
5902 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 11, NOVEMBER 2017

New Algorithms for Verification of Relative Observability and
Computation of Supremal Relatively Observable Sublanguage

Marcos V. S. Alves , Lilian K. Carvalho , Member, IEEE, and João C. Basilio , Senior Member, IEEE

Abstract—In this technical note, we present a new property of
relative observability, and based on this property, we propose two
algorithms: the first one, that has polynomial complexity, verifies
if a regular language is relatively observable; the second algo-
rithm computes the supremal relatively observable sublanguage
of a given regular language. Although the latter has exponential
complexity, it is more efficient than a recently proposed algorithm,
which has double exponential complexity. Moreover, the algorithm
proposed here has polynomial complexity when the automaton that
marks the specification language is state partition.

Index Terms—Automaton, discrete event systems, observability,
supervisory control, supremal sublanguage.

I. INTRODUCTION

The search for a more permissive observable sublanguage of a given
language is a research topic that has been attracting the Discrete Event
System (DES) community for some time now [1]–[8]. With a view to
circumventing the deficiency of language observability regarding the
non-existence of the supremal observable sublanguage a new defini-
tion of observability, called relative observability, has been recently
proposed [9]. As shown in [9], relative observability is closed under
set union operation, as opposed to observability that does not possess
this property, and is also less conservative than normality [1], although
both share the set union closure property. Therefore, the supremal rela-
tively observable sublanguage always exists and is larger compared to
supremal normal sublanguage.

Although it has been introduced only recently, relative observabil-
ity has already received considerable attention in the DES community
[10]–[14]. Two algorithms for computing the supremal relatively ob-
servable sublanguage of a given language K with respect to ambient
language K have been proposed in [9] and [15]; the former has double
exponential complexity whereas the computational complexity of the
algorithm proposed in [15] cannot be easily determined because it is
difficult to infer how many iterations it needs to converge in the worst
case, although, the computational complexity of each iteration is, at
least, exponential.

In this technical note, we propose two new algorithms. The first
algorithm verifies if a regular language, K , is relatively observable with
respect to a given ambient language, C , a plant, G, and a projection
Po . This algorithm has polynomial complexity, and, since relative ob-
servability is equivalent to observability when K is chosen as ambient
language, it can be also applied to verify if a language K is observable

Manuscript received October 21, 2016; revised December 2, 2016 and
December 15, 2016; accepted December 20, 2016. Date of publication
December 23, 2016; date of current version October 25, 2017. This work
was supported in part by the Brazilian Research Council (CNPq), grant
number 310980/2013-5. Recommended by Associate Editor S. Takai.

The authors are with Universidade Federal do Rio de Janeiro, Elec-
trical Engineering Program, 21949-900, Rio de Janeiro, Brazil (e-mail:
mvalves@poli.ufrj.br; lilian@dee.ufrj.br; basilio@dee.ufrj.br).

Digital Object Identifier 10.1109/TAC.2016.2644640

with respect to G and Po . The second algorithm computes the supremal
relatively observable (with respect to C , G and Po) sublanguage of
a regular language K . This algorithm has exponential complexity,
and is, therefore, considerably more efficient than that proposed in
[9], which has double exponential complexity. The key to the success
of this algorithm is a new property on relative observability which
ensures that for any ambient language C , there exists an equivalent
reduced ambient language that is a subset of C . It is worth remarking
that the computational complexity of the algorithm proposed here for
the computation of the supremal relatively observable sublanguage be-
comes polynomial when the automaton that marks K is state partition
[2], [3], [16]–[18].

This technical note is organized as follows: we present preliminary
concepts and notations in Section II; we present and prove a new prop-
erty of relative observability in Section III; we propose an algorithm for
the verification of relative observability in Section IV, and an algorithm
for the computation of the supremal relatively observable sublanguage
of regular languages in Section V; we analyze the complexities of the
proposed algorithms in Section VI; finally we draw some conclusions
in Section VII. Preliminary results of this technical note are presented
in [19]. The main differences between this technical note and [19] are
that, here, we introduce a new proposition that has led to a reduction
in the computational complexity of the proposed algorithms, and we
present the proofs for all results.

II. BACKGROUND PRELIMINARIES

Let G = (X, Σ, f, x0 , Xm) denote a deterministic finite state au-
tomaton, where X is the finite set of states, Σ is the finite set of events,
f : X × Σ→ X is the transition function, partially defined over its
domain, x0 is the initial state, and Xm is the set of marked states. The
transition function f is also extended to f : X × Σ∗ → X , where Σ∗

denotes the Kleene closure of Σ. We use the notations f (x, s)! and
f (x, s)/! to denote that f (x, s) is defined and undefined, respectively.
The generated and marked languages of G will be denoted, respectively,
as L(G) and Lm (G). We say that an automaton G is nonblocking, if
L(G) = Lm (G), where L denotes the prefix-closure of a language
L. Throughout the text, |B| (resp. |s|) denotes the cardinality (resp.
length) of set B (resp. string s).

We assume that Σ can be partitioned as Σ = Σo ∪̇Σu o , where Σo

and Σu o are, respectively, the set of observable and unobservable
events. The natural projection [20] is defined as Po : Σ∗ → Σ∗o , with
the following properties: (i) Po (ε) = ε, where ε denotes the empty
string; (ii) Po (σ) = σ, if σ ∈ Σo ; (iii) Po (σ) = ε, if σ ∈ Σu o ; (iv)
Po (sσ) = Po (s)Po (σ), for s ∈ Σ∗ and σ ∈ Σ. The inverse projection
P −1

o is defined as P −1
o (t) = {s ∈ Σ∗ : Po (s) = t}. Both, the projec-

tion and the inverse projection operations, can be extended to languages
by applying Po (s) and P −1

o (s) to all strings s in the language.
Throughout the text Ac(G) and CoAc(G) will denote, respectively,

the accessible and coaccessible parts of G. For two automata G1 =
(X1 , Σ1 , f1 , x01 , Xm 1) and G2 = (X2 , Σ2 , f2 , x02 , Xm 2), their

0018-9286 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8752-2933
https://orcid.org/0000-0003-0629-7194
https://orcid.org/0000-0002-3737-0617

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 11, NOVEMBER 2017 5903

product and parallel compositions are denoted by G1 ×G2 and
G1‖G2 , respectively [21, p. 77]. If L(G1) ⊆ L(G2), Lm (G1) ⊆
Lm (G2), f1 (x01 , s) = f2 (x02 , s), ∀s ∈ L(G1), and Xm 1 = X1 ∩
Xm 2 , then G1 is said to be a subautomaton of G2 , denoted as G1
 G2 .
The observer automaton [21, chap. 2] of a deterministic automaton G
with respect to Σo , to be denoted by Obs(G, Σo), is a deterministic
automaton whose generated and marked languages are Po [L(G)] and
Po [Lm (G)], respectively. Throughout the text Xobs will denote the set
of states of Obs(G, Σo). An automaton G is said to be state partition
if for all B, B ′ ∈ Xobs , B �= B ′, implies that B ∩B ′ = ∅ [17]. If an
automaton H is not state partition, we can obtain an equivalent state par-
tition automaton Hsp = H‖Obs(H, Σo), such that L(Hsp) = L(H)
and Lm (Hsp) = Lm (H) [18].

A language K ⊆ Lm (G) is observable [22] with respect to G and
Po if, ∀s, s′ ∈ Σ∗ such that Po (s) = Po (s′) and ∀σ ∈ Σ:

(sσ ∈ K) ∧ (s′ ∈ K) ∧ (s′σ ∈ L(G))⇒ s′σ ∈ K. (1)

Given a language C ⊆ Lm (G), a language K ⊆ C is relatively
observable1 with respect to C, G and Po , or simply C-observable, if
∀s, s′ ∈ Σ∗ such that Po (s) = Po (s′), and ∀σ ∈ Σ:

(sσ ∈ K) ∧ (s′ ∈ C) ∧ (s′σ ∈ L(G))⇒ s′σ ∈ K. (2)

Language C is referred to as ambient language in the literature.
It has been proved in [9] that relative observability is closed under

set unions and, thus, the supremal relatively observable sublanguage
always exists. Notice that, from the definition of relative observability,
when C = K , conditions (1) and (2) become equivalent. However, that
does not mean that Ksup , the supremal C-observable (or equivalently,
K-observable) sublanguage, is the supremal observable sublanguage
of K . Finally, it is not difficult to show that, the larger the ambient lan-
guage, the stronger the relative observability property will be. However,
as proved in [9], relative observability is weaker than normality.

III. AN EQUIVALENT REDUCED AMBIENT LANGUAGE

We will consider in this section the problem of finding a language
Cs ⊆ C for which if K is relatively observable with respect to C, G
and Po , it is also relatively observable with respect to Cs , G and Po , and
conversely. This result will play a key role in the algorithms proposed
later on the technical note for the verification of relative observability
and for the computation of the supremal relatively observable sublan-
guage.

Lemma 1: Let K ⊆ C ⊆ Lm (G). Then, K is relatively observable
with respect to C, G and Po if, and only if, K is relatively observable
with respect to Cs = (KΣ∗u o ∩ C), G and Po .

Proof: (⇒) It is straightforward and comes from the fact that Cs ⊆
C .

(⇐) Assume, now, that K is not relatively observable with respect
to C, G and Po . Then, there exist s ∈ K, s′ ∈ C and σ ∈ Σ such
that sσ ∈ K, s′σ ∈ L(G) \K and Po (s) = Po (s′). Without loss of
generality, write s′ = s′p s′s , where s′p is the longest prefix of s′ in K
and s′s ∈ Σ∗. Notice that, s′s must satisfy one of following conditions:
(i) s′s ∈ Σ∗u o or (ii) s′s ∈ Σ∗ \ Σ∗u o , i.e. s′s has, at least, one observable
event. Let us now consider each one of these possibilities:

i) s′s ∈ Σ∗u o . In this case, s′ = s′p s′s ∈ KΣ∗u o ∩ C . Therefore, K is
not relatively observable with respect to Cs , G and Po .

1In [9], there is an additional condition for relative observability: ∀s, s′ ∈ Σ∗

if Po (s) = Po (s′), then (s ∈ K) ∧ (s′ ∈ C ∩ Lm (G)) ⇒ s′ ∈ K . However,
this second condition is necessary only if marking nonblocking supervisors are
applied; therefore this condition will be omitted in this work.

ii) s′s ∈ Σ∗ \ Σ∗u o . Without loss of generality, write s′s = s′sp αs′ss ,
where s′sp ∈ Σ∗u o , α ∈ Σo and s′ss ∈ Σ∗. Thus, Po (s′) =
Po (s′p s′sp)αPo (s′ss). Since Po (s) = Po (s′), we can write s as s =
sp αss , where Po (sp) = Po (s′p s′sp) and Po (ss) = Po (s′ss). Defin-
ing, now, t = sp and t′ = s′p s′sp , it can be seen that tα ∈ K, t′ ∈
(KΣ∗u o ∩ C), t′α ∈ L(G) \K and Po (t) = Po (t′), which im-
plies that K is not relatively observable with respect to Cs , G
and Po . �

Therefore, in accordance with Lemma 1 instead of considering am-
bient language C , we can equivalently consider the reduced ambient
language Cs = (KΣ∗u o ∩ C) in all computations regarding relative
observability.

IV. VERIFICATION OF RELATIVE OBSERVABILITY

An equivalent way to state the relative observability definition given
in (2) is as follows: a language K is C-observable if,

(∀(s, σ) ∈ K × Σ) sσ ∈ K ⇒ (�s′ ∈ Cs)
[
(s′σ ∈ L(G) \K) ∧ (Po (s) = Po (s′))

]
. (3)

Notice that, in Expression (3) C has been replaced with Cs , as guaran-
teed by Lemma 1.

According to conditional statement (3), C-observability is violated

when there exist sσ ∈ K and s′σ ∈ CsΣ ∩K
C ∩ L(G) (where K

C

denotes the complement of K with respect to Σ∗), such that Po (s) =
Po (s′). This observation suggests an algorithm for the verification of
relative observability based on the comparison between the projections

of languages K and CsΣ ∩K
C ∩ L(G), like the algorithm proposed

in [23] for the verification of codiagnosability.
Let ΣR = {σR : σ ∈ Σu o} ∪ Σo . Define the renaming function R,

recursively, as follows: R : Σ∗ −→ Σ∗R , where: (i) R(σ) := σ, if
σ ∈ Σo , (ii) R(σ) := σR , if σ �∈ Σo , and (iii) R(sσ) = R(s)R(σ)
for s ∈ Σ∗ and σ ∈ Σ. The inverse renaming function is the mapping
R−1 : Σ∗R −→ Σ∗, where R−1 (sR) = s, such that R(s) = sR . Both
the renaming and the inverse renaming functions can be extended to
languages by applying R(s) and R−1 (s) to all strings s in the language.
The following result provides the basis for the algorithm we propose
here.

Lemma 2: Consider automata G1 = (X1 , Σ, f1 , x01 , Xm 1) and
G2 = (X2 , Σ, f2 , x02 , Xm 2), whose event sets are partitioned as
Σ = Σu o ∪̇Σo . Let GR

m := (X1 , R(Σ), fR , x01 , X1) where, ∀x ∈
X1 , fR (x, R(σ)) = f1 (x, σ), if f1 (x, σ)! and, undefined, other-
wise, and define V = GR

m ‖G2 = (Xv , Σ ∪R(Σ), fv , x0v , Xm v).
Then, for any event σ ∈ Σ and a pair of strings (sv σ, sv R(σ)) ∈
Lm (V)× L(V) for which fv (x0v , sv) = (x1 , x2), there exists a
pair of strings (s1σ, s2σ) ∈ L(G1)× Lm (G2) such that Po (s1) =
Po (s2), f1 (x01 , s1) = x1 and f2 (x02 , s2) = x2 , and conversely.

Proof: Define projections PR : [Σ ∪R(Σ)]∗ → R(Σ)∗ and PΣ :
[Σ ∪R(Σ)]∗ → Σ∗.

(⇒) Assume that there exists a pair of strings (sv σ, sv R(σ)) ∈
Lm (V)× L(V) such that fv (x0v , sv) = (x1 , x2). Notice
that L(V) = P −1

R [L(GR
m)] ∩ P −1

Σ [L(G2)] and Lm (V) =
P −1

R [Lm (GR
m)] ∩ P −1

Σ [Lm (G2)], since V = GR
m ‖G2 . Define

s1R = PR (sv) and s2 = PΣ (sv), then: (i) sv R(σ) ∈ P −1
R [L(GR

m)]⇒
PR [sv R(σ)] ∈ L(GR

m)⇒ s1R R(σ) ∈ L(GR
m), and; (ii) sv σ ∈

P −1
Σ [Lm (G2)]⇒ PΣ (sv σ) ∈ Lm (G2)⇒ s2σ ∈ Lm (G2).
Since GR

m is obtained from G1 by applying the renaming function
R and marking all of its states, it is easy to check that L(GR

m) =
Lm (GR

m) = R[L(G1)]. Therefore, by defining s1 = R−1 (s1R), and

5904 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 11, NOVEMBER 2017

since s1R R(σ) ∈ L(GR
m), we have that s1σ ∈ L(G1). Notice that,

Po (s1) = PΣ (s1R) and Po (s2) = PR (s2), and since s1R = PR (sv)
and s2 = PΣ (sv), we can conclude that Po (s1) = PΣ [PR (sv)] and
Po (s2) = PR [PΣ (sv)]. Finally, as PΣ [PR (sv)] = PR [PΣ (sv)], then
Po (s1) = Po (s2).

Since GR
m is obtained from G1 by renaming its unobservable events,

the renamed unobservable events, R(Σu o), and the unobservable
events, Σu o , become private events of GR

1 and G2 , respectively, in
the parallel composition V = GR

1 ‖G2 . Then, by the construction of
V , it can be seen that, if a transition labeled by an unobservable (resp.
a renamed unobservable) event occurs, the first (resp. second) com-
ponent of state V does not modify. Therefore, we may conclude that
x1 = fR (x01 , s1R) = f1 (x01 , s1) and x2 = f2 (x02 , s2).

(⇐) Take now a pair of strings (s1σ, s2σ) ∈ L(G1)× Lm (G2)
such that Po (s1) = Po (s2), f1 (x01 , s1) = x1 and f2 (x02 , s2) = x2 .
Since Po (s1) = Po (s2), we have that s1 and s2 are different only in the
unobservable events. Therefore, P −1

R [R(s1)] ∩ P −1
Σ (s2) �= ∅, which

implies that there exists sv ∈ P −1
R [R(s1)] ∩ P −1

Σ (s2). Notice that, as
L(GR

m) = Lm (GR
m) = R[L(G1)], then L(V) = P −1

R {R[L(G1)]} ∩
P −1

Σ [L(G2)] and Lm (V) = P −1
R {R[L(G1)]} ∩ P −1

Σ [Lm (G2)]. Ini-
tially, consider the case when σ ∈ Σo . In this case, it can be seen
that sv σ = sv R(σ) ∈ P −1

R [R(s1)R(σ)] ∩ P −1
Σ (s2σ). Therefore, as

s1σ ∈ L(G1), s2σ ∈ Lm (G2), then sv σ = sv R(σ) ∈ Lm (V). Con-
sider, now, the case when σ ∈ Σu o . In this case, it is not dif-
ficult to see that sv σ ∈ P −1

R [R(s1)] ∩ P −1
Σ (s2σ) and sv R(σ) ∈

P −1
R [R(s1)R(σ)] ∩ P −1

Σ (s2). Therefore, as s1 ∈ L(G1) and s2σ ∈
Lm (G2), then sv σ ∈ Lm (V), and, as s1σ ∈ L(G1) and s2 ∈ L(G2),
then sv R(σ) ∈ L(V).

Finally, since the first (resp. second) component of the states
of V does not modify if a transition labeled by an event in Σu o

(resp. R(Σu o)) occurs and Po (s1) = Po (s2), then fv (s0v , sv) =
(x1 , x2). �

Algorithm 1: (Verification of relative observability)
Inputs:
� G = (Xg , Σ, fg , x0g , Xm g): automaton whose marked lan-

guage is Lm (G);
� A = (Xa , Σ, fa , x0a , Xm a): nonblocking automaton whose

marked language is C ;
� H = (Xh , Σ, fh , x0h

, Xm h
): nonblocking automaton whose

marked language is K .
Output: K is relatively observable wrt C, G and Po : true/false.

Step 1: Compute automaton Gm by marking all states of G, i.e. Gm :=
(Xg , Σ, fg , x0g , Xg).

Step 2: From automaton A, construct automaton M := (Xa ∪ {xd},
Σ, fm , x0a , Xa ∪ {xd}), where (i) ∀(x, σ) ∈ Xa × Σ, fm (x, σ) =
fa (x, σ), if fa (x, σ)! and fm (x, σ) = xd , otherwise; and (ii)
fm (xd , σ) is undefined ∀σ ∈ Σ.

Step 3: Compute automaton Mg := M ×Gm .
Step 4: From automaton H , construct automaton N := (Xh ∪ {xd1 ,

xd2}, Σ, fn , x0h
, {xd1 , xd2}), where (i) ∀(x, σ) ∈ Xh × Σ: fn (x,

σ) = fh (x, σ), if fh (x, σ)!, fn (x, σ) = xd1 , if ((σ ∈ Σu o) ∧
fh (x, σ)/!) and fn (x, σ) = xd2 , if ((σ ∈ Σo) ∧ fh (x, σ)/!); (ii)
fn (xd1 , σ) = xd1 , if σ ∈ Σu o and fn (xd1 , σ) = xd2 , if σ ∈ Σo ;
and (iii) fn (xd2 , σ) is undefined ∀σ ∈ Σ.

Step 5: Compute automaton Hc := CoAc(Mg ×N).
Step 6: Construct automaton HR

m := (Xh , R(Σ), fR , x0h
, Xh), where

fR (x, R(σ)) = fh (x, σ).
Step 7: Compute the verifier automaton V := HR

m ‖Hc = (Xv , Σ ∪
ΣR , fv , x0v , Xm v).

Step 8: For all (x, σ) ∈ Xv × Σ such that fv (x, σ) ∈ Xm v , verify if
the following conditions hold true

(a) σ ∈ Σo ;
(b) (σ �∈ Σo) ∧ fv (x, R(σ))!.

If there exists a transition fv (x, σ) such that either condition (a)
or (b) holds, then K is not relatively observable with respect to C, G
and Po . Otherwise, K is relatively observable with respect to C, G
and Po . �

In Step 1 of Algorithm 1, we obtain automaton Gm from G that
marks the language generated by G, i.e., Lm (Gm) = L(G). In Step
2, we construct automaton M from the nonblocking automaton A,
whose marked language is Lm (M) = CΣ ∪ {ε}. In Step 3, we build
automaton Mg = M ×Gm that marks language (CΣ ∪ {ε}) ∩ L(G).
In Step 4, we construct automaton N from the nonblocking automaton

H for which Lm (N) = KΣ∗u o Σ ∩K
C
. In Step 5, we obtain automa-

ton Hc = Mg ×N , which has the following property whose proof is
straightforward and follows directly from the construction of automa-
ton Hc .

Lemma 3: Lm (Hc) = (KΣ∗u o ∩ C)Σ ∩ K
C ∩ L(G).

In Step 6, we compute automaton HR
m by applying the renaming

function to the events of H and marking all of its states. In Steps 7 and
8 we construct the verifier automaton V = HR

m ‖Hc , and check if K is
C-observable. The following theorem demonstrates the correctness of
Algorithm 1.

Theorem 1: Let H, A and G denote the automata whose marked
languages are, respectively, K, C and Lm (G) such that K ⊆
C ⊆ Lm (G), and consider the verifier automaton V = (Xv , Σ ∪
ΣR , fv , x0v , Xm v) computed using Algorithm 1 with the inputs G, A
and H . Then, K is not relatively observable with respect to C, G
and Po if and only if there exists (x, σ) ∈ Xv × Σ that satisfies
fv (x, σ) ∈ Xm v with either (σ ∈ Σo) or [(σ �∈ Σo) ∧ fv (x, R(σ))!].

Proof: (⇒) Assume that K is not C-observable wrt G and Po .
Then, according to Lemma 1, K is not (KΣ∗u o ∩ C)-observable wrt G
and Po . Therefore, there exist s ∈ K, s′ ∈ (KΣ∗u o ∩ C), and σ ∈ Σ,
such that Po (s) = Po (s′), sσ ∈ K and s′σ ∈ L(G) \K .

Notice that sσ ∈ L(H), since L(H) = K . On the other hand, since
s′ ∈ (KΣ∗u o ∩ C) and s′σ ∈ L(G) \K , it can be concluded that s′σ ∈
(C ∩KΣ∗u o)Σ ∩ K

C ∩ L(G) = Lm (Hc). Therefore, from the con-
struction of verifier automaton V and according to Lemma 2, there
exists a pair of strings (sv σ, sv R(σ)) ∈ Lm (V)× L(V). Finally,
defining x = fv (x0v , sv), then fv (x, σ) ∈ Xm v . Moreover, since
sv R(σ) ∈ L(V) and fv (x, R(σ))!, it is possible to conclude that either
(σ ∈ Σo) or [(σ �∈ Σo) ∧ fv (x, R(σ))!].

(⇐) Assume, now, that there exists (x, σ) ∈ Xv × Σ such
that fv (x, σ) ∈ Xm v and (σ ∈ Σo) ∨ [(σ �∈ Σo) ∧ fv (x, R(σ))!].
Then, from the construction of automaton V , there exists sv ∈
L(V) such that fv (x0v , sv) = x and sv σ ∈ Lm (V). Moreover, since
R(σ) = σ, if σ ∈ Σo , and fv (x, R(σ))!, if σ �∈ Σo , then sv R(σ) ∈
L(V). Consequently, according to Lemma 2, there exists (sσ, s′σ)
∈ L(H)× Lm (Hc) such that Po (s) = Po (s′). Notice that,
sσ ∈ K, s′ ∈ (KΣ∗u o ∩ C), and s′σ ∈ L(G) \K , which implies
that K is not (KΣ∗u o ∩ C)-observable with respect to G
and Po . �

Remark 1: (Verification of language observability) Algorithm 1 can
be also applied to verify if a language K , marked by a nonblocking
automaton H , is observable with respect to G and Po , just by making
A = H . �

Remark 2: As it will be shown in Section V, the use of the re-
duced ambient language is crucial for the application of Algorithm 1
in the computation of the supremal C-observable sublanguage of a
language K . However, when we want only to verify if a language K is
C-observable (or observable, by making C = K), we can use ambient

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 11, NOVEMBER 2017 5905

Fig. 1. System automaton G (a), automaton A that marks ambi-
ent language C (b), and automaton H whose marked language is
K (c).

Fig. 2. Automata obtained in Example 1 by Algorithm 1: M (a), N (b),
Hc (c), HR

m (d) and V (e).

language C instead of Cs , and thus, Step 4 of Algorithm 1 should

be modified so as to compute automaton N such that Lm (N) = K
C

.
However, this change does not improve the computational complexity
of the algorithm, since the original and the modified versions of au-
tomaton N have |Xh |+ 2 and |Xh |+ 1 states, respectively, but with
the same number of transition (|Xh |+ 1)|Σ|. �

The following example illustrates Algorithm 1.
Example 1: Consider automata G, A and H depicted in Fig. 1,

where Σ = {α, β, σ, μ} and Σo = {α, β, σ}. Automaton M , con-
structed in Step 2, and automaton N , constructed in Step 4, are shown
in Figs. 2(a) and 2(b), respectively. Automata Hc and HR

m obtained
in Steps 5 and 6, respectively, are depicted in Figs. 2(c,d). Finally,
the verifier automaton V computed in Step 7 is depicted in Fig. 2(e),
from where, it can be checked that transition ((1, 0), α, (2, 1)) satisfies
condition (a) of Step 8. Therefore, K is not C-observable with respect
to G and Po . Notice that, since (2, 1) ∈ Xm v , the following strings
can be obtained from V : s = μ ∈ K, s′ = ε ∈ C, sα = μα ∈ K and
s′α = α ∈ L(G) \K , and Po (s) = Po (s′) = ε. �

Fig. 3. Automaton Hsp = H‖Obs(H, Σo) obtained from the automaton
H depicted in Fig. 1(c).

V. COMPUTATION OF THE SUPREMAL RELATIVELY

OBSERVABLE SUBLANGUAGE

Consider nonblocking automata A and H such that Lm (A) = C and
Lm (H) = K , and let fg , fa and fh (resp. x0g , x0a and x0h

) denote
the transition functions (resp. initial states) of automata G, A and H .
We make the following assumptions.

A1. For all s, s′ ∈ L(A) such that fa (x0a , s) = fa (x0a , s′), then
fg (x0g , s) = fg (x0g , s′).

A2. For all s, s′ ∈ L(H) such that fh (x0h
, s) = fh (x0h

, s′), then
fa (x0a , s) = fa (x0a , s′).

Notice that, if A (resp. H) does not satisfy Assumption A1 (resp.
A2), then another automaton A (resp. H) that satisfies Assumption A1
(resp. A2) can be obtained by computing the completely synchronous
composition A ×G (resp. H ×A). It is worth remarking that Assump-
tions A1 and A2 are less restrictive than assuming that H and A are
subautomata of G. Finally, when K = C , Assumptions A1 and A2
reduces to a single one, equivalent to that made in [9].

We will propose an algorithm to obtain a deterministic automaton
that marks the supremal C-observable sublanguage of K with respect to
G and Po , whose main idea is to remove, from an automaton that marks
K , all transitions that correspond to transitions in verifier automaton V
that violate the relative observability condition according to Theorem 1
and Algorithm 1. It is worth remarking that not every automaton H has
the correct structure to prevent that other strings, besides those which
actually violates the relative observability condition, are removed from
K . This fact is illustrated by the following example.

Example 2: Let us consider languages L(G), C and K , gener-
ated, respectively, by automata G, A and H of Example 1, shown
in Figs. 1(a, b, c). In verifier automaton V computed in Example 1, and
depicted in Fig. 2(e), transition ((1, 0), α, (2, 1)) satisfies condition
(a) of Step 8 of Algorithm 1. This is due to string s = μ ∈ K that
violates relative observability since s′ = ε ∈ (KΣ∗u o ∩ C), Po (s) =
P (s′) but sα ∈ K and s′α ∈ L(G) \K . However, if we remove tran-
sition (1, α, 2) of H (Fig. 1(c)), we not only remove string μα, but
also exclude string βα which must not be removed. In such case,
the calculated supremal relatively observable sublanguage will be ε,
which is incorrect. However, if we use the state partition automaton
Hsp = H‖Obs(H, Σo), depicted in Fig. 3, we successfully eliminate
string μα and preserve string βα when we exclude transition (1′, α, 2);
therefore leading to the correct supremal relatively observable
sublanguage. �

Let us define the state partition automaton Hsp = H‖Obs(H, Σo).
It is not difficult to see that L(Hsp) = L(H) = K, Lm (Hsp) =
Lm (H) = K , and that Hsp also satisfies Assumption A2. Let us de-
fine the uncertainty set [9] of an automaton H after the occurrence
of a string s ∈ L(H) as: Uh (s) := {x ∈ Xh : (∃s′ ∈ L(H))[(x =
fh (x0 ,h , s′)) ∧ (Po (s′) = Po (s))]}. The following results can be
stated.

Lemma 4: Let H = (Xh , Σ, fh , x0h
, Xm h

) and Hsp = H‖
Obs(H, Σo) = (Xsp , Σ, fsp , x0s p , Xm s p). Then, fsp (x0s p , s) =
(fh (x0h

, s), Uh (s)), ∀s ∈ L(Hsp).

5906 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 11, NOVEMBER 2017

Proof: In accordance with the construction of Hsp , fsp (x0s p , s) =
(fh (x0h

, s), fobs (x0o b s
, Po (s))), for all s ∈ L(Hsp), where x0o b s

and
fobs denote the initial state and the transition function of Obs(H, Σo),
respectively. Thus, using the definition of the estimate of possi-
ble states of H after string s proposed in [24], which is equiv-
alent to the definition of uncertainty set Uh (s), we conclude that
fobs (x0o b s

, Po (s)) = Uh (s). �
Lemma 5: Let H = (Xh , Σ, fh , x0h

, Xm h
), Hsp = H‖Obs(H,

Σo) = (Xsp , Σ, fsp , x0s p , Xm s p) and Hs = (Xs , Σ, fs , x0s , Xm s)
such that Hs
 Hsp and Lm (Hs) = Ks ⊆ K . Assume that there ex-
ist s, s′ ∈ Ks and σ ∈ Σ such that sσ, s′σ ∈ Ks and fs (x0s , s) =
fs (x0s , s′). If ∃s′′ ∈ (KsΣ∗u o ∩ C) such that Po (s′′) = Po (s′) and
s′′σ ∈ L(G) \Ks , then ∃sc ∈ C such that Po (sc) = Po (s) and sc σ ∈
L(G) \Ks .

Proof: Assume that there exist s, s′ ∈ Ks , σ ∈ Σ and s′′ ∈
(KsΣ∗u o ∩ C) such that sσ, s′σ ∈ Ks , fs (x0s , s) = fs (x0s , s′),
Po (s′′) = Po (s′) and s′′σ ∈ L(G) \Ks .

Without loss of generality, write s′′ as s′′ = s′′p s′′s , where s′′p is
the longest prefix of s′′ in Ks and s′′s ∈ Σ∗u o . Since fs (x0s , s) =
fs (x0s , s′), according to Lemma 4, Uh (s) = Uh (s′) = Uh (s′′p), where
the last equality is a consequence of the fact that Po (s′) = Po (s′′) =
Po (s′′p). According to the definition of uncertainty set, fh (x0h

, s′′p) ∈
Uh (s′′p), and, since Uh (s′′p) = Uh (s), there exists scp ∈ K such
that Po (scp) = Po (s) and fh (x0h

, scp) = fh (x0h
, s′′p). Thus, using

Lemma 4, fsp (x0s p , scp) = (fh (x0h
, s′′p), Uh (s′′p)), i.e., strings s′′p and

scp reach the same state of Hsp and also Hs , which implies that
these strings are continued in Hs with the same strings. Therefore,
scp s′′s σ �∈ Ks , since s′′p is not continued with s′′s σ in Ks . Moreover,
according to Assumptions A2 and A1, since s′′p and scp reach the same
state of H , they also reach the same states of A and G, which, together
with the fact that s′′p s′′s ∈ C and s′′p s′′sσ ∈ L(G), imply, respectively,
that scp s′′s ∈ C and scp s′′sσ ∈ L(G). Finally, defining sc = scp s′′s , we
have that sc ∈ C, Po (s) = Po (sc) and sc σ ∈ L(G) \Ks . �

Lemma 5 shows that, when H, A and G satisfy Assumptions A1
and A2, then for an automaton Hs (Hs
 Hsp = H‖Obs(H, Σo))
where Lm (Hs) = Ks , if a string s′σ ∈ Ks violates (KsΣ∗u o ∩ C)-
observability, then all strings s ∈ Ks that reach the state of Hs reached
by s′ are such that sσ also violates C-observability. As a consequence,
if we remove transitions of Hs associated with the strings of Ks that
violate (KsΣ∗u o ∩ C)-observability, we only eliminate from Ks those
strings that violate C-observability. This fact suggests the following
algorithm for computing the supremal C-observable sublanguage of a
language K .

Algorithm 2: (Computation of the supremal relatively observable
sublanguage)

Inputs:
� G = (Xg , Σ, fg , x0g , Xm g): automaton whose marked lan-

guage is Lm (G);
� A = (Xa , Σ, fa , x0a , Xm a): nonblocking automaton whose

marked language is C ;
� H = (Xh , Σ, fh , x0h

, Xm h
): nonblocking automaton whose

marked language is K .
Output: Hsup : nonblocking automaton whose marked language is

the supremal C-observable sublanguage of K with respect to G and
Po .

Step 1: Compute Hsp := H‖Obs(H, Σo) = (Xsp , Σ, fsp , x0s p ,
Xm s p);

Step 2: Set Hs = Hsp ;
Step 3: Compute verifier automaton V = (Xv , Σ ∪ ΣR , fv , x0v ,

Xm v), by using Algorithm 1 with inputs G, A and Hs ;

Step 4: If V is not an empty automaton, then form the following set:

XΣ = {(xv , σ) ∈ Xv × Σ : (fv (xv , σ) ∈ Xm v) ∧
((σ ∈ Σo) ∨ ((σ �∈ Σo) ∧ (fv (xv , R(σ))!)))}.

Step 5: If XΣ �= ∅, then:
◦ 5.1: For all (xv , σ) ∈ XΣ, exclude from Hs transition

(x, σ, fs (x, σ)), where x is the state of Hs equal to the first
component of xv ;
◦ 5.2: Hs ← T rim(Hs);
◦ 5.3: Return to Step 3;

Step 6: Hsup ← Hs . �

Notice that in Algorithm 2, after the computation of the state partition
automaton Hsp , we execute Steps 3 to 5 iteratively. For each iteration,
we compute the verifier automaton V in Step 3 by using Algorithm 1
with the inputs G, A and Hs . In Step 4, we form set XΣ, which
represents all pairs (xv , σ), xv ∈ Xv and σ ∈ Σ, responsible for the
loss of relative observability according to Theorem 1. Notice that, when
XΣ = ∅, language Lm (Hs) is C-observable with respect to G and Po .
If XΣ �= ∅, then, according to Lemma 2, for each (xv , σ) ∈ XΣ, there
exists a string s that reaches state x, equal to the first component of xv ,
and is continued by σ such that sσ ∈ L(Hs) violates C-observability;
in Step 5.1, we remove transition (x, σ, fs (x, σ)) of Hs and, in order
to remove possible non-accessible and/or non-coaccessible states, we
apply T rim() operator in Step 5.2. When we remove transitions in
Step 5.1, it is necessary to verify if the language marked by the new
Hs is C-observable, therefore, after carrying out Step 5.2 we return to
Step 3. Notice also that, at each iteration of Algorithm 2, we remove
at least one transition from automaton Hs
 Hsp , which implies that
the number of iterations is at most equal to the number of transitions
of automaton Hsp . Therefore, Algorithm 2 terminates in finite steps.

Theorem 2: Consider automaton G and nonblocking automata A
and H such that Lm (A) = C, Lm (H) = K and K ⊆ C ⊆ Lm (G),
and assume that automata G, A and H satisfy Assumptions A1 and A2.
Then, automaton Hsup obtained by Algorithm 2 with inputs G, A and
H marks the supremal C-observable sublanguage of K with respect to
G and Po .

Proof: Let K ′
su p denote the supremal C-observable sublanguage

of K with respect to G and Po . Algorithm 2 finishes when XΣ = ∅.
Therefore, according to Theorem 1, Lm (Hsup) is C-observable with
respect to G and Po , which implies that Lm (Hsup) ⊆ K ′

su p . Then,
we only need to prove that K ′

su p ⊆ Lm (Hsup). The proof will be
done using mathematical induction over the (finite) set of iterations in
Algorithm 2.

i) Basis step. At the beginning of the first iteration, Hs = Hsp .
Therefore, K ′

su p ⊆ Lm (Hs) = K ;
ii) Induction hypothesis. Suppose that K ′

su p ⊆ Lm (Hs), up to the
beginning of the i-th iteration;

iii) Inductive step. Let us now consider the (i+1)-st iteration. Notice
that in the i-th iteration, we have removed transitions from Hs in
Steps 5.1 and 5.2. Since Trim operator applied in Step 5.2 does
not modify the marked language of an automaton, strings are only
removed from Lm (Hs) in Step 5.1. Thus we need only to analyze
Step 5.1.

By using Lemma 5, it can be concluded that for each string sm ∈
Lm (Hs) that is removed from Lm (Hs) in Step 5.1, there exist s ∈
{sm }, s′ ∈ C and σ ∈ Σ such that sσ ∈ {sm }, s′σ ∈ L(G) \ L(Hs)
and Po (s) = Po (s′), i.e., sσ violates C-observability. In accordance
with the induction hypothesis, K ′

su p ⊆ Lm (Hs) at the beginning of the
i-th iteration, and thus, at the beginning of the i-th, (L(G) \ L(Hs)) ⊆

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 11, NOVEMBER 2017 5907

Fig. 4. Automata obtained in the first iteration of Algorithm 2: V (a) and
Hs (b).

Fig. 5. Verifier obtained with Algorithm 1 by using C instead of Cs .

(L(G) \K ′
su p), which implies that s′σ ∈ L(G) \K ′

su p , and thus,
since K ′

su p is C-observable, sσ �∈ K ′
su p , we conclude that sm �∈ K ′

su p .
Therefore, all string sm removed from Lm (Hs) does not belong to
K ′

su p ,which implies that K ′
su p ⊆ Lm (Hs) at the beginning of the

(i+1)-st iteration.
Finally, since Hsup is equal to the Hs obtained in the last it-

eration of Algorithm 2, then K ′
su p ⊆ Lm (Hsup), which concludes

the proof. �
We will now illustrate the application of Algorithm 2.
Example 3: Let us consider automata G, A and H of Example 1,

shown in Figs. 1(a, b, c). When we apply Algorithm 2 with inputs
G, A and H , we obtain, in Step 1, automaton Hsp , which is de-
picted in Fig. 3, and, in the first iteration, we obtain the verifier au-
tomaton V depicted in Fig. 4(a). Therefore, according to Step 4, we
obtain XΣ = {((1′, 0), α)} �= ∅. This implies that Steps 5.1 to 5.3
must be performed: in Step 5.1 we remove transition (1′, α, 2) of
Hs (Hs = Hsp), because this transition is associated with string μα
that violates C-observability. In Step 5.2, we exclude state 1′ of Hs

by applying the Trim operation, because this state becomes a blocking
one after the exclusion of transition (1′, α, 2). Finally, at the end of
the first iteration, we obtain automaton Hs depicted in Fig. 4(b). In
the second iteration, we obtain XΣ = ∅. Therefore automaton Hsup

is equal to automaton Hs , shown in Fig. 4(b), and marks the supremal
C-observable sublanguage of K with respect to G and Po . �

Remark 3: It could be argued that instead of using Cs = KΣ∗u o ∩
C , we could use C to compute V in order to identify the transi-
tions that must be removed. However, in doing so, we could eliminate
strings that do not violate C-observability. In order to illustrate this
fact consider verifier Vc , shown in Fig. 5, computed by using, in Algo-
rithm 1, C in the place of Cs . Notice that, transition ((2, 1), σ, (3, 2))
of Vc satisfies condition (a) in Step 8 of Algorithm 1, since string
s = μα ∈ K is such that sσ ∈ K violates the C-observability, be-
cause s′ = α ∈ C, s′σ ∈ L(G) \K and Po (s) = Po (s′). However, if
we remove transition (2, σ, 3) from Hsp (depicted in Fig. 3), we also
eliminate string βασ, which must remain. On the other hand, if we
use the reduced ambient language Cs , string sσ does not violate Cs -
observability, but its prefix s does, which leads to the exclusion of
transition (1′, α, 2), and consequently the removal of string sσ from
K , as expected from the proof of Lemma 1. �

VI. ANALYSIS OF COMPUTATIONAL COMPLEXITY OF

PROPOSED ALGORITHMS

A. Computational Complexity of Algorithm 1

Steps 1 to 5 of Algorithm 1 are employed to construct automa-
ton Hc by the product composition of N, M and Gm that have

(|Xh |+ 2), (|Xa |+ 1) and |Xg | states, respectively. Then, Hc has
(|Xh |+ 2) · (|Xa |+ 1) · |Xg | states at most. Since V = HR

m ‖Hc and
HR

m has |Xh | states, then V has, at most, |Xh | · (|Xh |+ 2) · (|Xa |+
1) · |Xg | states. The search for transitions of V executed in Step 8 of
Algorithm 1 can be done with linear complexity with respect to the
number of transitions of V , therefore, the computational complexity
of Algorithm 1 is equal to |Xh | · (|Xh |+ 2) · (|Xa |+ 1) · |Xg | · |Σ|,
i.e., O(|Xh |2 · |Xa | · |Xg | · |Σ|).

Consider now the following proposition.
Proposition 1: Let G1 = (X1 , Σ1 , f1 , x01 , Xm 1) and G2 =

(X2 , Σ2 , f2 , x02 , Xm 2) such that L(G1) ⊆ L(G2), Lm (G1) ⊆
Lm (G2). In addition, assume that for every s, s′ ∈ L(G1) such
that f1 (x01 , s) = f1 (x01 , s′), then f2 (x02 , s) = f2 (x02 , s′). Con-
struct two automata G′1 and G′2 from G1 and G2 by adding n1 and
n2 new states, respectively, and only adding new transitions from the
states of G1 and G2 to the new states and between the new states. Then,
automaton G′1 ×G′2 has at most |X1 |+ n1 (|X2 |+ n2) states.

Proof: In accordance with the construction of G′1 and G′2 , we
conclude that (G1 ×G2)
 (G′1 ×G′2) and every state of G′1 ×
G′2 outside G1 ×G2 has the first component equal to one of
the new states added to G1 . Therefore, G′1 ×G′2 has, at most,
|X1×2 |+ n1 (|X2 |+ n2) states, where X1×2 denotes the set of
states of automaton G1 ×G2 . Define function Θ : X1×2 → X1 as
the mapping Θ((x1 , x2)) = x1 , ∀(x1 , x2) ∈ X1×2 . Function Θ is
bijective since, for every s, s′ ∈ L(G1), f1 (x01 , s) = f1 (x01 , s′)⇒
f2 (x02 , s) = f2 (x02 , s′) and L(G1) ⊆ L(G2). Therefore, |X1×2 | =
|X1 |, which concludes the proof. �

In the verification of observability, H = A and, thus, applying
Proposition 1 with G1 = H, G2 = A = H, G′1 = N and G′2 = M ,
we conclude that automaton N ×M has at most 3|Xh |+ 2 states,
and, consequently, automaton V = HR

m ‖(N ×M ×Gm) has |Xh | ·
(3|Xh |+ 2) · |Xg | states, at most. Therefore, the complexity of the
verification of language observability by applying Algorithm 1 is
O(|Xh |2 · |Xg | · |Σ|), which is equal to the complexity of the algo-
rithm for the verification of observability proposed by [25].

B. Computational Complexity of Algorithm 2

In the first step of Algorithm 2, we compute automaton Hsp ,
that has, at most, 2|X h | · |Xh | states and 2|X h | · |Xh | · |Σ| transi-
tions. Since we execute Steps 3 to 5 iteratively, and, for each it-
eration, at least one transition is removed from automaton Hsp ,
then, the number of iterations is at most equal to the number of
transitions of Hsp . In addition, at each iteration, we compute ver-
ifier V using Algorithm 1 with inputs Hs (subautomaton of Hsp),
A and G. Since Hs and A satisfy Assumption A1, by applying
Proposition 1 with G1 = Hs , G2 = G′2 = A and G′1 = N , we con-
clude that automaton N ×A has at most |Xs |+ 2|Xa | states, where
|Xs | ≤ 2|X h | · |Xh |. Moreover, since A and G satisfy Assumption
A2, by using Proposition 1 with G1 = N ×A, G2 = G′2 = Gm and
G′1 = N ×M , we conclude that automaton Hc = N ×M ×Gm has
at most |Xs |+ 2(|Xa |+ |Xg |) states and, consequently, automaton V
has, at most, |Xs |2 + |Xs | · 2(|Xa |+ |Xg |) states and, thus, the com-
putational complexity of one iteration of Algorithm 2 is O([|Xs |2 +
|Xs | · (|Xa |+ |Xg |)] · |Σ|). Therefore, the complexity of Algorithm 2
is O

([
23 |X h | · |Xh |3 + 22 |X h | · |Xh |2 · (|Xa |+ |Xg |)

] · |Σ|2).
When Algorithm 2 is applied for the computation of the supre-

mal K-observable sublanguage of K with respect to G and Po ,
then A = H , and, thus, the complexity of Algorithm 2 becomes
O

([
23 |X h | · |Xh |3 + 22 |X h | · |Xh |2 · |Xg |

] · |Σ|2), which is smaller
than that of the algorithm proposed in [9], that is doubly exponential,
i.e., O(2[(2 |X h | ·|X h |+1) |X g |+ |X h |] · |Xh | · |Σ|).

5908 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 11, NOVEMBER 2017

Remark 4: It is important to remark that, when H is already a
state partition automaton, i.e. when Hsp = H , the complexity of Al-
gorithm 2 becomes O ((|Xh |3 + |Xh |2 · |Xg |) · |Σ|2), being therefore
polynomial. Notice that the state partition assumption was made in [9],
but the complexity of the algorithm proposed in [9] is still exponential,
being O(2(|X h |+1) |X g | · |Xh | · |Σ|). Therefore, even in this situation,
the algorithm proposed here performs better. �

VII. CONCLUSION

In this technical note, we presented a new property of relative ob-
servability which was leveraged in order to derive two new algorithms:
the first one for the verification of relative observability and the second
one for the computation of the supremal relative observable sublan-
guage; the former has polynomial time complexity, whereas the latter,
although, in general, has exponential complexity, it will have poly-
nomial complexity when the automaton that marks the specification
language is state partition.

REFERENCES

[1] F. Lin and W. M. Wonham, “On observability of discrete-event systems,”
Information Science, vol. 44, no. 3, pp. 173–198, 1988.

[2] H. Cho and S. I. Marcus, “Supremal and maximal sublanguages arising in
supervisor synthesis problems with partial observations,” Mathematical
Systems Theory, vol. 22, no. 1, pp. 177–211, 1989.

[3] H. Cho and S. I. Marcus, “On supremal languages of classes of sub-
languages that arise in supervisor synthesis problems with partial ob-
servation,” Mathematics of Control, Signals and Systems, vol. 2, no. 1,
pp. 47–69, 1989.

[4] J. H. Fa, X. J. Yang, and Y. P. Zheng, “Formulas for a class of controllable
and observables sublanguages larger than the supremal controllable and
normal sublanguage,” Syst. Control Lett., vol. 20, no. 1, pp. 11–18, 1993.

[5] M. Heymann and F. Lin, “On-line control of partially observed dis-
crete event systems,” Discrete Event Dynamic Systems, vol. 4, no. 3,
pp. 221–236, 1994.

[6] N. Hadj-Alouane, S. Lafortune, and F. Lin, “Centralized and distributed
algorithms for on-line synthesis of maximal control policies under
partial observation,” Discrete Event Dynamic Systems, vol. 6, no. 4,
pp. 379–427, 1996.

[7] J. Prosser, M. Kam, and H. G. Kwatny, “Online supervisor synthesis for
partially observed discrete-event systems,” IEEE Trans. Autom. Control,
vol. 43, no. 11, pp. 1630–1634, Nov. 1998.

[8] S. Takai and T. Ushio, “Effective computation of an Lm (G)-closed, con-
trollable, and observable sublanguage arising in supervisory control,” Syst.
Control Lett., vol. 49, no. 3, pp. 191–200, 2003.

[9] K. Cai, R. Zhang, and W. M. Wonham, “Relative observability of discrete-
event systems and its supremal sublanguages,” IEEE Trans. Autom. Con-
trol, vol. 60, no. 3, pp. 659–670, Mar. 2015.

[10] J. Komenda, T. Masopust, and J. H. van Schuppen, “Relative observ-
ability in coordination control,” Proc. IEEE Int. Conf. Autom. Sci. Eng.,
Gothenburg, Sweden: IEEE, 2015, pp. 75–80.

[11] K. Cai, R. Zhang, and W. M. Wonham, “On relative observability of timed
discrete-event systems,” Preeprints 12th Workshop Discrete Event Syst.,
Cachan, France, 2014, pp. 208–213.

[12] K. Cai, R. Zhang, and W. M. Wonham, “On relative coobservability of
discrete-event systems,” Proc. American Control Conf., Chicago, IL, USA
2015, pp. 371–376.

[13] K. Cai, R. Zhang, and W. M. Wonham, “Relative observability and coob-
servability of timed discrete-event systems,” IEEE Trans. Autom. Control,
vol. 61, no. 11, pp. 3382–3395, 2016.

[14] R. Zhang and K. Cai, “On supervisor localization based distributed con-
trol of discrete-event systems under partial observation,” Proc. American
Control Conf., Boston, MA, USA, 2016, pp. 764–769.

[15] K. Cai and W. M. Wonham, “A new algorithm for computing the supremal
relatively observable sublanguage,” in Proc. 13th Int. Workshop Discrete
Event Syst., Xi’an, China, 2016, pp. 8–13.

[16] G. Jirásková and T. Masopust, “On properties and state complexity of
deterministic state-partition automata,” International Conference on The-
oretical Computer Science, Amsterdam, The Netherlands, Springer, 2012,
pp. 164–178.

[17] J. Komenda, “Supervisory control with partial observations,” in Control
Discrete-Event Syst., C. Seatzu, M. Silva, and J. van Schuppen, Eds.
Springer, 2013, vol. 433, pp. 65–84.

[18] M. Schutzenberger, “On the definition of a family of automata,” Inform.
Control, vol. 4, no. 2–3, pp. 245–270, 1961.

[19] M. V. S. Alves, L. K. Carvalho, and J. C. Basilio, “New algorithms for ver-
ification of relative observability and computation of supremal relatively
observable sublanguage,” in Proc. IEEE Conf. Control Appl., Buenos
Aires, Argentina, Sep. 2016, pp. 526–531.

[20] P. J. Ramadge and W. M. Wonham, “The control of discrete-event sys-
tems,” Proc. IEEE, vol. 77, pp. 81–98, 1989.

[21] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
2nd ed. New York: Springer, 2008.

[22] W. M. Whonham, “Supervisory control of discrete-event systems,” 2013,
http://www.control.utoronto.ca/cgi-bin/dldes.cgi

[23] M. V. Moreira, T. C. Jesus, and J. C. Basilio, “Polynomial time verification
of decentralized diagnosability of discrete event systems,” IEEE Trans.
Autom. Control, vol. 56, no. 7, pp. 1679–1684, 2011.

[24] S. Shu, F. Lin, and H. Ying, “Detectability of discrete event sys-
tems,” IEEE Trans. Autom. Control, vol. 52, no. 12, pp. 2356–2359,
2007.

[25] J. N. Tsitsiklis, “On the control of discrete-event dynamical sys-
tems,” Math. Control, Signals Syst., vol. 2, no. 2, pp. 95–107,
1989.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

