaton Ge together with a cost function [function J , defined
in (2)]. We assume that there may exist unpredictable perma-
nent or intermittent obstacles in the environment, so that some
transitions of the environment automaton are not allowed to fire
either temporarily or definitely. We refer to such transitions as
blocked transitions.

The following robot tasks are considered.
1) Task 1. This task is completed when the robot reaches

some state (pose) belonging to a set Xgoal ⊆ Xe .
2) Task 2. This task is completed after the robot visits all

states (pose) belonging to a set Xgoal ⊆ Xe .
Since the robot is required to visit only one state in Xgoal

when it executes Task 1, it is necessary to determine the path
starting at the current state of the robot and ending at one of
the states in Xgoal that minimizes the cost function J . On the
other hand, when the robot executes Task 2, it needs to visit all
states in Xgoal , regardless of the ordering, by following a path
that minimizes the cost function J .

A. Navigation Architecture

The navigation architecture proposed in this paper is formed
by a planner and a modular supervisory control structure, as
shown in Fig. 4. An advantage of this structure is that it allows
a decentralized implementation, where the modular supervisor
is embedded in the mobile robot, whereas the planner runs in an
external agent, which suits very well to the design problem ad-
dressed here suitable, since it makes easier to adapt the proposed
navigation architecture to other environments.

The navigation process starts when the robot is available and
an external agent assigns a new task to the robot. This assignment
is modeled by the occurrence of event nt of automaton Grmt of
Fig. 3. Then, robot Gr generates event p (execute planning),
which carries the following information.

Fig. 4. Proposed navigation architecture.

1) The robot current state.
2) The last task assigned to the robot and its respective set

of target states Xgoal .
3) Set Tb , which is formed with those transitions identified

as blocked, being initialized as an empty set and modified
by the robot when event t occurs in Grs

, i.e., the blocked
transition of Ge is added to Tb when the robot detects a
permanent obstacle. The blocked transition is determined
from the last state of Ge visited by the robot and the
command event in Σe whose execution was interrupted
by the obstacle detection. It is worth remarking that we
can limit the time interval in which a transition stays in Tb

with a view to checking if this transition is still blocked
during the execution of a future robot task.

According to the diagram depicted in Fig. 4, when the planner
receives event p, it runs a computer application to determine the
path to be followed by the robot. Notice that the planner is
composed by the following.

1) Environment automaton Ge .
2) Weight function w and cost function J , defined in accor-

dance with (1) and (2), respectively.
After the planning is finished, the planner sends event pe to

automaton Gr to inform that the planning has been concluded.
The planner also sends the string of command events that cor-
responds to the computed path to be used to design supervisor
Sr1 ; thus, a new supervisor Sr1 is computed after each new path
planning completion.

The modular supervisory control Sr1 ∧ Sr2 ensures the cor-
rect navigation of the robot in the presence of unpredictable
permanent or intermittent obstacles; Sr1 acts so as to enforce
the robot to follow the path computed by the planner, whereas
Sr2 ensures that design specifications SP1–SP7 (to be presented
in Section IV-C), are achieved.

B. Path Planning Procedure

The first step in the path planning procedure is to compute,
using Algorithm 1, a refined automaton Gp so that the language
marked by Gp is formed by those strings of command events
that can be executed by the robot with a view to completing the
robot task. Algorithm 1 starts by setting up as initial and marked

GONZALEZ et al.: SUPERVISORY CONTROL-BASED NAVIGATION ARCHITECTURE: A NEW FRAMEWORK FOR AUTONOMOUS ROBOTS 1737

states of Ge the robot current pose and Xgoal , respectively, and,
after that, Ge is assigned to Gp . If Tb �= ∅, then we remove from
Gp the transitions in Tb , and set Gp as CoAc[Ac(Gp)]. When
Task 1 is assigned, automaton Gp must be nonempty. In this case,
Lm (Gp) will be formed by strings of command events that can
be used to complete Task 1. When Task 2 is assigned, automaton
Gp must be modified to form a new automaton whose marked
language is formed by those strings in Lm (Gp) that correspond
to paths containing all of the states in Xgoal . This can be done
as follows. Let us assume that Xgoal = {x1, . . . , xn}. Then,
for each xi ∈ Xgoal , automaton Gxi

, whose marked language
contains all strings of Lm (Gp) that correspond to paths that
visit state xi , is constructed. Subsequently, automaton Gp is
redefined as Gp ← Gp‖Gx1‖ . . . ‖Gxn

. As a consequence, the
language marked by the new automaton Gp will be formed by
those strings that correspond to the paths that contain all of
the states in Xgoal , since it is equal to the intersection of the
languages marked by the initial Gp and by automata Gxi

, for
every xi ∈ Xgoal .

Finally, by applying Dijkstra’s algorithm [27] using, as input,
Gp and its initial state, we determine the marked state of Gp

that is nearest the initial state, and the string σ1 . . . σf ∈ Σ∗e

Fig. 5. Automaton Hspec,1 used to synthesize supervisor Sr 1 .

that corresponds to the feasible path that minimizes the cost
function J , being, therefore, the solution to the path planning
for the robot navigation problem.

C. Design of Modular Supervisor Sr1 ∧ Sr2

In order to design supervisors Sr1 and Sr2 , we initially con-
struct simple automata that capture the essence of the specifica-
tions we want to ensure by using these supervisors. We, then,
combine these automata with Gr using the parallel composition
to obtain the system desired behavior.

Let us first consider the design of Sr1 . According to the di-
agram of Fig. 4, we intend to synthesize a supervisor Sr1 that
enforces the robot to follow the path computed by the planner.
Let s = σ1 . . . σiσi+1 . . . σf ∈ L(Ge) be the string of command
events computed by the planner. Notice that σi ∈ Σe ⊂ Σr , for
i = 1, . . . , f , and thus, the behavior of Gr must be restricted to
ensure that sequence s is executed. This can be done by creating
the specification automaton Hspec,1 depicted in Fig. 5, which
is formally defined as Hspec,1 = (X1,Σ1, f1,Γ1, x0,X1), where
X1 = {x0, x1, . . . , xf }, Σ1 = {ret, tc} ∪ Σe , and f1 is defined,
as follows:

f1(xi, σ) =

⎧
⎪⎨

⎪⎩

xi+1, ifσ = σi+1

x0, if(σ = ret) ∨ ((σ = tc) ∧ (xi = xf))
undefined, otherwise.

Notice that events ret and tc have been included in Hspec,1 in
order to account for possible obstacle detection, which makes
the robot abort the execution of the planned trajectory, and to
report that the task has been completed, respectively.

Automaton H1 that marks the applicable language require-
ment K1 is computed by performing the parallel composition
between automaton Gr , obtained (3), and Hspec,1, as follows:

H1 = Gr‖Hspec,1.

It is worth remarking that the set of events of automaton
Gr is Σr = Σe ∪ {sr, ret, go, rs,msr, ssr, od, od, t, nt, tc, p,
pe, ru, pf}. Thus, if P1 : Σ∗r → Σ∗1, we can state that

K1 = P−1
1 [Lm (Hspec,1)] ∩ Lm (Gr). (4)

Notice that, to achieve the requirement imposed by language
K1, only events in Σ1 may be disabled. Since all events in Σ1 are
controllable, it is not difficult to conclude that K1 is controllable.
In addition, because all states of Hspec,1 are marked, K1 is, by
construction, Lm (Gr)-closed. Then, an automaton realization
of a nonblocking supervisor Sr1 such that Lm (Sr1/Gr) = K1

can be obtained from Hspec,1 by adding self-loops labeled by the
events in Σr \ Σ1 to all of its states.

1738 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 4, APRIL 2018

Fig. 6. Automaton Hspec,2 used to synthesize supervisor Sr 2 . Dashed
lines represent transitions labeled with uncontrollable events.

Let us now consider the synthesis of supervisor Sr2 , which
deals, among other requirements, with permanent and intermit-
tent obstacles. In practice, the robot classifies a previously de-
tected obstacle as permanent or intermittent by using the sensing
routine started by command event ssr, that is, when this sens-
ing routine returns timeout event t, the obstacle is said to be
permanent, and, when it returns event od, the obstacle is said
to be intermittent. In order to achieve the desired behavior, the
following specifications are enforced.

1) SP1. The robot can perform the command events in
Σe ∪ {ret, go} only after it receives a new task and the
trajectory has already been planned.

2) SP2. After the execution of command event ret, which,
according to specification SP6, will only be executed after
a permanent obstacle is detected, the robot cannot per-
form movement commands in Σe ∪ {go} before a new
trajectory is computed by the planner.

3) SP3. In order to prevent the wrong functioning of low
level controllers that execute the robot movements, a
command event in Σe ∪ {ret, go} cannot be sent before
the execution of the previous movement has been either
completed or aborted by command sr (stop the robot).

4) SP4. In order to prevent collisions, the robot continuously
checks the existence of obstacles in the trajectory, and,
when an obstacle is detected, it must stop.

5) SP5. After the robot stops due to an obstacle detection,
it must distinguish between intermittent and permanent
obstacles in order to avoid unnecessary computations of
new trajectories. In addition, if the obstacle is intermit-
tent, the robot must try to complete the interrupted move-
ment when the obstacle is no longer detected.

6) SP6. When the robot detects a permanent obstacle, it must
return to the last visited state in Ge , which corresponds
to the last pose visited in the environment, by using com-
mand event ret.

7) SP7. When the robot detects a permanent obstacle while it
executes the movements associated with command event
ret, it must request an external agent to remove this ob-
stacle by means of event ru.

We will now construct specification automata that capture
the essence of specifications SPi , i = 1, . . . , 7. We first con-
struct automaton Hspec,2 depicted in Fig. 6, that accounts
for specifications SP1 and SP2 whose set of events is Σ2 =
Σe ∪ {nt, p, pe, tc, ret, go}. From Fig. 6, we can see that: 1)
events in Σe ∪ {ret, go} can only be executed at state 3 of
Hspec,2, which is reached only after the occurrence of pe (plan-
ning executed), and; 2) after the occurrence of event ret, all

Fig. 7. Automaton Hspec,3 used to synthesize supervisor Sr 2 . Dashed
lines represent transitions labeled with uncontrollable events.

events in Σe ∪ {go} remain disabled until the conclusion of a
new path planning. We added a self-loop labeled by event ret at
state 4, because it may be necessary to perform several occur-
rences of this event until the robot reaches the last visited state
after the detection of a permanent obstacle. This is so because a
new obstacle can be detected while the robot is returning to the
last visited state. This issue is addressed in the next specification
automaton.

Automaton Hspec,3, depicted in Fig. 7, accounts for specifi-
cations SP3—SP7. Its set of events is Σ3 = Σr \ {nt, pe}. The
states of Hspec,3 correspond to the following situations.

1) State 0 represents the case when the robot has stopped
without detecting obstacles.

2) States 1 and 2 correspond to the case when the robot is
executing the movements associated with the command
events in Σe .

3) States 3 to 16 are associated with the procedure to handle
obstacles.

After the robot executes an event in Σe , leading to state 1 of
Hspec,3, it must request obstacle sensor information by means
of event msr, therefore, moving to state 2. If no obstacle is
detected, event od occurs; this procedure is, then, repeated un-
til the completion of the current movement, which is indicated
by the occurrence of event rs, therefore, leading to state 0. If
an obstacle is detected, Hspec,3 evolves to state 3 through the
transition labeled by event od. The transition from state 3 to
0 labeled by event rs models the case when, after an obsta-
cle detection, the robot stops before the command event sr is
issued. In this case, we assume that the detected obstacle did
not prevent the execution of the previous movement, and thus,
it can be disregarded. On the other hand, the transition from
state 3 to 4 labeled by event sr represents the control action that
enforces the robot to stop, whose completion is confirmed by
the occurrence of event rs (robot stopped) at state 4. At state
5 of Hspec,3, the robot requests obstacle sensor information by
means of event ssr in order to determine whether the detected
obstacle is permanent or intermittent. Then, Hspec,3 remains in
state 6 until the occurrence of either od or t. The occurrence of
od means that the previously detected obstacle is intermittent
and no longer blocks the path; thus, the robot can complete the

GONZALEZ et al.: SUPERVISORY CONTROL-BASED NAVIGATION ARCHITECTURE: A NEW FRAMEWORK FOR AUTONOMOUS ROBOTS 1739

movement stopped due to the obstacle, which is done by means
of command event go. On the other hand, if the timeout event t
occurs, it can be inferred that the previously detected obstacle
is permanent, and, so, the robot needs to return to the last vis-
ited state in Ge in order to compute a new trajectory, which is
done by executing event ret. If the robot detects a permanent
obstacle while it is returning to the last visited state, that is,
if event t occurs at state 15 of Hspec,3, then, it executes event
ru by sending a request to unblock the path, and remains at
state 16 until the occurrence of event pf , which means that the
path has been unblocked. After the occurrence of event pf , the
robot executes event ret again to return to the last visited state
of Ge .

Automaton H2 that marks the applicable language require-
ment K2 is computed by performing the parallel composition
between Gr , Hspec,2, and Hspec,3, as follows:

H2 = Gr‖Hspec,2‖Hspec,3.

If P2 : Σ∗r → Σ∗2 and P3 : Σ∗r → Σ∗3 denote projections, then

K2 = Lm (Gr) ∩ P−1
2 [Lm (Hspec,2)] ∩ P−1

3 [Lm (Hspec,3)]. (5)

It can be check that K2 is controllable and Lm (Gr)-closed.
An automaton realization of a nonblocking supervisor Sr2

such that Lm (Sr2/Gr) = K2 can be obtained by calculating
the parallel composition Hspec,2‖Hspec,3. Notice that the set of
events of Hspec,2‖Hspec,3 is equal to Σr , and, thus, we do not
need to add self-loops to it in order to obtain a realization of
supervisor Sr2 .

According to modular supervisory control theory presented
in Section II-B, the modular supervisory architecture con-
structed by the conjunction of Sr1 and Sr2 is such that
Lm (Sr1 ∧ Sr2/Gr) = K1 ∩K2, where K1 and K2 are defined
in (4) and (5), respectively. In addition, it can be verified that
the admissible languages K1 and K2 are nonconflicting, which
ensures that the conjunctive modular supervisor Sr1 ∧ Sr2 is
nonblocking, i.e., L(Sr1 ∧ Sr2/G) = K1 ∩K2.

Fig. 8 shows automaton Sr1 ∧ Sr2/Gr that models the closed-
loop behavior in the case that the robot trajectory computed
by the planner is equal to σ1σ2 . . . σf ∈ L(Ge). Such an au-
tomaton can be obtained by performing the following parallel
composition:

Sr1 ∧ Sr2/Gr = Gr‖Hspec,1‖Hspec,2‖Hspec,3. (6)

Notice that, although the automaton shown in Fig. 8 grows lin-
early with the length of the robot trajectory (the colored part), the
parallel computation presented in (6) is not required to imple-
ment the modular architecture proposed here, since the designs
of Sr1 and Sr2 are based on different automaton specifications,
Hspec,1 and Hspec,2‖Hspec,3, respectively.

V. PERFORMANCE ANALYSIS OF THE PROPOSED ALGORITHM

We present, in this section, a performance analysis of
the algorithm proposed here. We first present the space
complexity analysis and, in the sequel, a time complexity
analysis.

Fig. 8. Closed-loop behavior for robot trajectory σ1σ2 . . . σf ∈ L(Ge).
Dashed lines represent transition labeled with uncontrollable events.

A. Scalability Analysis

In the DES-based robot navigation architecture proposed
here, the number of transitions of the environment automaton
model Ge is O(|Xe | |Σe |), where |Xe | and |Σe | are the number
of the robot poses of interest and command events that are nec-
essary to the robot navigation, respectively. On the other hand,
the robot model Gr , obtained in accordance with (3), has 24
states and 132 + |Σe | transitions, and, thus, the robot model is
O(|Σe |).

The computational complexity of the planning procedure pre-
sented in Section IV-B depends on the type of the robot task.
When the robot performs Task 1, Algorithm 1 is executed in
time O(|Tb |+ |Xe | |Σe |+ |Xgoal |) and generates an automa-
ton Gp whose number of states |Xp | is O(|Xe |). Assuming
that the priority queue used in Dijkstra’s algorithm is imple-
mented as a Fibonacci heap, the shortest path in automaton
Gp is found in time O(|Xp | log|Xp |+ |Xp | |Σe |). Therefore,
the path planning procedure in the case of Task 1 is exe-
cuted in time O(|Tb |+ |Xe |(|Σe |+ log|Xe |) + |Xgoal |). When
the robot performs Task 2, Algorithm 1 is executed in time
O(|Tb |+ 2|X g o a l | |Xe | |Σe |) and the number of states of au-
tomaton Gp , |Xp |, is O(2|X g o a l | |Xe |). As a consequence, in
the case of Task 2, the path planning procedure is O(|Tb |+
2|X g o a l | |Xe |(|Σe |+ log|Xe |+ |Xgoal |)).

Regarding the complexity of the design of modular supervisor
Sr1 ∧ Sr2 , it can be seen that the number of states and transi-
tions of automaton Hspec,1 are both O(‖path‖), where ‖path‖
denotes the number of command events whose robot must exe-
cute to complete the task and was obtained in the path planning
procedure. As a consequence, supervisor Sr1 is O(‖path‖). In
addition, it can be seen that automaton Hspec,2‖Hspec,3 has 22
states and 32 + |Σe | transitions and, consequently, supervisor
Sr2 is O(|Σe |).

Based on the computational complexities presented above,
it can be concluded that the proposed DES-based navigation

1740 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 4, APRIL 2018

TABLE IV
SUMMARY OF THE RESULTS FOR TIME COMPLEXITY ANALYSIS

Group Ge Parameters Planning

|Xe |/|Te | Task x0e |Xgoal | |obst| (s)

1 273/1000 1 1 1 0 0.024
273/1000 1 M1 1 0 0.016
273/1000 1 29 1 0 0.025
273/1000 1 M6 1 0 0.016
273/1000 1 M4 1 0 0.016
273/1000 1 M2 1 0 0.016

2 39/140 1 1 1 0 0.003
78/284 1 1 1 0 0.007
117/428 1 1 1 0 0.008
156/57 1 1 1 0 0.017
195/714 1 1 1 0 0.018
234/857 1 1 1 0 0.020
273/1000 1 1 1 0 0.023

3 39/140 2 1 2 0 0.364
78/284 2 1 2 0 0.424
117/428 2 1 2 0 1.085
156/57 2 1 2 0 1.401
195/714 2 1 2 0 1.922
234/857 2 1 2 0 2.001
273/1000 2 1 2 0 2.564

4 273/1000 1 1 2 0 0.022
273/1000 1 1 3 0 0.024
273/1000 1 1 4 0 0.024
273/1000 1 1 5 0 0.023
273/1000 1 1 6 0 0.024
273/1000 1 1 7 0 0.024

5 39/140 2 1 2 0 0.364
39/140 2 1 3 0 0.572
39/140 2 1 4 0 1.148
39/140 2 1 5 0 2.024
39/140 2 1 6 0 5.440
39/140 2 1 7 0 19.473

architecture scales well with respect to the size of the environ-
ment since the aforementioned computational complexities in-
crease with a factor less than |Xe |2 and |Σe |when either |Xe | or
|Σe | increases, and |Xe |(|Xe |+ |Σe |), when both |Xe | and |Σe |
increase. On the other hand, when the robot performs Task 2,
the approach may not scale well with respect to the number of
target states since the computational effort to compute the robot
path increases exponentially with the number of target states
(|Xgoal|).

B. Time Complexity Analysis

The results obtained from a series of numerical experiments
carried out on a laptop with an Intel Core i5-4210U Processor,
8 Gb DDR3 RAM, are shown in Table IV. It is divided in five
groups, as follows: Group 1, that consists in running Task 1
cases in an environment modeled by an automaton Ge with 273
states and 1000 transitions, all having the same target state but
different initial robot positions; Groups 2 and 3 that show the
influence of changes in the environment size in the execution
times of Tasks 1 and 2, respectively; and Groups 4 and 5, that
show the performance results for Tasks 1 and 2, respectively,
as the number of target states in Xgoal increases. Notice that
the times taken to perform the path planning in Group 1 are
approximately the same for all simulations of Group 1. This
result has already been expected since, as shown in Section V-A,

Fig. 9. Times taken to perform the path planning versus the size of the
environment state space for Groups 2 and 3.

Fig. 10. Times taken to perform the path planning versus the number
of target states for Groups 4 and 5.

the computational effort of the path planning procedure for cases
of Task 1 is predominantly determined by input parameters
|Xe |, |Σe |, |Tb |, and |Xgoal |. As far as Groups 2 and 3 are
concerned, the time taken to perform the path planning grows
almost linearly with the increase in the environment state space,
as we can see from the plots depicted in Fig. 9. Regarding
Groups 4 and 5, as shown in Fig. 10, the time for path planning is
approximately the same in all cases of Group 4 whereas the state
size of Gp grows exponentially with the number of target states
in tasks of type 2. Notice that these results are in accordance
with the theoretical ones of Section V-A since automaton Gp is
as large as Ge in type 1 tasks but grows exponentially with the
number of target states for type 2 tasks.

VI. SIMULATION RESULTS

Consider the hypothetical industrial environment depicted
in Fig. 11, which resembles a smart factory composed by a
conveyor belt ©1 , which is a loading and unloading terminal,
shelves©5 and©6 that are used to store raw materials and parts
processed either by the computer numerically controlled milling

GONZALEZ et al.: SUPERVISORY CONTROL-BASED NAVIGATION ARCHITECTURE: A NEW FRAMEWORK FOR AUTONOMOUS ROBOTS 1741

Fig. 11. Map of the environment. The arrows represent the possible
robot poses (states of automaton Ge): the tail indicates the positional
coordinate and the direction corresponds to the robot pose.

machine©7 or the painting machines©2 and©3 . The robot arm
©4 is used either to transfer parts from one paint machine to
the other, or to reject those painted parts that do not meet some
quality standard to the orange rectangle. Notice that mobile
robot ©0 must be at pose Mi to interact with element ©i , i =
1, . . . , 7.

The automaton that models this environment is Ge =
(Xe,Σe ,Γe , x0e

, Xme
), where

1) Xe = Xint∪̇Xps with Xint = {1, 2, 3, . . . , 32} and
Xps = {M1,M2,M3, . . . ,M7} are formed with those
poses that correspond to the corridor intersections and
those poses that allow the robot to pick up and store
parts, respectively;

2) Σe , formed by the events listed in Table V;
3) Γe: Xe → 2Σe , presented in Table VI for all x ∈ Xe ;
4) fe , defined, for each state x ∈ Xe , according to the

active events presented in Table VI—for example, for
x = 1, transition function fe is defined for events
m4.5, t180, t90, and t90−, and, as it can be seen,
with the help of Fig. 11, fe(1,m4.5) = 9, since com-
mand event m4.5 models a 4.5 m forward movement,
fe(1, t180) = 3, since command event t180 corresponds
to a 180◦ rotational movement, and fe(1, t90) = 2 (resp.
fe(1, t90−) = 4) since command event t90 (resp. t90−) is
associated with a 90◦ counterclockwise (resp. clockwise)
rotational movement; and

5) x0e
and Xme

, respectively, which are defined by the plan-
ner at each task assigned to the robot, as described in
Section IV-B.

Notice that events smi, i = 1, 2, . . . , 13 are composed by a
sequence of translational and rotational movements, where the

TABLE V
ENVIRONMENT AUTOMATON EVENTS Σe

Event Description w(.)

m0.75 Move robot 0.75 m 0.76
m4.5 Move robot 4.5 m 4.51
m9.0 Move robot 9.0 m 9.01
t90 Turn robot 90◦ (counterclockwise) 0.46
t90− Turn robot −90◦ (clockwise) 0.46
t180 Turn robot 180◦ 0.91
sm1 Turn robot 180◦ and move 0.75 m 1.67
sm2 Move 1.5 m, turn 90◦, and move 0.75 m 2.73
sm3 Move 1.5 m, turn −90◦, and move 0.75 m 2.73
sm4 Move 2.25 m, turn 90◦, and move 0.75 m 3.48
sm5 Move 2.25 m, turn −90◦, and move 0.75 m 3.48
sm6 Move 3.00 m, turn 90◦, and move 0.75 m 4.23
sm7 Move 3.00 m, turn −90◦, and move 0.75 m 4.23
sm8 Turn 180◦, move 0.75 m, turn 90◦, and move 1.5 m 3.64
sm9 Turn 180◦, move 0.75 m, turn −90◦, and move 1.5 m 3.64
sm10 Turn 180◦, move 0.75 m, turn 90◦, and move 2.25 m 4.39
sm11 Turn 180◦, move 0.75 m, turn −90◦, and move 2.25 m 4.39
sm12 Turn 180◦, move 0.75 m, turn 90◦, and move 3.00 m 5.14
sm13 Turn 180◦, move 0.75 m, turn −90◦, and move 3.00 m 5.14

TABLE VI
ACTIVE EVENTS OF THE STATES OF Ge

Xe Γe Xe Γe

1 {t90, t90−, t180, m4.5} 21 {t90, t90−, t180}
2 {t90, t90−, t180} 22 {t90, t90−, t180}
3 {t90, t90−, t180} 23 {t90, t90−, t180, m4.5,
4 {t90, t90−, t180, m9.0} sm4}
5 {t90, t90−, t180, m4.5} 24 {t90, t90−, t180, m4.5}
6 {t90, t90−, t180, m9.0} 25 {t90, t90−, t180}
7 {t90, t90−, t180, m0.75} 26 {t90, t90−, t180, m4.5}
8 {t90, t90−, t180} 27 {t90, t90−, t180, m4.5,
9 {t90, t90−, t180, m4.5, sm5} sm5}
10 {t90, t90−, t180} 28 {t90, t90−, t180, m4.5}
11 {t90, t90−, t180, m4.5} 29 {t90, t90−, t180}
12 {t90, t90−, t180, m4.5, sm3} 30 {t90, t90−, t180, m4.5}
13 {t90, t90−, t180, m4.5, sm4} 31 {t90, t90−, t180, m4.5}
14 {t90, t90−, t180, m4.5, sm6} 32 {t90, t90−, t180}
15 {t90, t90−, t180, m0.75} M1 {sm1}
16 {t90, t90−, t180, m4.5, M2 {sm8, sm11}

sm6, sm7} M3 {sm1}
17 {t90, t90−, t180, m4.5} M4 {sm9, sm12}
18 {t90, t90−, t180, m4.5, M5 {sm10, sm11}

sm2, sm3} M6 {sm10, sm11}
19 {t90, t90−, t180, m4.5} M7 {sm8, sm13}
20 {t90, t90−, t180}

translational movements do not necessarily correspond to some
event md.

The values of the weight function w are listed in the third
column of Table V, being defined as follows:

1) w(md) = d + 0.01, where d ∈ {0.75, 4.5, 9.0} is the
distance to be traveled;

2) w(tθ) = |θ|/200 + 0.01, where θ ∈ {90, 180} is the ro-
tation angle; and

3) w(smk) =
∑

i(|θi |/200 + 0.01) +
∑

j (dj + 0.01),
k = 1, 2, . . . , 13, where θi (resp. dj) are all rotational
(resp. translational) movements present in smk.

In order to illustrate the results of the paper, we will perform
two pairs of simulation, corresponding to two different tasks
assigned to the robot, assuming, initially, no obstacle and, then,

1742 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 4, APRIL 2018

Fig. 12. Simulation results: (a) Type 1 task from pose M2 to Xgoal =
{M5, M6} without obstacle and (b) with and (c) Type 2 task from pose
M1 to Xgoal = {M3, M6} without obstacle and (d) with obstacle.

with some obstacle in the robot trajectory. The simulations were
performed using MobileSim 0.7.5 software for a virtual Pioneer
P3DX mobile robot.

For the first simulation, we assume that the robot is initially
at pose M2 and has just picked up a processed part in painting
machine©2 when it receives a request to store the part in shelf
©2 or ©2 , which is the closest. Since this is a Type 1 task, the
mobile robot must determine which shelf is the nearest, com-
pute the shortest path to there, and perform the computed string
of command movements. According to Fig. 8, after event nt is
issued, the robot sends event p to the planner, which starts the
computation of the optimal path taking into account automaton
Ge , the set of target states Xgoal = {M5,M6}, and the set of
blocked transitions Tb = ∅ (no obstacle is initially assumed to
exist). As a consequence, automaton Gp , computed by applying
Algorithm 1, is equal to Ge with initial and marked states de-
fined as M2 and {M5,M6}, respectively. After automaton Gp is
computed, Dijkstra’s algorithm is applied to find the path from
the initial state to one of the marked states of Gp that minimizes
cost function J given in (2), yielding string s1 = sm8 t90−sm5.
Once the planning has been concluded, event pe is issued, and
so, the robot executes string s1 under the control action of super-
visor Sr1 ∧ Sr2 , designed according to Section IV-C, performing
the path shown in Fig. 12(a).

For the second simulation, we assume that the robot must
execute the same task as before but now we added an obstacle
between the poses of states 9 and M5, as highlighted in orange
in Fig. 12(b). Since, initially, the robot does not know the obsta-
cle, the string of command events obtained by the path planning

procedure is equal to string s1 = sm8 t90−sm5 computed in
the first simulation. However, while the robot is executing the
movements associated with command sm5, it executes com-
mand event msr and, thus, its sonar detects the obstacle that
is blocking the path, which makes event od occur. As a con-
sequence, the robot stops immediately after that (event sr).
Thus, since the obstacle is permanent, the robot waits until the
occurrence of timeout t (defined, empirically, as 5s), and, in the
sequel, executes event ret to reach state 9, which is the last vis-
ited state before command event sm5 has been executed. The
planner then computes a new path adding the blocked transitions
to Tb , i.e., Tb = {(9, sm5,M5)}, where (x, σ, y) denotes a tran-
sition of Ge from state x to state y labeled by σ. The new string
computed by the planner is equal to s2 = t90−m4.5 t90 sm4,
which corresponds to the path depicted in Fig. 12(b). Since this
new trajectory is free of obstacles, the robot is then able to arrive
at state M6.

For the third and fourth simulations, we assume that the
robot is initially at pose M1 when it receives a request to pick
up some amount of paint at the conveyor belt©1 and to deliver
part of this paint to machine ©3 and to store the remainder in
shelf ©6 , which corresponds to a Type 2 task. When there is
no obstacle in the environment, the robot performs the path
depicted in Fig. 12(c) by executing the string of command
events s3 = t180 m4.5 t90 sm2 sm12 t90−sm4 obtained by
the planner for Tb = ∅, x0e

= M1, and Xme
= {M3,M6}.

When an obstacle is added to the environment between the
poses of states 5 and 17, the robot starts executing s3, as
before, because it is not, at first, aware of the existence
of the obstacle, but detects the obstacle while executing
the movement corresponding to event m4.5. As a conse-
quence, the robot returns to pose 5 and new command string
s4 = t90 m9.0 t90−m4.5 t90−m4.5 t90 sm4 sm11 t90 sm13
is computed by the planner for Tb = {(5,m4.5, 17)}, x0e

= 5,
and Xme

= {M3,M6}, which allows the robot to successfully
complete the task, as shown in Fig. 12(d).

VII. CONCLUDING REMARKS

We addressed, in this paper, a general methodology for mo-
bile robot navigation in industrial environments in which the
free behavior of the robot and the specifications are all automa-
ton based. The theory of supervisory control of discrete event
systems was used to obtain a modular supervisory controller
that ensures the correct navigation of the robot in the presence
of unpredictable obstacles. The proposed approach provides a
general modeling framework allowing the implementation of
specifications by means of modules that depend solely on the
type of task the robot will perform and on the environment.
One future research direction would be the application of the
DES-based architecture proposed here in cooperative control of
multirobot systems.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their important suggestions which considerably improved the
quality of the paper.

GONZALEZ et al.: SUPERVISORY CONTROL-BASED NAVIGATION ARCHITECTURE: A NEW FRAMEWORK FOR AUTONOMOUS ROBOTS 1743

REFERENCES

[1] A. Gilchrist, Industry 4.0: The Industrial Internet of Things, 1st ed.
Berkeley, CA, USA: Apress, 2016.

[2] S. Wang, J. Wan, D. Zhang, D. Li, and C. Zhang, “Towards smart fac-
tory for industry 4.0: A self-organized multi-agent system with big data
based feedback and coordination,” Comput. Netw., vol. 101, pp. 158–168,
2016.

[3] V. Jirkovsky, M. Obitko, and V. Marik, “Understanding data heterogeneity
in the context of cyber-physical systems integration,” IEEE Trans. Ind.
Informat., vol. 13, no. 2, pp. 660–667, Apr. 2017.

[4] L. Da Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2233–2243, Nov. 2014.

[5] J. Wan et al., “A manufacturing big data solution for active preventive
maintenance,” IEEE Trans. Ind. Informat., vol. 13, no. 4, pp. 2039–2047,
Aug. 2017.

[6] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research on
cloud robotics and automation,” IEEE Trans. Autom. Sci. Eng., vol. 12,
no. 2, pp. 398–409, Apr. 2015.

[7] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile
Robots. Bradford Book, 2004.

[8] D. Nakhaeinia, S. Tang, S. M. Noor, and O. Motlagh, “A review of control
architectures for autonomous navigation of mobile robots,” Int. J. Phys.
Sci., vol. 6, no. 2, pp. 169–174, 2011.

[9] W. M. Wonham and P. J. Ramadge, “Modular supervisory control of
discrete-event systems,” Math. Control, Signals, Syst., vol. 1, no. 1, pp. 13–
30, 1988.

[10] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
2nd ed. New York, NY, USA: Springer, 2008.

[11] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, “Diagnosability of discrete-event systems,” IEEE Trans.
Autom. Control, vol. 40, no. 9, pp. 1555–1575, Sep. 1995.

[12] P. J. G. Ramadge and W. M. Wonham, “The control of discrete event
systems,” Proc. IEEE, vol. 77, no. 1, pp. 81–98, Jan. 1989.

[13] M. V. Moreira and J. C. Basilio, “Bridging the gap between design and
implementation of discrete-event controllers,” IEEE Trans. Autom. Sci.
Eng., vol. 11, no. 1, pp. 48–65, Jan. 2014.

[14] I. Antunes, L. K. Carvalho, and J. C. Basilio, “A stochastic Petri net
model for simulation-based performance analysis of public bicycle sharing
systems,” in Proc. Int. Conf. Autom. Sci. Eng., Fort Worth, TX, USA, 2016,
pp. 433–439.

[15] B. Liu, M. Ghazel, and A. Toguyéni, “Model-based diagnosis of multi-
track level crossing plants,” IEEE Trans. Intell. Trans. Syst., vol. 17, no. 2,
pp. 546–556, Feb. 2016.

[16] E. Roszkowska, “Supervisory control for multiple mobile robots in 2d
space,” in Proc. Int. Workshop Robot Motion Control, Bukowy Dworek,
Poland, 2002, pp. 187–192.

[17] E. Fabre and L. Jezequel, “Distributed optimal planning: An approach by
weighted automata calculus,” in Proc. 48th IEEE Conf. Decision Control
Held Jointly with the 28th Chin. Control Conf., Shanghai, China, 2009,
pp. 211–216.

[18] M. Kloetzer and C. Mahulea, “Multi-robot path planning for syntactically
co-safe ltl specifications,” in Proc. Int. Workshop Discr. Event Syst., Xi’an,
China, 2016, pp. 452–458.

[19] J. Iqbal, S. Khan, N. Zafar, and F. Ahmad, “Modeling supervisory control
of autonomous mobile robots using graph theory, automata and z notation,”
J. Amer. Sci., vol. 8, no. 12, pp. 799–804, 2012.

[20] J. Košecká and R. Bajcsy, “Discrete event systems for autonomous mobile
agents,” Robot. Auton. Syst., vol. 12, pp. 187–198, 1994.

[21] J. Goryca and R. Hill, “Formal synthesis of supervisory control software
for multiple robot systems,” in Proc. Amer. Control Conf., Washington,
DC, USA, 2013, pp. 125–131.

[22] R. Hill and S. Lafortune, “Scaling the formal synthesis of supervisory
control software for multiple robot systems,” in Proc. Amer. Control Conf.,
Seattle, WA, USA, 2017, pp. 3840–3847.

[23] B. Chazelle, “Approximation and decomposition of shapes,” in Algorith-
mic and Geometric Aspects of Robotics, J. T. Schwartz and C. K. Yap,
Eds. Hillsdale, NJ, USA: Lawrence Erlbaum Assoc., 1987, pp. 145–185.

[24] S. K. Ghosh and D. M. Mount, “An output sensitive algorithm for com-
puting visibility graphs,” SIAM J. Comput., vol. 20, pp. 888–910, 1991.

[25] C. O’Dunlaing and C. K. Yap, “A retraction method for planning the
motion of a disc,” J. Algorithms, vol. 6, pp. 104–111, 1982.

[26] M. Sharir, “Algorithmic motion planning,” in Handbook of Discrete and
Computational Geometry, J. E. Goodman and J. O’Rourke, Eds. Boca
Raton, FL, USA: CRC Press, Inc., 1997, pp. 733–754.

[27] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to
Algorithms, 2nd ed. Cambridge, MA, USA: MIT Press, 2001.

Antonio G. C. Gonzalez was born on March
1, 1994 in Fortaleza, Brazil. He received the
Control and Automation Engineer degree from
the Federal University of Rio de Janeiro, Rio de
Janeiro, Brazil, in 2017. He is currently working
toward the M.Sc. degree in control at the Federal
University of Rio de Janeiro.

His main interests include supervisory control
of discrete-event systems and mobile robotics.

Marcos V. S. Alves was born on March 5, 1988
in Aracaju, Brazil. He received the electronic en-
gineering degree from the Federal University of
Sergipe, Sergipe, Brazil, in 2011, and the M.Sc.
and D.Sc. degrees in control from the Federal
University of Rio de Janeiro, Rio de Janeiro,
Brazil, in 2014 and 2017, respectively.

His main interests include supervisory control
and failure diagnosis of discrete event systems
and cyber-physical system security.

Gustavo S. Viana was born on July 9, 1990 in
Rio de Janeiro, Brazil. He received the electri-
cal engineering degree and the M.Sc. degree
in control from the Federal University of Rio de
Janeiro, Rio de Janeiro, Brazil, in 2012 and 2014,
respectively. He is currently working toward the
D.Sc. degree in control at the same university.

His main interests include failure diagnosis
of discrete event systems, max-plus algebra,
and development of teaching techniques in en-
gineering education.

Lilian K. Carvalho (M’07) was born on March
11, 1979 in São Paulo, Brazil. She received the
electronic engineering degree, the M.Sc. degree
and the D.Sc. degree in control from the Fed-
eral University of Rio de Janeiro, Rio de Janeiro,
Brazil, in 2003, 2005, and 2011, respectively.

Since 2011, she has been an Associate Pro-
fessor with the Department of Electrical Engi-
neering, Federal University of Rio de Janeiro.
From September, 2014 to December 2015, she
spent a sabbatical year with the University of

Michigan, Ann Arbor, MI, USA. Her main interests include fault diag-
nosis of discrete-event systems, cyber-attacks, and the development of
control laboratory techniques.

Dr. Carvalho is the IEEE Rio de Janeiro Section WIE Chair.

João C. Basilio (M’13–SM’16) was born on
March 15, 1962, in Juiz de Fora, Brazil. He re-
ceived the electrical engineering degree from
the Federal University of Juiz de Fora, Juiz de
Fora, Brazil, in 1986, the M.Sc. degree in control
from the Military Institute of Engineering, Rio de
Janeiro, Brazil, in 1989, and the Ph.D. degree in
control from Oxford University, Oxford, U.K., in
1995.

He began his career in 1990 as an Assistant
Lecturer with the Department of Electrical En-

gineering, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,
where he is currently a Full Professor in Control. Since February, 2014,
he has been the Dean of Polytechnic School of UFRJ. From September,
2007 to December, 2008, he spent a sabbatical leave at the University
of Michigan, Ann Arbor, MI, USA, and was an Invited Professor of École
Centrale of Lille, University of Lille, France, during September 2016.
His current interests include fault diagnosis and supervisory control of
discrete-event systems.

Prof. Basilio is the recipient of the Correia Lima Medal.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

