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Implementation of Discrete-Event Controllers
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Abstract—Extended labeled Petri nets (ELPNs), i.e., labeled
Petri nets with inhibitor arcs, are usually used to model the desired
closed-loop behavior of a controlled discrete-event system, and,
as such, their states are formed with both the controller and the
plant states. However, the control logic is based on the controller
states only and the interaction between controller and plant is
carried out through sensor readings from the plant and control
actions (forced events) from the controller. This makes ELPN not
suitable for modeling the controller. Control interpreted Petri
nets (CIPNs), on the other hand, include control actions in the
places and sensor readings in the transitions as part of their
formal structure, and so provide a better formalism for controller
modeling. In this paper, we propose a two-step approach to
discrete-event controller implementation, as follows: (i) we first
propose a set of transformation rules to convert the initial ELPN
to an equivalent CIPN, therefore extracting the control logic from
the desired closed-loop behavior and (ii) we present a straightfor-
ward systematic way to translate the CIPN into a ladder diagram.
We apply the results presented here to the implementation of the
automation system of a plastic molding machine.

Note to Practitioners—The usual approach to the design of man-
ufacturing systems is to model the desired closed-loop system be-
havior using, for example, Petri nets, and in the sequel to extract
the discrete-event controller from this model with the view to im-
plementing the control logic on a Programmable Logic Controller
(PLC). So far, the controller extraction is carried out in an ad hoc
and intuitive way. In order to overcome the lack of formal methods
to deal with controller extraction and implementation, we propose
here a set of rules to construct, in a systematic way, the ladder di-
agram that implements the discrete-event controller. We illustrate
the conversion technique proposed here by applying it to the imple-
mentation of the automation system of a plastic molding machine.

Index Terms—Discrete-event systems (DESs), ladder diagram,
manufacturing systems, Petri nets, programmable logic controller
(PLC).

I. INTRODUCTION

P ETRI NET [1]–[3] is one of the formalisms that is suitable
to model and visualize the behavior of discrete-event sys-

tems (DESs). They have recently been applied successfully to
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several problems ranging from manufacturing systems to web
applications [4]–[6]. Among the advantages of Petri nets we
may list their capacity to model behaviors such as concurrency,
synchronization, and resource sharing. Other advantages of
Petri nets include the possibility to describe both the desired
closed-loop behavior of controlled DES and its discrete-event
controller (DEC).
Several methods have been proposed to synthesize DECs.

Holloway et al. [7] distinguishes three main approaches: (i)
the control theoretic approach [8]–[10]; (ii) the logic controller
approach [11]–[13]; and (iii) the controlled behavior approach
[14]–[16]. In the logic controller approach, the objective is to di-
rectly design a controller defining its input–output behavior, in
order to achieve the desired controlled behavior for the closed-
loop system. This method can be applied to the control of simple
processes, and simulation is necessary for the validation of the
closed-loop behavior. The controlled behavior approach, on the
other hand, is preferable for the design of complex manufac-
turing systems and consists of modeling the desired closed-loop
system behavior, namely, the joint model of the plant and con-
troller, and then to extract the DEC for implementation. This
strategy allows properties of interest such as liveness, bound-
edness, and reversibility to be guaranteed or even previously
analyzed using the desired closed-loop model.
In using the controlled behavior approach, the desired closed-

loop behavior of the controlled DES is usually modeled with ex-
tended labeled Petri nets (ELPNs), i.e., labeled Petri nets with
inhibitor arcs, and, as such, their states are formed with both
the controller and the plant states. However, the control logic is
based on the controller states only and the interaction between
controller and plant is carried out through sensor readings from
the plant and control actions (forced events) from the controller.
This makes ELPN not suitable for modeling the controller. Con-
trol interpreted Petri nets (CIPNs) [17]–[20], on the other hand,
include control actions in the places and sensor readings in the
transitions as part of their formal structure, and so provide a
better formalism for controller modeling.
After a CIPN, that models the controller, has been obtained

from the ELPN that models the desired closed-loop behavior of
the DES, the next step is to generate a code for implementation
on a programmable logic controller (PLC) by converting the
control logic described by the CIPN into a PLC programming
language, e.g., Sequential Function Charts (SFC) [21], [22] or
Ladder diagrams [18], [20], [23]–[25].
In [20], a comprehensive survey about methods for the de-

sign and implementation of DECs using ladder diagrams and
Petri nets is presented. Some of the techniques reviewed in [20]
consist of designing and converting Petri nets (or extensions of
Petri nets) to ladder diagrams for PLC implementation. How-
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Fig. 1. (a) CIPN where only transition is enabled and (b) incorrect state
reached after the occurrence of event when the avalanche effect occurs in the
controller code.

ever, there is an important problem that may appear in the im-
plementation of controllers in ladder diagrams: the avalanche
effect. The avalanche effect occurs in the PLC implementa-
tion of the Petri net controller when the receptivities of two or
more consecutive transitions become true at the same scan cycle
and, in the controller code, transitions that were not enabled are
incorrectly transposed. For example, consider the Petri net of
Fig. 1(a). In this case, if event occurs, only transition must
fire since only is enabled. Transition will fire only after the
second occurrence of event . However, depending on the pro-
gramming code, both transitions can be transposed in the same
scan cycle, leading to the state of the Petri net of Fig. 1(b), which
is not the intended behavior of the controller.
The earliest conversion methods were based on the so-called

Token Passing Logic (TPL) technique [18], [23], whose idea
was to use the evolution of the tokens through the Petri net as
themainmechanism for controlling the flow of the control logic.
Although the methods proposed in these papers were success-
fully implemented on manufacturing systems, the avalanche ef-
fect was not explicitly considered. The avalanche effect was ad-
dressed for the first time in [21], who proposed a systematic pro-
cedure for avoiding it in ladder implementations of supervisory
control systems modeled using automata. The only drawback of
the approach presented in [21] is the lack of a formal method to
deal with cycles, namely, where to break the loop in an intelli-
gent way for implementation purpose.
Jimenez et al. [26] consider the conversion of timed inter-

preted Petri nets into ladder diagrams. In the method proposed
in [26], each transition in the net is translated into a network in
the ladder diagram. Differently from [18] and [23], the method
presented in [26] cannot be applied to extended Petri nets. It is
worth mentioning that the avalanche effect was not addressed
in [26] either.
In [24], a different approach was proposed as follows: first,

Boolean expressions are obtained from the CIPN, and then,
these expressions are straightforwardly converted into a ladder
code. The weakness of this technique is that the resulting ladder
diagram does not provide a simple visualization of the control
code, and thus, simple modifications in the control logic cannot
be easily implemented in the existing ladder diagram.

In [27], the implementation on PLCs of Ramadge–Wonham
(RW) supervisors [28] with time delay functions is considered
and a method, based on the TPL technique, is proposed for ob-
taining a ladder diagram from the supervisor. The avalanche ef-
fect and other problems associated with the implementation of
supervisors on PLC have not been addressed.
In [29], a hierarchical control of DESs is proposed. In a lower

level, a DEC is designed to force control events to occur and,
in a higher level, a supervisor prohibits the occurrence of some
events such that the closed-loop system satisfies the specifica-
tions given by the designer. The main advantage of this hierar-
chical frame is that the control and supervision tasks are clearly
separated. This strategy has been named as the supervised con-
trol of DESs. The supervision and control are both designed in
[29] by using GRAFCET.
In [30], the implementation of the supervised control in struc-

tured text (ST)—one of the five PLC languages defined in the
standard IEC 61131-3 [31]—is addressed. First, the system is
partitioned into several subsystems, each one having a DEC that
performs only simple sequences, with no resource sharing; in
this approach, the control logic must be very simple in such a
way that the controller can be directly implemented on a PLC.
Then, the coordination of the subsystems is managed by a super-
visor designed by using the RW supervisory control theory. An
evolution algorithm for the implementation of supervisors, and
a set of rules for the translation of the supervisor described by
automata or Petri nets into an ST codewere proposed in [30]. Al-
though the algorithm proposed in [30] avoids the avalanche ef-
fect, the method does not approach the implementation of com-
plex DECs with conflicts and resource sharing, and also do not
consider DECmodeled by CIPNs and timed Petri nets. More re-
cently, it has been shown in [32] that complex distributed con-
trol systems can be implemented by using IEC 61131 languages
extended with object oriented programming.
The avalanche effect was, again, considered in [25], for com-

plex DECmodeled by timed CIPN. A conversion technique that
establishes transformation rules from CIPN to ladder diagrams
which preserve the structure of the Petri net and also avoids the
avalanche effect were given in [25].
We assume here that the controlled behavior approach is the

methodology used to synthesize the DEC. Thus, starting from
the ELPN model of the desired closed-loop behavior, we will
propose a two-step approach to the implementation of the DEC,
as follows: (i) first, a set of transformation rules is used to con-
vert the initial ELPN to an equivalent CIPN, therefore extracting
the control logic from the desired closed-loop behavior and (ii)
a straightforward systematic way, which is an extension of that
proposed in [25], is given to translate the CIPN into a ladder
diagram. The translation rules make use of the structure and
dynamics of the Petri net to obtain conditions for the firing of
transitions and to describe the flow of the control logic. The
ladder diagram is built in such a way that the avalanche ef-
fect is avoided and its structure allows any modification in the
DEC modeled by the CIPN to be easily implemented in the ex-
isting ladder diagram. It is worth remarking that, although sev-
eral works address the problem of modeling closed-loop sys-
tems by using labeled Petri nets, from the authors’ knowledge,
the problem of extracting a controller from this Petri net model
using CIPN has not been addressed in the literature.
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We present in Section II a brief review of Petri nets and in
Section III we first introduce the definition of ELPNs, and, in
the sequel, we define CIPNs. We propose in Section IV a set
of transformation rules for obtaining a CIPN from an ELPN,
and, in Section V, we introduce the method for obtaining the
ladder diagram from the CIPN. We illustrate the methodology
proposed here with the design of an automation subsystem of
a plastic injection molding machine. We present concluding re-
marks in Section VI.

II. PRELIMINARIES
A Petri net graph is a bipartite graph that contains two types

of nodes: places and transitions. The places are represented by
circles and the transitions by bars, and these two types of nodes
are connected through directed arcs. The formal definition of a
Petri net graph is as follows.
Definition 1: A Petri net graph is a weighted bipartite graph

, where is the finite set of places, is the
finite set of transitions, is the function
of ordinary arcs that connect places to transitions,

is the function of ordinary arcs that connect transitions
to places.
The set of input (output) places of a transition is

denoted as , and is formed with places such
that .
Let denote the marking function. Then,

represents the number of tokens assigned to place . A marking
of a Petri net is the column vector
formed with the number of tokens in each place , for

, where is the cardinality of .
Definition 2: A Petri net is a five-tuple

, where is, in ac-
cordance with Definition 1, a Petri net graph, and
is the initial marking function.
A transition is said to be enabled when the number of

tokens in each one of its input places is greater than or equal to
the weight of the arcs connecting the places to transition , i.e.,
is enabled if and only if

(1)

If transition is enabled for a marking and fires, then a new
marking is reached. The evolution of the markings is given by
the following equation:

(2)
Finally, we say that a place is a safe place if

for all markings of the Petri net reachable from .
In order to use the Petri net formalism to model physical sys-

tems (e.g., manufacturing systems), it is necessary to label the
transitions with events from an event set . This leads to the
definition of labeled Petri nets, as follows [33].
Definition 3: A labeled Petri net (LPN) is a seven-tuple

, where ,
is according to Definition 1, a Petri net graph, is the set
of events for transition labeling, is the transition
labeling function, and is the initial marking function of the
system.

Now, let be the set of output transitions of a place
.When is an input place of two or more transitions, we have

a conflict. Three types of conflicts can be identified, as follows:
• Structural conflict. A structural conflict, denoted by

, exists when the cardinality of is greater
than one. Notice that the existence of a structural conflict
is independent of the Petri net marking.

• Effective conflict. An effective conflict depends on the
marking of the Petri net [3]. An effective conflict, denoted
by is formed by a structural conflict and a
marking , such that a subset of with at least two
transitions are enabled by and the number of tokens
in is smaller than the sum of the weights of all arcs
connecting place to the enabled transitions of .

• Actual conflict. An actual conflict is an effective conflict
where the events associated with two or

more enabled transitions of occur simultaneously.
In the theory of supervisory control this case cannot
happen since it is assumed that two distinct events never
occur simultaneously. This is actually true when the events
are independent [3]. However, PLCs update their inputs
synchronously and even when the events are independent,
they may be seen by the PLC as occurring at the same
time [21].

The resolution of conflicts is not a trivial task in the design of
DES and is beyond the scope of this paper. However, since we
assume that the DEC synthesis is carried out by using the con-
trolled behavior approach, it is very reasonable to assume that
all possible conflicts have already been solved by the designer.
We will therefore make the following assumption.
A1) All the actual conflicts have been solved by the designer

before the implementation of the controller, i.e., in the
construction of the ELPN.

III. EXTENDED LABELED AND CONTROL INTERPRETED
PETRI NETS

In this section, we will extend the definition of LPN, which
will be used tomodel the desired behavior of a closed-loopDES,
and, in the sequel, we will briefly review the concepts of CIPN,
which will be used to describe the controller behavior. The two
formalisms are related/interconnected in accordance with the
block diagram shown in Fig. 2.

A. Extended Labeled Petri Nets (ELPNs)
The definition of ELPNs is as follows.
Definition 4: An ELPN is an eight-tuple

(3)

where is, according to Definition 3,
a labeled Petri net, and is the inhibitor arc
function.
The inhibitor arc function allows a larger class of DES to

be represented, increasing the modeling power of the labeled
Petri net. It can be used to eliminate conflicts since, if there
is a inhibitor arc connecting a place to a transition , then
transition will be disabled if the number of tokens in is
greater than or equal to the weight of the arc that connects
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Fig. 2. Closed-loop system.

to , i.e., . The inhibitor arc is graphically
represented by a solid line terminating with a small circle.
The desired closed-loop behavior of a large class of DES,

mainly manufacturing systems, can be modeled by the ELPN
introduced in Definition 4; for example, all Petri net models
for manufacturing systems presented in [14] can be described
by a labeled Petri net; it is worth remarking that all conflicts
are avoided in [14] with the so-called choice-synchronization
structure, which is a particular case of firing priority attribution.
In [2] and [3], several DES modeled by ELPNs are presented.
We say that a transition of an ELPN is observable if one of the

following conditions associated with the labeling event holds
true: (i) the event has a sensor to indicate its occurrence; (ii) the
event is a command signal sent by the controller to the plant;
(iii) the event is associated with a time delay; and (iv) the event
is associated with the synchronization of internal conditions ob-
servable by the controller; for instance, the synchronization in
the end of two concurrent processes that is verified by the con-
troller to command the start of a third process. We will suppose
in this paper that all transitions of the ELPN are observable by
the controller.

B. Control Interpreted Petri Nets (CIPNs)
The CIPN has additional structures to deal with sensors and

actuators. The inputs of the CIPN, associated with transitions,
are signals sent from sensors to inform the occurrence of events,
and the outputs, associated with places, are impulse actions
commanded to the plant. In order to include timers, the CIPN
is also T-timed. Therefore, the set of transitions of the CIPN,
, can be partitioned as , where is the set

of transitions with no firing delays and is the set of timed
transitions.
Definition 5: A CIPN is a 13-tuple

(4)
where is an extended Petri
net, and are the sets of conditions and input events associ-
ated with the transitions in , respectively,

is the function that associates to each transition in an event
from and a condition from , denotes the set of delays
associated with timed transitions, is the timing
function that associates to each timed transition a delay from
, is the set of impulse actions, associated with safe places

in , and is the action assigning function,
where denotes the set of safe places.
Notice in Definition 5 that it is assumed that every transition

is associated with a condition in and an event in
. Transition may fire when it is enabled and the associated

condition is true, and fires when the associated event occurs.
If the condition associated with is not explicitly specified,
then the condition is equal to one, i.e., the logical condition is
true. Moreover, if the input event is not explicitly specified, then
the event is equal to , the always occurring event [3], to indicate
that transition must fire immediately after it becomes enabled
if the associated condition is true. Therefore, all transitions
in have Boolean expressions associated with them.
According to Definition 5, impulse actions are assigned to

safe places in . If a place does not have an ac-
tion associated with it, then , and if a place with
assigned actions is marked, then the impulse actions
are executed when place changes its marking from zero
to one. It is important to remark that the impulse action must
be executed even if the marking of place is unstable [3],
i.e., it changes from zero to one and then back to zero instanta-
neously. Thus, the execution of the impulse actions are directly
related to changes in the markings of the safe places
where . The reason to consider only impulse actions
comes from the fact that the CIPN is obtained from a labeled
Petri net—all transitions are labeled with events whose occur-
rence are instantaneous. Thus, the controller command events,
associated with the transitions in the labeled Petri net, can be
seen as impulse actions. In order to consider also level actions,
modifications should be applied to the final CIPN obtained by
using the method proposed in this paper. These modifications
will not be addressed here.
In the following section, we show that it is always possible

to extract a DEC, described by a CIPN satisfying Definition 5,
from a closed-loop system modeled by an ELPN whose transi-
tions are all observable by the controller.

IV. CIPN EXTRACTION FROM AN ELPN
We will now propose transformation rules to change ELPNs

to CIPNs. The transformation will be carried out in two steps,
as follows: first, transformations will be defined in such a way
that the conditions imposed by Definition 5 are satisfied, leading
therefore to a CIPN; then, the resulting CIPN will be modified
so as to reduce the number of places and transitions.

A. Transformation of an ELPN to a CIPN
Let denote an ELPN defined according to Definition 4.

Partition the event set of as

where denotes the set of actions, the set of events associ-
ated with time delays, the set of events observed by sensors,
and the set of events associated with the synchronization of
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Fig. 3. (a) Transition labeled with a command event in an ELPN and (b) its
expansion in a CIPN according to transformation rule T3.

internal conditions observable by the controller. A CIPN
equivalent to the given ELPN is formed as follows:
T1) Keep the set of places of in , i.e., .
T2) Keep the transitions labeled with events in the

set in .
(a) For a transition such that , synchro-

nizes the corresponding transition with the
rising edge or the falling edge of the sensor signal.

(b) For a transition such that , synchro-
nizes the corresponding transition with the
always occurring event .

(c) For a transition such that , create a
timed transition with the same delay time
as described by the event of .

(d) For each transition created in steps
(a)–(c), define ,

, and
, for all .

T3) For a transition such that , create two
transitions , both synchronized with ,
and a safe place such that , and de-
fine ,

, , for all ,
and . In addi-
tion, convert event to an impulse action as-
sociated with place . Fig. 3 illustrates transformation
T3.

For obvious reasons, the CIPN obtained according to trans-
formation rules T1–T3 will be referred here to as direct control
interpreted Petri net (DCIPN).

B. Reducing the Size of CIPN

The DCIPN obtained from the ELPN in the previous sub-
section is likely to have redundant places and transitions. Since
controller implementation depends on the number of places and
transitions, it would be worthwhile to carry out additional trans-
formations in the DCIPN so as to reduce the cardinality of the

place and transition sets. The Reduction rules proposed here are
based on the reduction techniques used to mitigate the effort in
the verification of Petri net properties [15], [34]–[37]; the dif-
ference is that here we are interested in guaranteeing that the
discrete-event closed-loop system executes the correct sequence
of events described by the ELPN. As in the reduction methods
used to verify Petri net properties, the idea behind the reduc-
tion technique presented in this paper is to examine the Petri net
structure and/or behavior and to apply appropriate Reduction
rules to reduce the net size as much as possible [15]. It is worth
mentioning that the application of a rule may lead to a modified
CIPN that enables the application of another rule that was not
possible before. Thus, the determination of a correct order for
the application of the Reduction rules depends on the controller
Petri net model.
In each of the following subsections, a Reduction rule is ap-

plied to a CIPN, , generating a reduced CIPN (RCIPN)

1) Recognizing a Condition for the Firing of a Transition As-
sociated With a Sensor: In some cases, an ELPN is constructed
in accordance with a bottom-up approach, in which, several
components of the system are first modeled by Petri nets, and
then these modules are appropriately connected in order to rep-
resent the coupling effects among them.
Let us assume that and are two net components of an

ELPN that satisfy the following conditions:
C1.1—The places of represent only discretized states
the component may achieve.
C1.2—The transition from one state to another in can
be observed by sensors.
C1.3—The marking of a place in is one of the condi-
tions for the firing of a transition in ; this is tantamount
to saying that there is a self-loop between and .

If conditions C1.1–C1.3 are satisfied, we can reduce the CIPN
according to the following rule.
Reduction Rule 1:
1) Eliminate the connection between the modules:

(a) If is not a transition associated with an action, elim-
inate the self-loop between and in the CIPN, i.e.,
set , and add to
a condition associated with a sensor ( or

).
(b) If is associated with an impulse action, eliminate

the arcs in the CIPN between and , and and
, i.e., set ,

and add to a condition associated with sensor
( or ).

2) Keep the initial marking of the net, i.e., set .
3) Eliminate net component if it is isolated from the rest
of the net and is not part of the control system, i.e., if it
satisfies the following conditions:
(a) None of its places has an assigned action.
(b) None of its places is an input or output place of a

transition of another module.
(c) None of its transitions is an input or output transition

of a place of a different module.
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Fig. 4. (a) ELPN with two component models and ; (b) corresponding
DCIPN; (c) CIPN obtained after eliminating the arcs between and , and
and ; (d) elimination of the isolated module .

In Fig. 4(a), transition is labeled with an impulse action,
and thus, applying the transformation rules T1–T3, the DCIPN
of Fig. 4(b) is obtained. In this case, we can eliminate the arcs
from to , and from to . Fig. 4(c) presents the re-
sulting reduced CIPN. Notice that module in the resulting
Petri net is isolated from the rest of the net and does not repre-
sent part of the control system, and thus, it can be eliminated,
leading to the reduced net of Fig. 4(d).
2) Merging Transitions: The merge of two transitions

, whose associated events and conditions are
and , respectively, is possible if the following

conditions are satisfied:
C2.1—The receptivities and are mutually
exclusive.
C2.2— , for all
.

C2.3— , for all .
C2.4— , for all

.
Notice, according to Assumption A1, that and cannot

be conflicting transitions. Thus, requirement C2.1 is not conser-
vative when and also satisfy C2.2, C2.3, and C2.4. The
reduction creates a new transition , obtained after
merging and , leading to a reduced net whose com-
ponents are given as follows.
Reduction Rule 2:
1) .
2) .

Fig. 5. (a) Part of a Petri net satisfying the conditions for the merging of tran-
sitions and (b) simplification by merging the transitions.

Fig. 6. (a) Part of an extended Petri net satisfying the conditions for themerging
of transitions and (b) simplification by merging the transitions.

3)
if
if

4)
if
if .

5)
if
if .

6) .
7) The event associated with is defined as

.
In Figs. 5(a) and 6(a), two transitions and satisfying

conditions C2.1–C2.4 are presented. As shown in Figs. 5(b) and
6(b), a single transition synchronized with
is obtained by applying Reduction rule 2.
3) Merging Parallel Places: Two places and can be

merged if the following conditions are satisfied.
C3.1—The set of input transitions of is equal to the set
of input transitions of , .
C3.2—The set of output transitions of is equal to the
set of output transitions of , i.e., .
C3.3—For each pair of transitions such that

and , the following equation
holds true:

(5)
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C3.4) The initial condition of and satisfies:

(6)

where is an input transition of and .
It is not difficult to see that if (5) is satisfied for all pairs

of input and output transitions of and , then

(7)

for all pairs , where denotes the set of positive
rational numbers. Therefore

(8)

and

(9)

According to (9), if an input transition fires then
tokens are added to place and
tokens are added to place . On the

other hand, according to (8), if an output transition fires
then tokens are removed from place and

tokens are removed from . In addition, if
condition (6) is verified, the marking of will be proportional
to the marking of for all reachable markings of the net, i.e.,

(10)

Therefore, it is not necessary to consider both and to
the control of the firing of their output transitions, and so, places

and can be merged, preserving the transition firing se-
quences of the net.
If there is an inhibitor arc from place and/or to

a transition , and conditions C3.1–C3.4 are true,
then it is necessary to define appropriately the weight of
the inhibitor arc from the merged place to . Let
us first consider the case when and

. In this case two possibilities arise: (i)
if , then , since the
marking of will be equal to the marking of for
all reachable states of the Petri net and (ii) if , then
the weight of the inhibitor arc can be dif-
ferent from since for
all reachable states of the net, and, according to (10), the
marking of is proportional to that of , which implies
that . Thus, the inhibitor condition

is equivalent to the condition

(11)

However, the right-hand side of Inequality (11) can be a non-
integer, and therefore, it cannot be implemented as the weight

of an inhibitor arc in . In order to overcome this problem,
notice that, if

where denotes the smallest integer value greater than or
equal to , then condition (11) is verified. Moreover, it can be
easily seen that, since is an integer value, if

then

which implies that the new inhibitor arc weight in , equiva-
lent to in , is given by

(12)

Now, consider the case when and
. In this case, there are two inhibitor condi-

tions for the firing of transition , as follows:

(13)

and

(14)

After merging places and , a single inhibitor condi-
tion for the firing of must be obtained. If , then

and condition (14) leads to the following
condition for the marking of the merged place :

(15)

Since for all reachable markings of the
net, condition (13) yields

(16)

Thus, from inequalities (15) and (16), it is easy to see that the
new inhibitor arc can be defined as

(17)

Using the same reasoning, it can be shown that if , the
new inhibitor arc can be defined as

(18)
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Fig. 7. (a) Part of a Petri net satisfying the conditions for the merging of parallel
places and (b) simplification by merging the places.

The merge of places leads to a new CIPN
obtained as follows.
Reduction Rule 3:
1) .
2) .
3)

4)

if
if

5)

if
if

6) If any of the places is associated with ac-
tions, then these actions must be assigned to .

7)
if
if .

In Fig. 7(a) part of a Petri net with two places and
that satisfy conditions C3.1–C3.4 are presented. Following Re-
duction Rule 3, we see that places and can be merged
to form place , as shown in Fig. 7(b). Notice the new arc
weights that were obtained according to item 4) of Reduction
Rule 3. In Fig. 8(a), part of an extended Petri net is shown to
illustrate the merge of parallel places when there are inhibitor
arcs. The merged place and the corresponding arcs obtained by
following Reduction Rule 3 are shown in Fig. 8(b).
4) Merging Consecutive Places Connected Through -Tran-

sitions: transitions are usually created when DCIPNs are

Fig. 8. (a) Part of an extended Petri net satisfying the conditions for themerging
of places and (b) simplification by merging the places.

formed from ELPNs. In some cases, consecutive places
connected through -transitions can be merged and the corre-
sponding transition eliminated, reducing the CIPN.
The conditions for the merge of the input and output places

of a -transition can be divided in three cases: (i) there is
no action associated with the input and output places of ; (ii)
the input place of , , is a safe place with assigned action;
and (iii) the input place does not have assigned actions and
at least one output place of , , is a safe place
with assigned action.
Let us first consider case (i). In this case, it is possible to

reduce the CIPN if the following conditions are satisfied:
C4.1— .
C4.2—The set of input places of is a singleton, i.e.,

.
C4.3— for all places .

If conditions C4.1–C4.3 are satisfied, then when a transition
fires, an unstable marking is reached and transi-

tion immediately fires leading to a new marking.
Consider, now, case (ii). In this case, some reduction in the

CIPN is possible if C4.1–C4.3 are satisfied and, in addition,
there is an output place such that:

C4.4— is safe.
C4.5— .
C4.6— .

Condition C4.4 is necessary to guarantee that there will be a
merged place to which the action associated with can
be assigned, and that will be a safe place for all reachable
markings of the reduced Petri net. It is important to remark that

can also have an assigned action. Conditions C4.5 and C4.6
guarantee that the action assigned to will be executed only
if has initially one token or an input transition of that
is also an input transition of fires.
Finally, in case (iii), the reduction is possible if C4.1–C4.3

are satisfied and
C4.7— is a safe place.

Condition C4.7 is necessary since must also be a safe
place.
The development above leads to the following reduced rules.
Reduction Rule 4:
1) Create the set of merged places

. Notice that since is a
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Fig. 9. (a) Consecutive places connected by a -transition and (b) reduction by
merging the places.

singleton, the cardinality of is equal to the cardinality
of .

2) .
3) .
4)

if
and

if
and

5)

if and
if

if
6)

if ,
and ,
if
and

7)

if ,
if

8) If place is associated with an action, then this action
must be associated with a place such that

is a safe place. If is associated with an action, this
action must be assigned to place .

In Fig. 9(a), conditions C4.1–C4.3 for the elimination of tran-
sition and the merge of input place with the output
places , , and are satisfied. Applying Reduction rule
4, the reduced Petri net of Fig. 9(b) is obtained. Fig. 10(a) and (b)
present a different example of the application of Reduction rule
4. Notice that places and have not been merged since

has initially one token and has an assigned action, there-
fore, violating condition C4.5.
5) Eliminating Redundant Places: With the view to de-

scribing the states of the plant and controller in the closed-loop
system, the ELPN can introduce false synchronizations, i.e.,
some places, describing states of the plant, can be redundant to
the control of the firing of a transition.
A place is said to be redundant with respect to its

set of output transitions, if the following conditions are satisfied
for all reachable markings of the net:

C5.1— does not have assigned actions.

Fig. 10. (a) Consecutive places connected by -transitions and (b) reduction
by merging the places.

Fig. 11. (a) Redundant representation of resource sharing and (b) reduced Petri
net obtained by eliminating the redundant place .

C5.2—The number of tokens in is sufficient to fire all
enabled output transitions of .
C5.3—For each output transition of , ,
there is a nonempty subset of input places,

.
C5.4—The enabling conditions of each output transition

, associated with the markings of the places
of , are all satisfied only if the enabling condition re-
lated with the marking of is also satisfied.

The search for redundant places can be carried out by using
the reachability graph of the net. This identification can be car-
ried out in three steps, as follows: (i) find synchronization struc-
tures in the net; (ii) for each place involved in a synchro-
nization, obtain its set of output transitions and verify
if there is at least one input place different from for each
output transition ; and (iii) from the reachability
graph of the net, verify, for each one of the output transitions
of , and for all reachable states of the Petri net, if the condi-
tions for enabling , provided by the markings of the places
of , are all satisfied and the condition obtained from the
marking of is not satisfied. In this case, is not a redun-
dant place since its marking is crucial to enable ; otherwise,

is a redundant place.
In some special cases, the identification of a redundant place
with respect to its set of output transitions is simple, since it

requires the search for a specific structure in the net and its as-
sociated initial condition. In [35], a Reduction rule is presented
for the elimination of a redundant representation of resource
sharing, that is a special case of redundant place as defined in
this paper. An example of redundant resource sharing is pre-
sented in Fig. 11.
Notice that if conditions C5.1–C5.4 are satisfied, then place
is not necessary to the control of the firing of any of its

output transitions. Hence, place and its associated arcs can
be eliminated and the net reduced as follows.
Reduction Rule 5:
1) .
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Fig. 12. (a) Example of a Petri net with redundant places and (b) reduced Petri
net obtained by eliminating the redundant places.

2) .
3)

if
if .

4)
if
if .

5)
if
if .

6) , for all .
It is important to remark that in some cases, a place can be

redundant with respect to a transition and not redundant for
the firing of a different transition . In these cases, depending
on the net behavior described by the language generated by the
system, this redundancy can also be eliminated. Consider, for
instance, the Petri net shown in Fig. 12(a). Notice that place

can receive a token only if place already has a token,
and the firing of removes the tokens of both places and
. Thus, place is redundant for the firing of transition .

However, is not redundant with respect to transition ,
since can fire only after the firing sequence has been
executed. In this example the false synchronization of transition

can be eliminated by changing properly the structure of the
net. This modification in the net structure must guarantee that
the admissible transition firing sequences of the system are not
changed. In Fig. 12(b), the reduced net without the false syn-
chronization in transition is shown. It can be seen that the
admissible sequence of transitions has not been modified with
this net structure.
The identification of a redundant place with respect to

an output transition and the elimination of the
redundancy by redesigning the Petri net can be very laborious
and difficult to be automated. However, the analysis effort is

rewarded with a Petri net with reduced number of places and
transitions, which ultimately implies in a smaller programming
code.

C. Example
In this Section, a plastic molding machine is used to illus-

trate the CIPN extraction from an ELPN. The molding machine
consists of a hopper, an injection system composed by a recip-
rocating screw and barrel assembly, and a molding system, as
shown in Fig. 13. The production of a part in a plastic injec-
tion molding machine consists, initially, in feeding a thermo-
plastic material in the form of small pellets to a hopper. This
material is then gravity-fed from the hopper into the injection
system, which is heated by electric heater bands. The recipro-
cating screw is used to compress, melt, and convey the material.
After the approximation of the barrel to the molding system, the
reciprocating screw compress the material against the inside di-
ameter of the barrel, creating heat due to viscous friction. The
friction and the compression are amplified by the progressive
reduction in the diameter of the barrel. Thus, while the mate-
rial is transported through the barrel, it melts. The heater bands
outside the barrel help to maintain the material in the molten
state. When the material in molten state reaches the end of the
barrel, it is injected in the mold. The molding system shapes the
plastic inside the cavity and ejects the molded part. After the
injection, the part is cooled and solidified to the desired shape
defined by the cavity. The solidified part is extracted by a hy-
draulic knock-out (ejector) system mounted on the stationary
platen. The controlled variables in this process are the speed of
the system components and the pressure of the fluid in the hy-
draulic valves responsible for the displacements.
The process can be divided into six operations: clamping of

the mold, approximation of the injection system to the molding
system, injection, return of the injection unit, opening of the
mold, and extraction. Due to lack of space, we will consider
only the mold opening process.
After the injection of the plastic material into the mold, the

mold is opened and the extraction of the molded part is carried
out at the same time as the moving platen returns to its initial
position. Three different speeds, which depend on the position
of the moving platen, must be set. These three positions are
identified by position sensors , , and .
After the end of the injection process, a time delay

must be set for the beginning of the opening process. Then,
the moving platen starts to return, with speed and
pressure . When the moving platen reaches posi-
tion , the speed must change to and when the
moving platen reaches position , the speed must change to

. At the end of the displacement, at position , the
speed and pressure must both be set to zero.
Fig. 14 shows the ELPN of the opening process and Tables I

and II present the meaning of each place and the label of each
transition of the ELPN, respectively. Notice that, the ELPN has
several places and transitions, since the ELPN is built in order to
model the joint behavior of the plant and controller. Therefore,
after each observation of an event in the system, the labeled Petri
net must show the state of the whole closed loop system, which
includes both the states of the plant and the controller. If the PLC
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Fig. 13. Plastic injection molding machine scheme showing the three main subsystems. (Figure adapted from [38].)

Fig. 14. Labeled Petri net of the opening process.

programming code were directly obtained from the ELPN, then
it would have a complexity not compatible with the simplicity of
the problem. It is, therefore, necessary to obtain from the ELPN
a Petri net that models the controller behavior only, which, in
our paper, is the RCIPN.
The first step to obtain the DECmodel is to identify the events

associated with sensor signals, timers, internal events, and ac-
tions. After that, the transitions labeled with actions are ex-

TABLE I
PLACE DESCRIPTIONS OF THE ELPN

TABLE II
TRANSITION LABELS OF THE ELPN

panded as presented in Section IV-A. The resulting DCIPN is
presented in Fig. 15.
The RCIPN can be found by applying the Reduction rules

presented in Section IV-B to the DCIPN of Fig. 15. The steps
for the computation of the RCIPN are as follows:
1) Notice that, places and are redundant with respect
to their output transitions and , respectively. Thus,
applying Reduction rule 5, both places and their related
arcs can be eliminated. Reduction rule 5 can also be ap-
plied to modify the net structure in order to eliminate false
synchronizations. It can be easily seen that places ,
, , and are redundant with respect to the output

transitions , , , and , respectively. Thus, ac-
cording to Reduction rule 5, the false synchronizations can
be removed by eliminating the arcs , ,
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Fig. 15. DCIPN of the opening process.

, , , , , and
. The resulting Petri net is shown in Fig. 16.

2) The next step is the merge of places connected through
-transitions. Applying Reduction rule 4, several places
are merged leading to new places in the Petri net. For in-
stance, place is obtained after the merge of places
, , and place is obtained after the

merge of places , , . The resulting Petri net is
shown in Fig. 17.

3) Finally, Reduction rule 3 can be applied to merge par-
allel places. Place of the RCIPN is
obtained after the merge of the parallel places

Fig. 16. CIPN obtained after the application of Reduction rule 5 to the CIPN
of Fig. 15.

and . Notice that, in this case, the actions asso-
ciated with both places are assigned to the merged place

. Places , , , represent part of
the states of the plant and are redundant. These places
were also eliminated in the RCIPN by applying Reduction
rule 5. Places , , and are used in
the control of the other operations of the plastic injection
molding machine and, therefore, remain unaltered. The
resulting RCIPN is shown in Fig. 18.

It is important to stress that the number of places and tran-
sitions in the RCIPN is smaller than the number of places and
transitions of the ELPN of Fig. 14, since several places were re-
dundant to the control logic and could be eliminated from the
Petri net.
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Fig. 17. CIPN obtained after the application of Reduction rule 4 to the CIPN
of Fig. 16.

The ELPN model of all six processes of the plastic injection
molding machine has 112 places and 77 transitions, while its
corresponding RCIPN, obtained by following the transforma-
tion rules of Section IV, has only 78 places and 59 transitions.
Remark 1: It could be argued that it might be possible to

design directly the RCIPN of the opening process shown in
Fig. 18. This is indeed true if the chosen design methodology
is the logic controller approach [7]. However, since in the logic
controller design strategy, the designer directly designs a con-
troller by defining its input-output behavior, without finding the
model of the controlled system first, there is no monitoring of
the dynamic evolution of the system as a whole, which could be
a nontrivial task for more complex systems. On the other hand,
in the controlled behavior approach, as we assume in the paper
as the design methodology deployed, the first step is to obtain
the controlled behavior of the closed-loop system and, in the
sequel, to extract the controller model. In this regard, the pro-
posed Reduction rules play a crucial role. It is worth remarking
that the fact that the application of the Reduction rules leads to a
model that could be a natural choice for a first DEC, within the
logic controller approach, shows the effectiveness of the pro-
posed Reduction rules.

V. CONVERSION OF CIPNS INTO LADDER DIAGRAMS
A PLC operates executing scan cycles that consist of three

main steps: (i) reading and storage of PLC inputs; (ii) execu-

Fig. 18. Resulting RCIPN of the opening process after application of Reduc-
tion rules 3 and 5 to the CIPN of Fig. 17.

tion of the user programming code; and (iii) output update. In
general, input events are associated with the rising or the falling
edges of sensor signals and the outputs are commands sent by
the controller to the plant in response to changes in the values
of the sensor signals.
We propose in this paper a new method for the conversion of

CIPN into ladder diagrams that extends the method presented
in [25]. The proposed scheme consists in dividing the ladder
diagram in five modules, as follows:
• Module M1, associated with the identification of the oc-
currence of external events;

• Module M2, associated with the conditions for the firing
of the transitions;

• Module M3, that describes the evolution of the tokens in
the Petri net;

• Module M4, that represents the initialization of the Petri
net, i.e., it defines the initial marking;

• Module M5, that defines which actions will be set in the
current state of the system.

In the following subsections, we will present a detailed ex-
planation of each one of the five modules and will present a
running example to illustrate the conversion method proposed
here. The Petri net graph for the example is depicted in Fig. 19,
which was specially built to illustrate the construction of each
one of the modules.
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Fig. 19. CIPN used to illustrate the conversion technique presented in
Section V.

A. The Module of External Events
External events are associated with the rising or the falling

edge of sensor signals in the CIPN and can be detected by using
a positive signal edge contact (P) or a negative signal edge con-
tact (N), respectively. The P (N) contact is normally open and
it closes, for just one scan cycle, when the Boolean condition in
the same rung changes the logical value from zero to one (one
to zero). The always occurring event is not represented in the
module of external events since it is an internal event [3].
In the Petri net of Fig. 19, there are four events synchronizing

the transitions: two events are associated with the rising edge
of sensor signals, and , one event is associated with
the falling edge of a sensor signal, , and the last event is
the always occurring event . Therefore, the module of external
events for this CIPN must have three rungs, as shown in Fig. 20.
The first and second rungs of the ladder diagram account for the
external events associated with the rising edge of sensor signals

and , respectively. When, for instance, changes its
value from zero to one, the P contact closes for one scan cycle
energizing the coil denoted as , that represents the rising
edge of , . The third rung of the ladder diagram of Fig. 20
accounts for the falling edge of the sensor signal . When
changes its value from one to zero, the N contact closes ener-
gizing coil that corresponds to the falling edge of , .

B. The Module of Firing Conditions
The module of firing conditions has rungs, where de-

notes cardinality, and each rung describes the conditions for the
firing of a transition . Since the CIPN is an extended
Petri net, then a transition is enabled if and only if

(19)

and

(20)

If transition , then is fireable if conditions (19)
and (20) are satisfied and the associated condition is true, and
it fires when the associated event occurs. On the other hand,
if then is fireable if conditions (19) and (20) are
satisfied but it fires only after a delay time .
Enabling conditions (19) and (20) can be easily expressed in

the ladder diagram by using comparison instructions, which are
connected in series with other elements that depend on whether

Fig. 20. Module of external events for the CIPN of Fig. 19.

Fig. 21. Module of firing conditions for the CIPN of Fig. 19.

transition is timed or not. If , the Boolean expres-
sion for the condition is implemented with a simple associ-
ation of NO and/or NC contacts. This association is connected
in series with an NO contact representing the rising edge or the
falling edge of the corresponding sensor signal that observes .
When all conditions for the firing of are satisfied, a
coil associated with the binary variable is energized to rep-
resent that is ready to fire. It is important to remark that if

or , then no contacts are added to represent the
condition or the event. On the other hand, if , then
a timer with preset value equal to the delay time must be
used. After the delay time, the timer energizes an output coil

indicating that the delay time has elapsed. In this paper
it is considered that the timer resets its accumulated value if its
corresponding rung is opened.
Fig. 21 shows the ladder diagram of the module of firing con-

ditions of the CIPN of Fig. 19. Notice that transitions for
are not timed but transition is timed. Consider,

for instance, the non-timed transition . Notice that transition
is enabled if and , and fires

when occurs. The enabling conditions are represented in
the first rung of Fig. 21 with two comparison instructions as-
sociated with the markings of places and , represented
by the integer variables and , respectively, and the oc-
currence of is verified by using an NO contact associated
with the binary variable . The conditions for the firing of the
timed transition are represented in the fifth rung of Fig. 21.
Notice that, the timer is energized only after the enabling con-
ditions and become true, which are
represented in the ladder diagram as and .
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Fig. 22. Module of Petri net dynamics for the CIPN of Fig. 19.

C. The Module of Petri Net Dynamics

After a transition fires, the number of tokens in the Petri
net must be updated. This process is performed in the ladder
diagram by the module of Petri net dynamics. This module has

rungs. Each rung is associated with a transition
and expresses the changes in the place markings after the firing
of . An NO contact, associated with the binary variable or
with the output coil of the timer , is used to represent that
transition is ready to fire. Math functions are used in series
with the NO contact to represent the changes in the markings
of the input and output places of . The subtraction function
(SUB) is used for the variables associated with input places
of , and the weight is subtracted from the
integer variable that represents the number of tokens of .
The addition function (ADD) is used for the variables associated
with output places of , and the weight
is added to the integer variable that represents the number
of tokens of the output place .
Fig. 22 shows the ladder diagram of the module of dynamics

of the Petri net depicted in Fig. 19. Each input place of a tran-

Fig. 23. Part of a CIPN with two consecutive transitions synchronized with the
rising edge of the same sensor signal.

sition is associated with a SUB block and each output place is
associated with an ADD block.
Remark 2: Notice that if a place is safe then, in some

cases, the math instructions ADD and SUB can be replaced
with Set and Reset coils, respectively. However, in general, this
procedure can lead to some unpredictable behavior. In order to
illustrate this fact, consider the part of a Petri net depicted in
Fig. 23. In this example, if the rungs are implemented in the
order presented in Fig. 24(a), then the marking of is equal
to zero after the occurrence of the rising edge , since both
transitions and are synchronized with the same external
event. This incorrect behavior can be avoided by changing the
order of the rungs in the Petri net dynamics module. However,
defining the correct order can be difficult if the Petri net is com-
plex. A simple way to overcome this problem is to use math in-
structions and consider integer variables instead of binary vari-
ables even in the representation of the markings of safe places.
In the ladder diagram of Fig. 24(b), the marking of , repre-
sented by variable , is clearly equal to one after the occur-
rence of .

D. The Initialization Module

The initialization module contains just one rung formed with
an NC contact associated with an internal binary variable
that, in the first scan cycle, logically energizes MOVE blocks
associated with places that have tokens in the initial marking.
After the first scan cycle, the NC contact is opened. It is worth
remarking that there is no need to set the value zero to the vari-
ables associated with places without any initial markings since
the variables are automatically initialized with zero.
Fig. 25 depicts the initialization module for the CIPN of

Fig. 19 for the initial marking . The MOVE
blocks are used in the initialization module of Fig. 25 to define
the values of the integer variables and , that represent
the initial markings of places and , respectively.

E. The Module of Actions

The number of rungs in the module of actions is equal to the
number of places with assigned actions in the CIPN. Since, in
the CIPN defined in this paper, only impulse actions are consid-
ered, the actions must be executed only when the marking of a
safe place changes from zero to one. In order to implement this
behavior, a comparison instruction in series with a P contact is
used to verify if the marking of a place that has an assigned ac-
tion changes its logical value from zero to one. If this is the case,
then an output coil is logically energized and the impulse action
is executed.
The module of actions for the example of Fig. 19 is shown in

Fig. 26. Notice that the ladder diagram of the module of actions
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Fig. 24. (a) Incorrect module of Petri net dynamics for the CIPN of Fig. 23 using Set and Reset coils and binary variables to represent the marking of the safe
places and (b) the correct module of Petri net dynamics for the CIPN of Fig. 23 using math instructions and integer variables to represent the marking of the safe
places.

Fig. 25. Initialization module for the CIPN of Fig. 19.

Fig. 26. Module of actions for the CIPN of Fig. 19.

has two rungs only, since the CIPN has only two places with
assigned actions.
Remark 3: It is important to remark that only impulse ac-

tions are allowed in the CIPN used in this paper. Therefore, we
assume here that either the plant has a device that observes the
impulse action sent by the controller and executes an operation,
or SET and RESET coils must be used associated with the con-
troller outputs.

F. Organization of the Ladder Diagram
The five modules must be implemented in the same order of

presentation in this paper, namely: (i) the module of external
events; (ii) the module of firing conditions; (iii) the module of
Petri net dynamics; (iv) the initialization module; and (v) the
module of actions.
The order of the modules of the ladder code is important to

avoid the avalanche effect and also to guarantee that actions de-
fined in the initial marking are executed. The avalanche effect
is avoided because the conditions for the firing of all transitions
are verified first in themodule of firing conditions, and only after
that, the evolution of the tokens are carried out in the module of
Petri net dynamics. This implementation scheme guarantees that

eachmarking of the CIPN (even unstable markings) remains un-
changed for at least one scan cycle in its ladder implementation.
Therefore, only enabled transitions can fire when the associated
event occurs. Another benefit of the organization of the struc-
ture of the modules proposed in this paper is that it allows the
actions assigned to safe places of unstable markings of the CIPN
to be executed correctly.
It is important to notice that the actions assigned to safe places

that have a token in the initial marking must be executed. In
order to guarantee this behavior, the initialization module is im-
plemented after the modules of firing conditions and Petri net
dynamics. Therefore, if a safe place with assigned actions is
marked with a token in the initialization module, the assigned
actions are executed as described by the module of actions.
Finally, it is worth remarking that, although the method pro-

posed here, in general, generates a larger ladder code than other
methods proposed in the literature, it guarantees that the in-
tended behavior of the CIPN will be executed by its ladder im-
plementation.

G. Size of the Ladder Diagram
Assuming that there are distinct external events associated

with the rising edge or the falling edge of sensor signals, then
the maximum number of rungs in the ladder diagram obtained
from the method is . Although the number
of rungs could be smaller, the ladder diagram proposed in this
work allows a complete visualization of the Petri net structure,
and mimics its behavior. Thus, any modification in the DEC
described by the CIPN can be easily implemented in the existing
ladder diagram.

H. Example
We will now apply the methodology proposed here to the

opening process of the plastic molding machine whose RCIPN
is shown in Fig. 18. In order to make the notation simpler, we
will rename the places and transitions of the RCIPN, as fol-
lows: , , ,

, , ,
, , , , , .

The corresponding ladder diagram obtained by applying the
conversion rule proposed in Section V is shown in Fig. 27. No-
tice that the modules are incomplete since the other operations
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Fig. 27. Ladder diagram of the RCIPN of Fig. 18.

of the plastic molding machine must also be implemented to
guarantee the correct execution of all parts of the system. It
is also important to remark that there are no rungs in the ini-
tialization module related with the opening process since place

receives a token only when the injection process is finished.
Therefore, all places of the CIPN of the opening process have
zero initial marking.

VI. CONCLUSION

We presented in this paper a two-step approach to the im-
plementation of DECs for closed-loop systems modeled with
ELPNs using ladder diagrams, which guarantees that the con-
trolled system has the desired closed-loop behavior described
by the ELPN. The proposed transformation rules are straight-
forward to apply and the method presented here is expected to
benefit practitioners and to allow the theory used to design DEC
to be applied in the design of practical systems.
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