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a b s t r a c t

We consider the problem of diagnosing the occurrence of a certain unobservable event of interest, the
fault event, in the operation of a partially-observed discrete-event system subject to permanent loss
of observations modeled by a finite-state automaton. Specifically, it is assumed that certain sensors for
events that would a priori be observable may fail at the outset, thereby resulting in a loss of observable
events; the diagnostic engine is not directly aware of such sensor failures.We explore a previous definition
of robust diagnosability of a given fault event despite the possibility of permanent (and unknown a priori)
loss of observations and present a polynomial time verification algorithm to verify robust diagnosability
and a methodology to perform online diagnosis in this scenario using a set of partial diagnosers.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The basic event diagnosis problem for discrete-event systems is
to perform model-based inferencing at run-time, using sequences
of observable events, and determine, with certainty, if a given
unobservable ‘‘fault’’ event has occurred or not in the past. The
property of diagnosability formally captures the ability to always
detect at run-time any occurrence of the given fault event, within
a finite number of event transitions. There is a very large body
of literature on (offline) diagnosability analysis and (online) event
diagnosis of discrete-event systems modeled by automata, the
modeling formalism considered in this paper; see, e.g., Boel and
van Schuppen (2002), Debouk, Lafortune, and Teneketzis (2000),
Genc (2008), Jéron, Marchand, Pinchinat, and Cordier (2006),
Kumar and Takai (2009), Lin (1994), Lunze and Schröder (2004),
Pencolé and Cordier (2005), Qiu and Kumar (2006), Sampath,
Sengupta, Lafortune, Sinnamohideen, and Teneketzis (1995),
Thorsley and Teneketzis (2005), Tripakis (2002), Wang, Yoo, and
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Lafortune (2007), Ye, Dague, and Yan (2009), Yoo and Lafortune
(2002), Zad, Kwong, and Wonham (2003) and the references
contained therein. Two classes of automata derived from the
automaton model of the system have been defined in the above
works: diagnosers and verifiers. Both diagnosers and verifiers can
be used for offline analysis of diagnosability properties; online
diagnosis is usually implemented using diagnosers.

Let us assume that the given set of sensors attached to the
system is recording all potentially observable events at run-
time. We are interested in the situation where sensors for some
combinations of (potentially observable) events fail prior to the
first occurrence of an event they are monitoring; such failures are
assumed to be permanent and unknown a priori. In this case, if
online diagnosis is performed using a standard diagnoser built on
the basis of all potentially observable events, then this diagnoser
could get stuck in some states (e.g., no further observed event, or
occurrence of an event not in the current active event set) or could
even issue incorrect diagnostic decisions; an example is presented
in Section 3. Wewould like to still perform correct diagnosis of the
original unobservable fault event despite the (unknown a priori)
loss of observations resulting from sensor failures.

Recently, there have been some works on sensor failures in
supervisory control of discrete-event systems (see, e.g., Rohloff
(2005); Sanchez and Montoya (2006)), on various notions of
‘‘robust’’ diagnosis of discrete-event systems in the presence of
potentially faulty sensors, in particular, Basilio and Lafortune
(2009), Carvalho, Basilio, and Moreira (2010, 2012), Contant,
Lafortune, and Teneketzis (2006), and Takai (2010, 2012) and on
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fault diagnosis under unreliable observations (Athanasopoulou,
Lingxi, & Hadjicostis, 2010; Thorsley, Yoo, & Garcia, 2008).

In this paper, we deal with the problem of robust diagnosis
against permanent loss of observations. This problem was first
introduced by Lima, Basilio, Lafortune, and Moreira (2010), and
can be stated as follows. Let us assume that a given unobservable
fault event, σf , is diagnosable in a given system for the set of
all observable events Σo, in the sense of Sampath et al. (1995).
Let Σ ′

o ⊂ Σo be a proper subset of Σo for which diagnosability
still holds. Then Σ ′

o is called a diagnosis basis (Basilio, Lima,
Lafortune, & Moreira, 2012) and the events in the set Σo \ Σ ′

o
are said to be redundant; we call Σ ′

uo := Σo \ Σ ′
o the set

of redundant events associated with Σ ′
o; the partial diagnoser

built for Σ ′
o does not record these (potentially observable) events.

Lima et al. (2010) present a necessary and sufficient condition
for robust diagnosability against permanent sensor failures using
a union diagnoser, i.e., a diagnoser that accepts the union of the
languages of all partial diagnosers formed with all sets Σ ′

o that are
diagnosis bases. It is not difficult to see that union diagnosers tend
to have huge state spaces, which makes the verification test very
computationally demanding.

In order to overcome the potential state space explosion of
union diagnosers, we propose in this paper an offline test based on
the use of a special type of verifier automata. This procedure avoids
the worst-case exponential complexity of diagnosers, as verifiers
can be computed in the worst-case polynomial time in the size of
the system. We also discuss how to perform online diagnosis for
systems that are robust diagnosable.

This paper is structured as follows. In Section 2, we present
some background on fault diagnosis of discrete-event systems. In
Section 3,wepresent the definition of robust diagnosability against
permanent loss of observations. In Section 4 we develop an offline
test for the verification of robust diagnosability and in Section 5
wediscuss the online implementation of robust diagnosers. Finally,
conclusions are drawn in Section 6.

2. Preliminaries

Let

G = (X, Σ, f , Γ , x0), (1)

be a deterministic automaton, where X denotes the state space,
Σ the event set, f : X × Σ → X the state transition function,
which is partially defined over its domain, Γ the active event set,
and x0 the initial state. Let us partition Σ as Σ = Σo∪̇Σuo, i.e.,
Σ = Σo ∪Σuo, Σo ∩Σuo = ∅ andΣuo ≠ ∅, whereΣo andΣuo are,
respectively, the set of observable and unobservable events, and
let Σf = {σf } ⊆ Σuo be a set whose unique element σf is the fault
event to be detected. Finally, let us denote the language generated
by G as L. We make the following common assumptions:
A1. Language L is live, i.e., Γ (xi) ≠ ∅ for all xi ∈ X .
A2. There is no cycle of unobservable events in G.

The language L is said to be diagnosable if the occurrence of
σf can be detected within a finite number of transitions after the
occurrence ofσf using only traces formedwith events inΣo. Let the
function Po : Σ∗

→ Σ∗
o denote the standard natural projection

that erases unobservable events; see Cassandras and Lafortune
(2008). In addition, let P−1

o denote the inverse projection of Po,
and assume that L/s = {t ∈ Σ∗

: st ∈ L} and that Ψ (Σf )
denotes the set of all traces of L that end with event σf . With some
abuse of notation Σf ∈ s denotes that s̄ ∩ Ψ (Σf ) ≠ ∅. Language
diagnosability can then be formally defined as follows (Sampath
et al., 1995).

Definition 1. L is diagnosable with respect to Po : Σ∗
→ Σ∗

o if,
and only if, the following condition holds true:

(∃n ∈ N)(∀s ∈ Ψ (Σf ))(∀t ∈ L/s)(∥t∥ ≥ n ⇒ D),

a b

Fig. 1. Automaton G (a) and its diagnoser Gd (b).

where the diagnosability condition D is given as

(∀ω ∈ (P−1
o (Po(st)) ∩ L))(Σf ∈ ω).

3. Robust diagnosability against permanent loss of observa-
tions

Language diagnosability is usually performed in practice using
diagnosers. A diagnoser is a deterministic automaton, which is
built from the automaton that generates the language to be
diagnosed and whose event set is formed with the observable
events of G, and whose states are sets of states of G augmented
by adding labels Y or N to indicate whether the fault event σf has
occurred or not in reaching the state. In this regard, a state xd of
the diagnoser is called certain (or faulty) if ℓ = Y for all xℓ ∈ xd,
and normal (or non-faulty) if ℓ = N for all xℓ ∈ xd. If there exist
xℓ, yℓ̃ ∈ xd, x not necessarily distinct from y such that ℓ = Y and
ℓ̃ = N , then xd is an uncertain state of Gd. When the diagnoser
reaches a certain (resp. normal) state, we are certain that the fault
has occurred (resp. not occurred). However, when the diagnoser
is in an uncertain state, we cannot draw any conclusion regarding
the fault occurrence. If the diagnoser remains indefinitely in a cycle
formed with uncertain states only, then it will not be possible to
diagnose the fault occurrence.2

Fig. 1(a) shows the state transition diagram of an automaton
G, for which Σ = {a, b, c, d, e, σf }, Σo = {a, b, c, d, e}, and
Σf = {σf }. The corresponding diagnoser is depicted in Fig. 1(b).
Notice that, since Gd has cycles in certain and normal states only,
then we may say that L is diagnosable with respect to Po and Σf .
Indeed, if trace sY = cσf bdn (n ∈ N) occurs, then the diagnoser
goes from the initial state {1N} to state {4Y }, indicating that the
fault event σf has occurred. Assume now that a permanent loss
of observation of the sensor that records the occurrence of event
c took place before the first occurrence of c , and suppose that
trace sY = cσf aen, n ∈ N, has been generated. Since event σf
is unobservable, the first event to be recognized by the diagnoser
of Fig. 1(b) is a. When the diagnoser receives the information on
the occurrence of a, it updates its state to {5N}, where it stands
still since e is the only event that occurs next in trace sY and it
is not in the active event set of {5N}. The diagnoser is, therefore,
unable to process any further information it may receive regarding
event occurrences, and so, it will not be able to reach a certain

2 We refer the reader to Basilio et al. (2012) for amore detailed explanation about
diagnosers and how they can be used as an offline test for diagnosability.
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state, as it should, since trace sY contains the fault event σf and has
arbitrarily long length. This fact suggests that not only diagnosers
should be modified to perform correctly in practice but also a new
diagnosability test that takes into account possible permanent loss
of observations must be developed.

In order to do so, we will first introduce a language diagnos-
ability condition that takes into account possible permanent loss
of observations. Such a diagnosability condition will be referred to
here as a robust diagnosability condition against permanent loss of
observations. Robustness here should be understood in the sense
that L remains diagnosable even in the case of permanent loss of
observations.

We make the following additional assumptions.
A3. L is diagnosable with respect to Po : Σ∗

→ Σ∗
o and Σf = {σf }.

A4. Any loss of observations, when it occurs, takes place before
the first occurrence of the (initially observable) event associated
with the sensor that has failed, and it is permanent, i.e., the event
remains unobservable.

It is worth noting that Assumption A4 is not restrictive in the
case of a cyclical system that observably returns to its initial state.

Consider now the following definition (Basilio et al., 2012).

Definition 2 (Diagnosis Basis). A setΣ ′
o ⊆ Σo is a diagnosis basis if

L is also diagnosable with respect to projection P ′
o : Σ∗

→ Σ ′∗
o

and Σf = {σf }. If for any nonempty subset Σ ′′
o of Σ ′

o, L is not
diagnosable with respect to projection P ′′

o : Σ∗
→ Σ ′′∗

o and
Σf = {σf } then Σ ′

o is a minimal diagnosis basis.

According to Definition 2, the sets that are diagnosis bases ensure
diagnosability of L and thus use the redundancy of the events in
Σo \Σ ′

o to provide some robustness to the diagnosing system. This
leads to the definition of robust diagnosability against permanent
loss of observations.

Definition 3 (Robust Diagnosability Against Permanent Loss of
Observations). Let Σdb = {Σo1 , Σo2 , . . . , Σom}, where Σoi , i =

1, 2, . . . ,m are either minimal or nonminimal diagnosis bases for
L. Define the set

Σrob = {Σuo1 , Σuo2 , . . . , Σuom}, (2)

where

Σuoi = Σo \ Σoi , i = 1, 2, . . . ,m. (3)

Then L is robustly diagnosable with respect to projections
Po1 , Po2 , . . . , Pom , where Poi : Σ∗

→ Σ∗
oi , and Σf = {σf }, or

equivalently, with respect to permanent loss of observation of the
events of all sets Σuoi , i = 1, 2, . . . ,m, and Σf = {σf }, if the
following condition holds true:

(∃n ∈ N)(∀s ∈ Ψ (Σf ))(∀t ∈ L/s)
(∥t∥ ≥ n ⇒ RD),

(4)

where the robust diagnosability condition RD is given as

(∀i, j ∈ {1, 2, . . . ,m}, i ≠ j)
(@ωj ∈ L) [Σf ∉ ωj ∧ Poi(st) = Poj(wj)].

The idea behind Definition 3 is that since L is diagnosable with
respect to Poi : Σ∗

→ Σ∗
oi , and Σf = {σf }, and assuming

that all partial diagnosers for Σok , k = 1, 2, . . . ,m are running
simultaneously and have access to all available sensors, any partial
diagnoser, say Σoi , only performs properly if all events in Σuoi
become unobservable, i.e., observation of all events in Σuoi is lost.
In this case, while some partial diagnosers may get stuck, others
may continue running, since it is possible that the intersections
of the languages generated by two different partial diagnosers be
nonempty. This implies that it is possible that an arbitrarily long

trace sY that contains the fault event has the same projection over,
say Σ∗

oi and Σ∗
oj , where the former takes Gdi to a certain state

whereas the latter takesGdj to a normal state. In this case, according
toDefinition 3, L is not robustly diagnosable against permanent loss
of observation of the events in Σuoi and Σuoj .

Example 1. Let us consider automaton G whose state transition
diagram is shown in Fig. 1(a) and the following subsets of the set
of observable events of G: Σo1 = {a, d, e} and Σo2 = {c, d, e}. The
partial diagnosers Gd1({b, c}) and Gd2({a, b}) that observe Σo1 and
Σo2 are shown in Fig. 2(a) and (b), respectively. We can therefore
conclude that L (the language generated by G) is diagnosable with
respect toΣf , Po1 and Po2 . Consider now the following traces: sY =

cσf bdn and sN = abdn. It is clear that if trace sY occurs, both
diagnosers will, in the end, be at the certain state {4Y }, indicating
that the fault event σf has occurred. Similarly, if trace sN occurs,
then both diagnosers will end up at state {6N}, indicating that the
fault has not occurred. However, since Po1(sY ) = Po2(sN) = dn then
when both partial diagnosers work concurrently and assuming
that sensors may fail, it is not possible to state that either trace sY
occurred and sensors b and c have failed or trace sN occurred and
sensors a and b have failed. Therefore, L is not robustly diagnosable
with respect to projections Po1 , Po2 and Σf or, equivalently, with
respect to permanent loss of observation of all events in Σuo1 =

{b, c}, Σuo2 = {a, b} and Σf . �

In summary, Definition 3 ensures that if a fault occurs, all partial
diagnosers that are still runningwill eventually agree, i.e., theywill
all be in certain states, ensuring the unambiguous detection of the
fault.

4. Verification of robust diagnosability against loss of observa-
tions using verifiers

Verification of language diagnosability can be performed in
polynomial time in the number of states and events of the system
by using verifiers (Jiang, Huang, Chandra, & Kumar, 2001; Moreira,
Jesus, & Basilio, 2010, 2011; Qiu & Kumar, 2006; Yoo & Lafortune,
2002), in contrast to the construction of diagnosers that has worst-
case exponential time in the number of states of the system. In
this section, we will develop a test for robust diagnosability with
respect to permanent loss of observations using suitably-defined
verifier automata.

Let us split the nominal automaton G into several automata,
each one having as observable events a diagnosis bases. Let

Σdb = {Σo1 , Σo2 , . . . , Σom},

denote a set of diagnosis bases, where Σoi , i = 1, 2, . . . ,m is
either a minimal or a nonminimal diagnosis basis for L. Consider
the following renaming of events, which is used in Moreira et al.
(2010, 2011):

Ri(σ ) =


σ , if σ ∈ Σoi ∪ Σf
σRi , if σ ∈ (Σuo \ Σf ) ∪ Σuoi ,

(5)

where Σuoi is defined according to Eq. (3). Notice that Ri only
renames events in (Σuo \ Σf ) ∪ Σuoi . The domain of Ri can be
extended to Σ∗ as follows: (i) Ri(ε) = ε; and (ii) Ri(sσ) =

Ri(s)Ri(σ ), ∀s ∈ Σ∗ and ∀σ ∈ Σ . Similarly, Ri can be extended
to languages L ⊆ Σ∗ by applying Eq. (5) to all traces of L.

Denoting

ΣRi = Σoi ∪ Σf ∪ {σRi : (∃σ ∈ (Σuo \ Σf ) ∪ Σuoi)

[σRi = Ri(σ )]}, (6)

then we can define the inverse renaming function R−1
i , as follows:

R−1
i : ΣRi → Σ

σRi → σ : σRi = Ri(σ ).
(7)
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a

b

Fig. 2. Gd1 ({b, c}) (a) and Gd2 ({a, b}) (b).

As for Ri, we can extend R−1
i to domain Σ∗

Ri
, as follows: (i) R−1

i

(sRiσRi) = R−1
i (sRi)R

−1
i (σRi) for all sRi ∈ Σ∗

Ri
and σRi ∈ ΣRi ; and

(ii) R−1
i (ε) = ε.

Let us define

Σdb,o =

m
i=1

Σoi , (8)

and assume that Gi denotes an automaton whose generated
language is Li = Ri(L). A verifier to check robust diagnosability
with respect to permanent loss of observations can be constructed
according to the following algorithm.

Algorithm 1 (Robust Diagnosability Verification).

Step 1 Build the set of automata Gi = (X, ΣRi , fi, Γi, x0), i =

1, 2, . . . ,m, where ΣRi is defined in Eq. (6), Γi(x) =

Ri[Γ (x)], and fi(x, Ri(σ )) = f (x, σ ) for all x ∈ X and
σ ∈ Γ (x).

Step 2 Build the set of automata GFi , i = 1, 2, . . . ,m where each
GFi models the failure behavior of Gi, as follows:
• Step 2.1. Construct label automaton Aℓ = (Xℓ, Σf , fℓ,

x0,ℓ), where Xℓ = {N, Y }, x0,ℓ = {N}, fℓ(N, σf ) = Y and
fℓ(Y , σf ) = Y , for all σf ∈ Σf .

• Step 2.2. Compute Gℓi = Gi ∥ Aℓ, i = 1, 2, . . . ,m, and
mark all states of Gℓi whose second component is Y .

• Step 2.3. Obtain the failure automatonGFi = CoAc(Gℓi) =

(XFi , ΣRi , fFi , x0,Fi), i = 1, 2, . . . ,m, where CoAc(Gℓi)
denotes the coaccessible part of automaton Gℓi , i.e., the
automaton whose states are all coaccessible.3

• Step 2.4. Redefine the event set ofGFi asΣFi = ΣRi∪Σdb,o.
• Step 2.5. Unmark all marked states of GFi .

Step 3 Build the set of normal behavior automata GNi , i =

1, 2, . . . ,m, as follows:
• Step 3.1. Define ΣANi

= ΣRi \ Σf , and construct
automaton ANi = ({N}, ΣANi

, fANi , ΣANi
,N), composed of

a single state N with a self-loop labeled with all events in
ΣRi except the fault event.

• Step 3.2. Construct the nonfailure automaton GNi = Gi ×

ANi = (XNi , ΣRi , fNi , ΓNi , x0,Ni).
• Step 3.3. Redefine the event set of GNi as ΣNi = (ΣRi \

Σf ) ∪ Σdb,o.
Step 4 For each pair (i, j), i, j = 1, 2, . . . ,m, j ≠ i, construct the

verifier automaton

GVij = GFi ∥ GNj

whose states are of the form

xVij = (xFi , xNj),

where xFi and xNj are states of GFi and GNj , respectively, and
xFi = (x, xℓ) where x ∈ X and xℓ ∈ {N, Y }.

Step 5 Test for the existence of a cyclic path

cl = (xkVij , σk, xk+1
Vij

, σk+1, . . . , σl, xlVij),

where l ≥ k > 0, in at least one verifier GVij , for i, j =

1, , 2, . . . ,m, j ≠ i, satisfying the following conditions:

∃q ∈ {k, k + 1, . . . , l} s.t. (xqℓ = Y ) ∧ (σq ∈ ΣRi).

If such a cl exists, then L is not robustly diagnosable with
respect to projections Poi and Poj , and Σf . Otherwise, L is
robustly diagnosable. �

Remark 1. According to Steps 2 and 3 of Algorithm 1, the event
sets of GFi and GNj are given as ΣRi ∪ Σdb,o and (ΣRj \ Σf ) ∪ Σdb,o,
respectively. Thus, the renamed events of ΣRi and ΣRj are private
events of GFi and GNj , respectively, whereas the events in Σdb,o
belong to both automata. However, since the event traces of GFi
belong to Σ∗

Ri
and the traces of GNj belong to (ΣRj \ Σf )

∗ and
GVij = GFi ∥ GNj , then an event σ ∈ Σdb,o belongs to a trace
s ∈ L(GVij), if and only if σ ∈ Σoi ∩ Σoj . �

We now present the correctness proof of Algorithm 1.

Theorem 1. L is not robustly diagnosable with respect to projections
Poi , i = 1, 2, . . . ,m, and Σf if and only if there exists a cyclic path

cl = (xkVij , σk, xk+1
Vij

, σk+1, . . . , σl, xlVij),

where l ≥ k > 0, in some verifier GVij , i, j ∈ Im := {1, 2, . . . ,m}, j ≠

i, satisfying the following conditions:

∃q ∈ {k, k + 1, . . . , l} : (xVij = ((xq, Y ), xNj)) ∧ (σq ∈ ΣRi), (9)

where (xq, Y ) and xNj are states of GFi and GNj , respectively.
Proof. (⇐H) Let us assume that there exists a cyclic path cl =

(xkVij , σk, xk+1
Vij

, σk+1, . . . , σl, xlVij), where l ≥ k > 0, in verifier
GVij satisfying condition (9). Since xqFi = (xq, Y ) for some q ∈

{k, k + 1, . . . , l}, then, from the construction of GVij it can be seen

3 A state x of an automaton G = (X, Σ, f , Γ , x0, Xm) is coacessible if there exists
a trace s ∈ Σ∗ such that f (x, s) ∈ Xm .
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that xqFi = (xq, Y ) for all q ∈ {k, k+1, . . . , l}. This implies that there
exists a trace s′t ′ ∈ L(GVij), such that s′ contains the fault event, and
t ′ = (σkσk+1 . . . σl)

p, p ∈ N, where |t ′| > n, ∀n ∈ N.
Define now the following projection operations:

PFi : ΣFi ∪ ΣNj → ΣFi ,

PNj : ΣFi ∪ ΣNj → ΣNj ,

P : ΣFi ∪ ΣNj → Σoi ∩ Σoj ,

Pi : ΣRi → Σoi ,

Pj : ΣRj → Σoj .

Notice that Pi and Pj become, respectively, equivalent to Poi and Poj
if the renaming is removed.

Since GVij = GFi ∥ GNj , thenL(GVij) = P−1
Fi

[L(GFi)]∩P−1
Nj

[L(GNj)],

which implies that s′t ′ ∈ P−1
Fi

[L(GFi)]. Let s̃t̃ = PFi(s
′t ′), where

s̃ = PFi(s
′) and t̃ = PFi(t

′). Thus, since PFi

P−1
Fi

(L(GFi))


= L(GFi),

then s̃t̃ ∈ L(GFi). In addition, since t ′ = (σkσk+1 . . . σl)
p, where

|t ′| > n, ∀n ∈ N, and, by assumption, there exists an event
σq ∈ ΣRi for q ∈ {k, k + 1, . . . , l} and ΣRi ⊂ ΣFi , then the
event sequence t̃ = PFi(t

′) also has arbitrarily long length, which
implies that s̃t̃ ∈ L(GFi) also has arbitrarily long length after the
occurrence of the fault event σf . Notice that Gi is obtained from G
after renaming the event set Σ as ΣRi . Thus, there exists a fault
trace st of arbitrarily long length after a fault event σf ∈ Σf , such
that Poi(st) = Pi(s̃t̃).

Let w̃ = PNj(s
′t ′). Since s′t ′ ∈ L(GVij), then s′t ′ ∈ P−1

Nj
[L(GNj)].

In addition, PNj [P
−1
Nj

(L(GNj))] = L(GNj), which implies that w̃ ∈

L(GNj). Notice that Gj is obtained from G after renaming the events
of Σ according to function Rj. Thus, there exists a trace w ∈ L(G),
where Σf ∉ w, such that Poj(w) = Pj(w̃).

To conclude the proof, notice that

P(s̃t̃) = P[PFi(s
′t ′)] = PFi [P(s′t ′)] = P(s′t ′),

and

P(w̃) = P[PNj(s
′t ′)] = PNj [P(s′t ′)] = P(s′t ′),

and thus, P(s̃t̃) = P(w̃). According to Remark 1, an event σ ∈ Σdb,o
belongs to s′t ′ if and only if σ ∈ Σoi ∩Σoj . Therefore, P(s̃t̃) = Pi(s̃t̃)
and P(w̃) = Pj(w̃), which implies that there exists a trace st ∈ L(G)
of arbitrarily long length after the occurrence of the fault event and
a nonfaulty tracew ∈ L(G), such that Poi(st) = Poj(w). Thus, robust
diagnosability is violated.

(H⇒) Suppose now that L is not robustly diagnosable with
respect to Poi , i = 1, 2, . . . ,m, and Σf . Thus, there exists a trace
s̃t̃ ∈ L(GFi), where σf ∈ s̃ and |t̃| > n, ∀n ∈ N, and w̃ ∈ L(GNj),
such that Pi(s̃t̃) = Pj(w̃), which implies that the observable events
in s̃t̃ must all belong toΣoi ∩Σoj . Wewill show that GVij has a cyclic
path that satisfies condition (9), and for this purpose, we split the
proof in two parts, as follows:

Part I. We show that there exists an arbitrarily long length trace
s′t ′ ∈ L(GVij) such that PFi(s

′t ′) = s̃t̃ and PNj(s
′t ′) = w̃;

Part II. We prove that there exists a cyclic path cl, associated with
trace s′t ′, satisfying condition (9).

In order to prove part I, let us suppose that there exists a state
in GVij , xVij = (xFi , xNj), reachable from the initial state x0,Vij after
the execution of a trace u ∈ L(GVij), where PFi(u) is in the prefix-
closure of s̃t̃ . Notice that this state xVij always exists since u can be
the empty trace and, in such a case, xVij = x0,Vij . Now, let σq ∈ ΣRi

be a feasible event of xFi , such that PFi(u)σq ∈ {s̃t̃}, and consider the
problem of finding a state of GVij , x̂Vij , reachable from xVij , that has
σq as a feasible event. Two cases are possible:

Table 1
Computational complexity of Algorithm 1.

Aut. Number of states Number of transitions

Gi |X | |X ||Σ |

Al 2 2
Gli 2|X | 2|X ||Σ |

GFi 2|X | 2|X ||Σ |

ANi 1 |Σ | − |Σf |

GNi |X | |X |(|Σ | − |Σf |)

GVij 2|X |
2 2|X |

2
[2(|Σ |−|Σf |)+|Σf |]

Computational complexity O(m2
|X |

2
|Σ |)

(a) σq is an observable event of ΣRi ∩ ΣRj ;
(b) σq is an unobservable event of ΣRi ; notice that in this case σq

cannot be a renamed event of ΣRj .

Let us first consider case (a). In this case, σq will be a feasible event
of xVij if and only if it is feasible for the corresponding state of GNj .
Since Pi(s̃t̃) = Pj(w̃), then σq will be feasible for some state of
GVij , x̂Vij = (xFi , x̂Nj), after the occurrence of a finite trace from
(ΣRj \Σoj)

∗. Consider now case (b), i.e., σq ∈ ΣRi \Σoi . In this case,
since self-loops labeledwith all events in the setΣRi\Σoi are added
to each state of GNj in order to form the parallel composition GVij =

GFi ∥ GNj , we may conclude that σq is already feasible for xVij =

(xFi , xNj). Therefore, it can be seen that there exists an arbitrarily
long trace s′t ′ associated with s̃t̃ such that s′t ′ ∈ P−1

Fi
(s̃t̃)∩ P−1

Nj
(w̃),

which implies that PFi(s
′t ′) = s̃t̃ and PNj(s

′t ′) = w̃.
In order to prove part II, i.e., that there exists a cyclic path cl

in GVij whose first components of its states are faulty states and
at least one of the events of the cyclic path belongs to ΣRi , let us
assume, without loss of generality, that s̃ = PFi(s

′) and t̃ = PFi(t
′).

Therefore, t ′ is also an arbitrarily long trace of L(GVij). Notice that
since GVij is a finite state automaton, t ′ must be associated with a
cyclic path cl of GVij whose first components are faulty states. Any
cyclic path cl in GVij must satisfy one of the following three cases:

(i) cl is associated with two cyclic paths, one in GFi and another
one in GNj ;

(ii) cl is associated with a cyclic path in GFi only, i.e., with no cyclic
path in GNj ;

(iii) cl is associatedwith a cyclic path inGNj only, i.e., with no cyclic
path in GFi .

If condition (iii) holds true, then all states of cl will have the same
first component xFi ∈ XFi . Therefore @σq ∈ ΣRi such that σq is an
event of the cyclic path cl, which contradicts part I of the proof. On
the other hand, when either condition (i) or (ii) holds true, then, as
shown in the above proof of part I, ∃σq ∈ ΣRi in the cyclic path cl,
which concludes the proof. �

4.1. Computational complexity of Algorithm 1

Table 1 shows themaximumnumber of states and transitions of
all automata that must be computed in order to obtain the verifier
automaton GVij according to Algorithm 1 assuming that there are
m diagnosis bases, or equivalently,mmodels Gi for G.

In the first step of Algorithm 1, we build automaton Gi. Since
Gi is the same as G except for the renaming of the events in Σuoi ,
the number of states and transitions in Gi are equal to those of
G. In the second step of Algorithm 1, we construct automaton
GFi . In order to do so, it is first necessary to build automaton Aℓ,
which has two states, N and Y , and whose transitions are labeled
with the fault events, and, after that, we obtain Gℓi = Gi ∥ Aℓ.
Notice that the states of Gℓi are either (x,N) or (x, Y ), where
x ∈ X . Therefore, the maximum number of states of Gℓi is 2|X |.
Finally, since GFi is formed by taking the coaccessible part of Gℓi ,
the maximum number of states and transitions of GFi are equal to
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2|X | and 2|X ||Σ |, respectively. In step 3, a single state automaton
ANi , whose unique state has a self-loop labeled with all events in
ΣRi \ Σf is used to obtain the normal behavior automaton GNi =

Gi ×ANi . Therefore, themaximum number of states and transitions
of GNi are |X | and |X |(|Σ | − |Σf |), respectively. In step 4, verifier
GVij is obtained by performing the parallel composition of GFi and
GNj , i ≠ j. Therefore, in the worst case, the number of states and
transitions of GVij are equal to 2|X |

2 and 2|X |
2
[2(|Σ | − |Σf |) +

|Σf |], respectively. Finally, the test in step 5 can be done for each
verifier by first finding its strongly connected components, which
has linear complexity in the number of states plus transitions,
and then by examining each state within each strongly connected
component, together with the active event set of the state, to
determine if the condition in Eq. (9) holds true or not. Thus, step
5 is linear in the size of each GVij . Since a total ofm(m−1) verifiers
need to be constructed, the overall computational complexity of
Algorithm 1 is O(m2

|X |
2
|Σ |).

Remark 2. Instead of buildingm(m − 1) verifiers GVij , as required
by Algorithm 1, we could build m verifiers by performing for
each one the parallel composition between GFi and Ga

Nj
, j =

1, 2, . . . ,m, j ≠ i, as proposed in Carvalho, Moreira, and
Basilio (2011), where Ga

Nj
is the augmented automaton obtained

from GNj by adding a dump state and completing the transition
function with respect to Σo. The computation of all verifiers
according to Carvalho et al. (2011) is also polynomial time, having
worst-case computational complexity of O(m2

|X |
m
|Σ |). Since the

computational complexity for constructing all verifiers according
to Algorithm 1 is O(m2

|X |
2
|Σ |), when the number of diagnosis

bases is greater than 2, the verification algorithm proposed here
outperforms that proposed in Carvalho et al. (2011). �

Example 2. Consider again automaton G of Fig. 1(a), where Σ =

{a, b, c, d, e, σf } and Σo = {a, b, c, d, e}. Following the algorithm
proposed in Basilio et al. (2012), we find the following diagnosis
bases for L:

Σdb = {{a, b, c}, {c, d, e}, {a, c, d}, {a, d, e}, {a, b, e},
{b, c, e}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e},
{a, c, d, e}, {b, c, d, e}, Σo}. (10)

Let Σoi , i = 1, 2, . . . , 12, denote each element of Σdb in the
order listed above; for instance Σo3 = {a, c, d} and Σo6 =

{b, c, e}. According to Algorithm 1, the verification of the robust
diagnosability of L with respect to Poi and Σf for all Σoi ∈ Σdb is
carried out by finding verifiersGVij , i, j = 1, 2, . . . , 12, j ≠ i. In this
example we will construct only four verifiers: GV1,2 ,GV4,2 ,GV5,6 ,
and GV9,11 ; verifier GV1,2 will be used to illustrate the use of
Algorithm 1 and the other verifiers will be used to show the action
to be taken when the language is not robustly diagnosable.

Let us consider the construction of verifier GV1,2 = GF1 ∥ GN2 .
According to Algorithm 1, we must, initially, construct renamed
automata G1 and G2, which are depicted in Fig. 3, by renaming the
events of G that belong to Σuo1 and Σuo2 , respectively. Notice that
events d and e are renamed as dR1 and eR1 , in automaton G1, and
event a and b as aR2 and bR2 in G2. The next step of Algorithm 1 is
to build from G1 the faulty behavior automaton GF1 , whose state
transition diagram is depicted in Fig. 4(a). Notice that, as defined
in step 1 of Algorithm 1, ΣR1 = R1(Σ) = {a, b, c, dR1 , eR1 , σf }, and
thus, according to Eq. (8), Σdb,o = ∪

12
i=1 Σoi = {a, b, c, d, e} and

ΣF1 = {a, b, c, d, e, dR1 , eR1 , σf }. Continuing to run Algorithm 1,
wemust now obtain from G2, the normal behavior automaton GN2 ,
which is shown in Fig. 4(b). Notice thatΣN2 = (Σ2∪Σdb,o)\{σf } =

{a, b, c, d, e, aR2 , bR2}. Finally, we build verifier automaton GV1,2 ,
which is computed by performing the parallel composition ofGF1 ∥

a b

Fig. 3. Automaton G1 (a); Automaton G2 (b).

a b

Fig. 4. Automaton GF1 (a) and automaton GN2 (b).

Fig. 5. Verifier automaton GV1,2 .

GN2 . From the state transition diagram of GV1,2 , shown in Fig. 5, we
can see that GV1,2 has no cyclic path that satisfies condition (9).

Fig. 6(a)–(c) show the state transition diagrams of verifiers
GV4,2 ,GV5,6 and GV9,11 , respectively. Notice that they all have cyclic
paths that satisfy condition (9), and therefore L is not robust
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a b c

Fig. 6. Verifier automata GV4,2 (a), GV5,6 (b) and GV9,11 (c).

diagnosable with respect to Poi , i = 1, 2, . . . ,m and Σf . As a
consequence, there exist two traces, sY = cσf bdn and sN =

abdn, whose projections over {a, b, e}∗ and {b, c, e}∗ are both
equal to b, where the faulty trace (the trace that contains event
σf ) is arbitrarily long after the fault occurrence, and the normal
trace (the trace that has no faulty event) can be made either
finite length (when n = 0) or be arbitrarily long (for n > 1).
In other words, it is not possible to state that either trace sY
occurred and sensors c and d failed or trace sN occurred and
sensors a and d failed. It is worth remarking that these are the
only verifiers that have cyclic paths that satisfy condition (9).
Notice that verifier GV4,2 has the cyclic path (4Y6N, d, 4Y6N),
which implies that we can find two traces, one arbitrarily long
faulty trace sF4 = cR4σf bR4d

n, n ≥ 1, in L(GF4) and a normal
trace sN2 = aR2bR2d

m,m ∈ N, in L(GN2). After applying the
inverse renaming function (7) to these two traces, we obtain traces
s4 = cσf bdn and w2 = abdm, for which Po4(s4) = Po2(w2) =

dn, which violates the robust diagnosability condition given in
Definition 3. In addition, an inspection of verifier GV5,6 reveals
that cyclic paths (4Y6N; dR5; 4Y6N) and (4Y6N; dR6; 4Y6N) are
formed with renamed events, which is due to the fact that
event d is an unobservable event for both diagnosis bases Σo5
and Σo6 .

5. Online implementation of robust diagnosers

A robust diagnoser that copes with permanent loss of observa-
tion of the events in any of the sets Σuoi , or simply, robust diag-
noser, is a diagnoser that is able to diagnose a fault and satisfies
the conditions imposed by Definition 3. With the view to perform-
ing online diagnosiswe could deploy the union diagnoser proposed
in Lima et al. (2010). However, in order to overcome the poten-
tial state space explosion of union diagnosers, we propose here
a different scheme in which all partial diagnosers run in parallel.
Starting at their initial states and after the occurrence of the first
observable event, those partial diagnosers whose current active
event sets contain the event that has just occurred move to their
respective next state; all the other partial diagnosers are discarded
since they are unable to process the current observation. The above
process is repeated after each observable event. The definition of

robust diagnosability guarantees that after a bounded number of
events following the fault, all remaining partial diagnosers that
have not been discardedwill have reached a certain state, and thus
will agree on the diagnosis of the fault.

Example 3. Let us consider again the robust diagnosis problem
addressed in Example 2. Notice that, in verifier automata GV4,2 (a),
GV5,6 (b) and GV9,11 (c) the paths that lead to the N components in
the cyclic path that lead to violation of robust diagnosability are
those formed with the following diagnosis bases:

ΣN = {{b, c, d, e}, {c, d, e}, {b, c, e}}.

If we remove the event sets of ΣN from Σdb given in Eq. (10), then
L becomes robustly diagnosable with respect to Poi : Σ∗

→ Σ∗
oi ,

and Σf = {σf }, where Σoi ∈ Σdb,rob, and

Σdb,rob = Σdb \ ΣN = {{a, b, c}, {a, c, d}, {a, d, e},
{a, b, e}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e},
{a, c, d, e}, Σo},

or equivalently, with respect to permanent loss of observation of
the events of all sets Σuoi ∈ Σrob, i = 1, 2, . . . ,m, where

Σrob = {{d, e}, {b, e}, {b, c}, {c, d}, {e}, {d}, {c}, {b}, ∅}.

The robust diagnoser operates by running independently seven
partial diagnosers, Gdi , i = 1, 2, . . . , 7, whose corresponding
observable event setsΣoi , i = 1, 2, . . . , 7, are the first seven event
sets of Σdb,rob and the last one is the centralized diagnoser, i.e.,
the one whose observable event set is Σo. To illustrate the robust
diagnnoser operation, assume that trace sY = cσf aen, n ∈ N,
occurs and that event c fails to be permanently observed prior to
its first occurrence. Since {c} ∈ Σrob, then the robust diagnoser
must be able to diagnose the occurrence of σf in spite of the loss
of observation of c . Notice that the first event occurrence to be
recognized by the robust diagnoser is a. As seen in the first row of
Table 2, all partial diagnosers move to another state; notice that
Gd1 ,Gd5 ,Gd6 and Gd give wrong information regarding the fault
occurrence whereas the others are in uncertain states. After the
first occurrence of event e only diagnosers Gd3 and Gd4 move to
their next states; all the others get stuck and should be discarded,
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Table 2
Operation of the robust diagnoser after the occurrence of trace sY = cσf aen(n ∈ N)

assuming permanent loss of observations of event c.

Event Gd1 Gd2 Gd3 Gd4 Gd5 Gd6 Gd7 Gd

a ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

5N 5N, 6N 7Y , 5N, 6N 7Y , 5N 5N 5N 5N, 6N 5N

e × × ✓ ✓ × × × ×

7Y 7Y

e × × ✓ × × × × ×

7Y

as shown in the second line of Table 2. After the next occurrences of
event e, the only diagnoser that continues to run is Gd3 , and, since
it loops in a certain state, we may say that the robust diagnoser
succeeded in diagnosing the fault occurrence.

6. Conclusion

We have considered in this paper the problem of making fault
diagnosis systems resilient to potential loss of observations due
to unknown and permanent sensor failures when a partially-
observed discrete-event system is turned on. Robustness to
potential loss of observations is achieved by exploiting the
redundancy that may exist in the sensors, as captured by the
notions of diagnosis bases and redundant event sets. We present
a methodology for testing robust diagnosability based on the use
of verifiers. We also propose the use of a set of partial diagnosers
to perform online diagnosis, where each partial diagnoser is built
assuming the loss of a set of redundant events. The concepts and
techniques introduced in this paper contribute to the development
of fault-tolerant diagnostic and control architectures.

References

Athanasopoulou, E., Lingxi, L., & Hadjicostis, C. (2010). Maximum likelihood
failure diagnosis in finite state machines under unreliable observations. IEEE
Transactions on Automatic Control, 55(3), 579–593.

Basilio, J.C., & Lafortune, S. (2009). Robust codiagnosability of discrete event
systems. In Proc. of the American control conference. St. Louis, Missouri
(pp. 2202–2209).

Basilio, J. C., Lima, S. T. S., Lafortune, S., & Moreira, M. V. (2012). Computation of
minimal event bases that ensure diagnosability.Discrete Event Dynamic Systems:
Theory and Applications, 22(3), 249–292.

Boel, R.K., & van Schuppen, J.H. (2002). Decentralized failure diagnosis for discrete-
event systems with costly communication between diagnosers. In Proc. of
the 2002 international workshop on discrete event systems. Zaragoza, Spain
(pp. 175–181).

Carvalho, L.K., Basilio, J.C., & Moreira, M.V. (2010). Robust diagnosability of discrete
event systems subject to intermittent sensor failures. In Proc. of the 10th
international workshop on discrete event systems. Berlin, Germany (pp. 94–99).

Carvalho, L. K., Basilio, J. C., & Moreira, M. V. (2012). Robust diagnosis of discrete
event systems against intermittent loss of observations. Automatica, 48(9),
2068–2078.

Carvalho, L.K., Moreira,M.V., & Basilio, J.C. (2011). Generalized robust diagnosability
of discrete event systems. In Proc. of 18th IFAC world congress. Milan, Italy
(pp. 8737–8742).

Cassandras, C. G., & Lafortune, S. (2008). Introduction to discrete event systems (2nd
ed.). New York: Springer.

Contant, O., Lafortune, S., & Teneketzis, D. (2006). Diagnosability of discrete event
systems with modular structure. Discrete Event Dynamic Systems: Theory And
Applications, 16(1), 9–37.

Debouk, R., Lafortune, S., & Teneketzis, D. (2000). Coordinated decentralized
protocols for failure diagnosis of discrete event systems. Discrete Event Dynamic
Systems: Theory and Applications, 10(1–2), 33–86.

Genc, S. (2008). Formal methods for intrusion detection of windows NT attacks. In
Proc. of 3rd annual symposium on information assurance & 11th annual NYS cyber
security conference, vol. 1 (pp. 71–79).

Jéron, T., Marchand, H., Pinchinat, S., & Cordier, M.-O. (2006). Supervision patterns
in discrete event systems diagnosis. In Proc. of 8th international workshop on
discrete event systems. Ann Arbor, MI (pp. 262–268).

Jiang, S., Huang, Z., Chandra, V., & Kumar, R. (2001). A polynomial algorithm for
testing diagnosability of discrete-event systems. IEEE Transactions on Automatic
Control, 46(8), 1318–1321.

Kumar, R., & Takai, S. (2009). Inference-based ambiguity management in
decentralized decision-making: Decentralized diagnosis of discrete-event
systems. IEEE Transactions on Automation Science and Engineering , 6(3),
479–491.

Lima, S.T.S., Basilio, J.C., Lafortune, S., & Moreira, M.V. (2010). Robust diagnosability
of discrete event systems subject to permanent sensor failures. In Proc. of
the 10th international workshop on discrete event systems. Berlin, Germany
(pp. 100–107).

Lin, F. (1994). Diagnosability of discrete event systems and its applications. Discrete
Event Dynamic Systems: Theory and Applications, 4, 197–212.

Lunze, J., & Schröder, J. (2004). Sensor and actuator fault diagnosis of systems with
discrete inputs and outputs. IEEE Transactions on Systems, Man and Cybernetics.
Part B: Cybernetics, 34(2), 1096–1107.

Moreira, M.V., Jesus, T.C., & Basilio, J.C. (2010). Polynomial time verification of
decentralized diagnosability of discrete event systems. In Proc. of the 2010
American control conference (pp. 3353–3358).

Moreira, M. V., Jesus, T. C., & Basilio, J. C. (2011). Polynomial time verification of
decentralized diagnosability of discrete event systems. IEEE Transactions on
Automatic Control, 56(7), 1679–1684.

Pencolé, Y., & Cordier, M. O. (2005). A formal framework for the decentralized
diagnosis of large scale discrete event systems and its applications to
telecommunication networks. Artificial Intelligence, 164(1-2), 121–170.

Qiu, W., & Kumar, R. (2006). Decentralized failure diagnosis of discrete event
systems. IEEE Transactions on Systems, Man and Cybernetics, Part A, 36(2),
384–395.

Rohloff, K.R. (2005). Sensor failure tolerant supervisory control. In Proc. of joint 2005
European control conference and 44th IEEE conference on decision and control.
Seville, Spain (pp. 3493–3498).

Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., & Teneketzis, D.
(1995). Diagnosability of discrete-event systems. IEEE Transactions on Automatic
Control, 40(9), 1555–1575.

Sanchez, A. M., & Montoya, F. J. (2006). Safe supervisory control under observability
failure.Discrete Event Dynamic Systems: Theory and Applications, 16(4), 493–525.

Takai, S. (2010). Robust failure diagnosis of partially observed discrete event
systems. In Preprints of 10th international workshop on discrete event systems.
Berlin, Germany (pp. 215–220).

Takai, S. (2012). Verification of robust diagnosability for partially observed discrete
event systems. Automatica, 48(8), 1913–1919.

Thorsley, D., & Teneketzis, D. (2005). Diagnosability of stochastic discrete-event
systems. IEEE Transactions on Automatic Control, 50(4), 476–492.

Thorsley, D., Yoo, T.-S., & Garcia, H. (2008). Diagnosability of stochastic discrete-
event systems under unreliable observations. In Proc. of the 2008 American
control conference. Seattle, WA (pp. 1158–1365).

Tripakis, S. (2002). Fault diagnosis for timed automata. InW. Damm, & E.-R. Olderog
(Eds.), Lecture notes in computer sciences: vol. 2469. Formal techniques in real time
and fault tolerant systems (pp. 205–221). Springer-Verlag.

Wang, Y., Yoo, T. S., & Lafortune, S. (2007). Diagnosis of discrete event systems
using decentralized architectures. Discrete Event Dynamic Systems: Theory And
Applications, 17(2), 233–263.

Ye, L., Dague, P., & Yan, Y. (2009). An incremental approach for pattern diagnosability
in distributed discrete event systems. In Proc. of 21st international conference on
tools with artificial intelligence. Newark, NJ (pp. 123–130).

Yoo, T.-S., & Lafortune, S. (2002). Polynomial-time verification of diagnosability
of partially observed discrete-event systems. IEEE Transactions on Automatic
Control, 47(9), 1491–1495.

Zad, S. H., Kwong, R. H., & Wonham, W. M. (2003). Fault diagnosis in discrete-
event systems: framework andmodel reduction. IEEE Transactions on Automatic
Control, 48(7), 1199–1212.

Lilian Kawakami Carvalho was born on March, 11, 1979
in São Paulo, Brazil. She received the Electronic Engineer
degree, the M.Sc. degree and the D. Sc. degree in Control
from the Federal University of Rio de Janeiro, Rio de
Janeiro, Brazil, in 2003, 2005 and 2011, respectively.
Since 2011, she has been an Associate Professor at
the Department of Electrical Engineering at the Federal
University of Rio de Janeiro. Her main interests are fault
diagnosis of discrete-event systems, supervisory control
applied tomobile robotics, and the development of control
laboratory techniques.

Marcos VicenteMoreirawas born onMay, 11, 1976 in Rio
de Janeiro, Brazil. He received the Electrical Engineer de-
gree, theM.Sc. degree and the D. Sc. degree in Control from
the Federal University of Rio de Janeiro, Rio de Janeiro,
Brazil, in 2000, 2002 and 2006, respectively. Since 2007,
he has been an Associate Professor at the Department of
Electrical Engineering at the Federal University of Rio de
Janeiro. His main interests are multivariable control, ro-
bust control, discrete-event systems and the development
of control laboratory techniques.



Author's personal copy

L.K. Carvalho et al. / Automatica 49 (2013) 223–231 231

João Carlos Basiliowas born on March 15, 1962 in Juiz de
Fora, Brazil. He received the Electrical Engineering degree
in 1986 from the Federal University of Juiz de Fora, Juiz de
Fora, Brazil, the M.Sc. degree in Control from the Military
Institute of Engineering, Rio de Janeiro, Brazil, in 1989, and
the Ph.D. degree in Control fromOxfordUniversity, Oxford,
UK, in 1995. He began his career in 1990 as an Assistant
Lecturer at the Department of Electrical Engineering of the
Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,
and, since 2007, has been a Senior Associate Professor
in Control at the same department. He served as the

Academic Chair for the graduation course in Control and Automation from January,
2005, to December, 2006, and as the Chair for the Electrical Engineering Post-
graduation Program from January, 2008, to February, 2009. From September, 2007,
to December, 2008, he spent a sabbatical leave at the University of Michigan, Ann
Arbor. His is currently interested in discrete-event systems and in the development
of control and automation laboratories and new teaching techniques. Dr. Basilio is
the recipient of the Correia Lima Medal.

Stéphane Lafortune received the B.Eng. degree fromEcole
Polytechnique de Montréal in 1980, the M.Eng. degree
from McGill University in 1982, and the Ph.D. degree
from the University of California at Berkeley in 1986, all
in electrical engineering. Since September 1986, he has
been with the University of Michigan, Ann Arbor, where
he is a Professor of Electrical Engineering and Computer
Science. Dr. Lafortune is a Fellow of the IEEE (1999). He
received the Presidential Young Investigator Award from
the National Science Foundation in 1990 and the George
S. Axelby Outstanding Paper Award from the Control

Systems Society of the IEEE in 1994 (for a paper co-authored with S.L. Chung
and F. Lin) and in 2001 (for a paper co-authored with G. Barrett). Dr. Lafortune’s
research interests are in discrete event systems and include multiple problem
domains: modeling, diagnosis, control, optimization, and applications to computer
systems. He is the lead developer of the software package UMDES and co-developer
of DESUMA with L. Ricker. He co-authored, with C. Cassandras, the textbook
Introduction to Discrete Event Systems–Second Edition (Springer, 2008). Dr. Lafortune
is a member of the editorial boards of the Journal of Discrete Event Dynamic
Systems: Theory and Applications and of the International Journal of Control.


