
1 23

Discrete Event Dynamic Systems
Theory and Applications

ISSN 0924-6703
Volume 22
Number 3

Discrete Event Dyn Syst (2012)
22:249-292
DOI 10.1007/s10626-012-0129-z

Computation of minimal event bases that
ensure diagnosability

João Carlos Basilio, Saulo Telles Souza
Lima, Stéphane Lafortune & Marcos
Vicente Moreira

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.

Discrete Event Dyn Syst (2012) 22:249–292
DOI 10.1007/s10626-012-0129-z

Computation of minimal event bases that ensure
diagnosability

João Carlos Basilio · Saulo Telles Souza Lima ·
Stéphane Lafortune · Marcos Vicente Moreira

Received: 4 April 2011 / Accepted: 6 January 2012 / Published online: 29 January 2012
© Springer Science+Business Media, LLC 2012

Abstract We deal with the problem of finding sets of observable events (event bases)
that ensure language diagnosability of discrete-event systems modeled by finite state
automata. We propose a methodology to obtain such event bases by exploiting the
structure of the diagnoser automaton, and in particular of its indeterminate cycles.
We use partial diagnosers, test diagnosers, and other new constructs to develop rules
that guide the update of the observable event set towards achieving diagnosability.
The contribution of this paper is the description of such rules and their integration
into a set of algorithms that output minimal diagnosis bases.

Keywords Discrete event systems · Fault diagnosis · Sensor selection

1 Introduction

We study the sensor selection problem for ensuring the property of diagnosability
for discrete-event systems modeled by finite-state automata. The property of di-
agnosability refers to the ability to detect the occurrence of unobservable events,
such as faults, on the basis of observed traces of events and using model-based

J. C. Basilio (B) · S. T. S. Lima · M. V. Moreira
COPPE, Programa de Engenharia Elétrica, Universidade Federal do Rio de Janeiro,
21949-900, Rio de Janeiro, R.J, Brazil
e-mail: basilio@dee.ufrj.br

S. T. S. Lima
e-mail: saulotelles@poli.ufrj.br

M. V. Moreira
e-mail: moreira@dee.ufrj.br

S. Lafortune
Department of Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 48109, USA
e-mail: stephane@eecs.umich.edu

Author's personal copy

250 Discrete Event Dyn Syst (2012) 22:249–292

inferencing. Specifically, an unobservable event is diagnosable if every occurrence of
it can be detected, after a bounded number of events, by a diagnostic engine driven
by the observed events of the automaton; this property must hold over the entire
language generated by the automaton. The study of formal diagnosability properties
for discrete-event systems originated in the mid-1990s (see in particular Lin 1994;
Sampath et al. 1995). Since then, a large amount of literature has been published
on both theory and applications of diagnosability analysis; for a small sample of
this work, the reader is referred to Pandalai and Holloway (2000), Sampath (2001),
Sengupta (2001), Sinnamohideen (2001), Tripakis (2002), Boel and van Schuppen
(2002), Jiang and Kumar (2004), Lunze and Schroder (2004), Garcia and Yoo (2005),
Pencolé and Cordier (2005), Thorsley and Teneketzis (2005), Fabre et al. (2005),
Wang et al. (2007), Genc (2008), Jéron et al. (2008), Kumar and Takai (2009),
Cabasino et al. (2010), Haar (2010), and to the references contained therein.

The definition of diagnosability considered in this paper is the same as in Sampath
et al. (1995). Our focus is on the design of the set of observable events in order
to ensure that diagnosability holds. This falls in the category of sensor selection
problems. In contrast to recent work on dynamic sensor activation in diagnosis
problems (see, e.g., Thorsley and Teneketzis 2007, Cassez and Tripakis 2008, Wang
et al. 2010 and Dallal and Lafortune 2010), we consider the “static” sensor selection
problem, where the observability properties of an event are fixed over all system
trajectories. This problem has been considered in the past literature, primarily from
a computational viewpoint. In its simplest form, one needs to construct a set of
observable events of minimal cardinality such that diagnosability holds. A brute-
force approach to solving this problem involves testing the property of diagnosability
over all subsets of the set of potentially observable events, denoted by �o. It is
assumed that the system is diagnosable with �o. While the property of diagnosability
can be tested in polynomial time in the size of the automaton modeling the system
(see Jiang et al. 2001, Yoo and Lafortune 2002 and Moreira et al. 2011), the number
of subsets to consider grows exponentially with the cardinality of �o. In fact, it
was shown in Yoo and Lafortune (2002) that the corresponding decision problem
(“Does there exist a set of less than or equal to K observable events such that
the system is diagnosable?”) is NP-complete. To mitigate the computational efforts,
various approaches have been proposed that exploit a monotonicity property of
diagnosability in static sensor selection problems: If a system is diagnosable with
observable event set A, then it will also be diagnosable with observable event set
B ⊃ A; conversely, if it is not diagnosable with observable event set A, then it will not
be diagnosable with observable event set B ⊂ A. This property implies the existence
of minimal event sets that ensure diagnosability: A is such a minimal if the system
is diagnosable under A but not diagnosable under any B ⊂ A. The monotonicity
property is exploited in Jiang et al. (2003) to obtain a linear-time algorithm in
the cardinality of �o that results in a minimal observable event set (although not
necessarily of minimum cardinality), and in Debouk et al. (2002) in the context of a
stochastic version of the optimal sensor selection problem.

Our focus in this paper is on constructing minimal sets of observable events
that ensure diagnosability; we call such sets minimal diagnosis bases. We propose
a methodology for this construction that exploits structural properties of the system,
as captured in the transition structure of diagnoser automata. Diagnoser automata,
or simply diagnosers, are deterministic automata whose states are subsets of labeled

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 251

system states and whose events are the observable events of the system. The state
label captures the occurrence or non-occurrence, in reaching the state, of the events
to-be-diagnosed. For simplicity, and without loss of generality, we assume there is a
single event to diagnose, denoted by σ f ; in this case, the label can be either N (for
“no”) or Y (for “yes”). Diagnosers were first proposed in Sampath et al. (1995) for
testing the property of diagnosability. This test involves the detection of cycles that
satisfy certain specific properties; these cycles are called indeterminate cycles. By
examining the structure of the diagnoser, and in particular of its indeterminate cycles,
it is possible to discover rules that can guide the update of the observable event set
towards achieving diagnosability. The contribution of this paper is the discovery of
such rules and their integration into a set of algorithms that output minimal diagnosis
bases. To the best of our knowledge, these rules and associated algorithms are the
first of their kind in the study of diagnosability of discrete event systems modeled by
automata.

We note that the algorithms proposed in this paper output diagnosis bases and
their corresponding diagnosers as well. These diagnosers can then be deployed for
on-line diagnosis, as needed. If a brute force approach were employed to discover
(minimal) diagnosis bases, the search would be exponential in the cardinality of �o,
as mentioned above, and worst-case polynomial in the state space of the system (if
using verifiers) or worst-case exponential in the state space of the system (if using
diagnosers); in the former case, the construction of the diagnosers for the identified
diagnosis bases would be worst-case exponential in the state space of the system.
Since our algorithms employ diagnosers, they are also exponential in the state space
of the system, in the worst case. Our search over the subsets of �o is however guided
by structural properties, as captured in the constructed diagnoser automata. Instead
of exhaustively testing all subsets of �o, we will test potentially much fewer subsets,
but at the price of additional calculations for identifying “promising” subsets. These
additional calculations will be described in our technical development in Section 5.

Two types of diagnosers are defined and employed in this paper: partial diagnosers
and test diagnosers. Partial diagnosers are constructed using a proper subset of �o as
set of observable events, while test diagnosers are obtained by parallel composition
of partial diagnosers with the diagnoser corresponding to �o. Partial unfoldings of
these diagnosers are then built as trees and certain relevant paths in these trees,
called faulty paths and prime paths, are characterized. Candidates for diagnosis bases
are inferred from the tree built from the diagnoser for �o; we call such sets elementary
diagnosing event sets. The prime paths associated with the unfoldings are used to
identify candidate events for growing the elementary diagnosis event sets until a
minimal diagnosis basis is achieved. Our algorithms can be used to construct all
minimal diagnosis bases, if so desired. Unlike enumerative approaches that search
over all subsets of �o, our approach exploits the transition structure of the system.

This paper is organized as follows. Section 2 presents necessary background
on diagnosability. Section 3 discusses partial diagnosers and the notion of hidden
indeterminate cycles; a preliminary version of the results in this section appears in
Section III of Basilio and Lafortune (2009). Section 4 introduces the test diagnoser
and presents an algorithm for the computation of elementary diagnosing event sets.
The main algorithms for the construction of minimal diagnosis bases are developed
in Section 5. Rules guiding the selection of events to include as observable events
are demonstrated, based on tree unfoldings of the partial and test diagnosers and

Author's personal copy

252 Discrete Event Dyn Syst (2012) 22:249–292

associated prime paths. A brief conclusion follows in Section 6. We present two tables
in the Appendix: the first one (Table 1) lists all the acronyms and the second one
(Table 2) presents the main notation used in the paper.

2 Theoretical background

2.1 Definitions and notation

Let

G = (X,�, f,�,x0) (1)

denote a deterministic automaton, where X is the state space, � is the set of events,
f : X × � → X is the partial transition function, � : X → 2� is the active event
function, x0 is the initial state of the system. In addition, assume that the set of events
� is partitioned into two subsets: �o, the set of observable events, i.e., the set of
events whose occurrence can be observed, and �uo, the set of unobservable events.
The unobservable events of the system are those events whose occurrence cannot be
recorded by sensors, and also the failure events. Therefore, model G accounts for the
normal and failure behaviors of the system.

Definition 1

A. The post-language of L after s is denoted by L/s, and is defined as

L/s = {t ∈ �∗ : st ∈ L}. (2)

B. The language projection Po is defined in the usual manner (Ramadge and
Wonham 1989), as

Po : �∗ → �∗
o

s �→ Po(s), (3)

with the following properties:

Po(ε) = ε,

Po(σ) =
{

σ, if σ ∈ �o

ε, if σ ∈ �uo
,

Po(sσ) = P(s)P(σ), s ∈ �∗, σ ∈ �,

(4)

where ε denotes the empty trace. The inverse projection operator P−1
o is

defined as

P−1
o (t) = {s ∈ �∗ : Po(s) = t}. (5)

Both the projection and the inverse projection operations can be extended to
languages in a straightforward way by applying Po(s) and P−1

o (s) to all s ∈ L.
C. Let �(� f) denote the set of all traces in L that end with the failure event σ f .

Formally,

�(� f) = {s ∈ L : s f ∈ � f }, (6)

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 253

where s f denotes the last event of s. With slight abuse of notation, given a trace
s, the membership relation � f ∈ s is used to denote that s ∩ �(� f) 	= ∅, where
s denote the prefix-closure of s.

D. (Faulty trace) A trace s ∈ L is a faulty trace if � f ∈ s.
E. (Path and cyclic path) A path in G is a sequence (x1,σ1,x2, . . . ,σn−1,xn), where

σi ∈ �, xi+1 = f (xi,σi), i = 1,2, . . . ,n − 1. The path is cyclic if x1 = xn.
F. (Cycle) States x1,x2, . . . ,xn of X forms a cycle in an automaton G if there exists

a trace s = σ1σ2 . . . σn that originates in state x1 such that f (xl,σl) = xl+1, l =
1, . . . ,n − 1, and f (xn,σn) = x1.

G. (Unobservable reach) The unobservable reach of a state x ∈ X with respect to
a set �uo, denoted by U R(x,�uo), is defined as

U R(x,�uo) = {y ∈ X : (∃t ∈ �∗
uo)[f (x,t) = y]}.

This definition is extended to sets of states B ⊆ X as follows:

U R(B,�uo) =
⋃
x∈B

U R(x,�uo).

�

Let us now define the following operation involving sets.

Definition 2 (Union product) The union product of sets �i, i = 1,2, . . . ,n, denoted
as �1×̇�2×̇ . . . ×̇�n, is defined as follows:

�1×̇�2×̇ . . . ×̇�n =

⎧⎪⎨
⎪⎩

{�e = �e,1 ∪ �e,2 ∪ . . . ∪ �e,n : �e,i ∈ �i, i = 1,2, . . . ,n}, if
the elements of �i are sets,

2�1
1 ×̇2�2

1 ×̇ . . . ×̇2�n
1 , otherwise,

2�
1 = {�̃ ∈ 2� : |�̃| = 1}, with |.| denoting cardinality.

To illustrate the operations presented in Definition 2, let �1 = {a,b}, �2 = {b ,c},
�3 = {b}, and �4 = {a,c}, and define �a = {�1, �2}, �b = {�3, �4}, and �c = {�4}.
Then

�a×̇�b ×̇�c = {�1 ∪ �4, �2 ∪ �4, �1 ∪ �3 ∪ �4, �2 ∪ �3 ∪ �4} = {{a,b ,c}}.
Consider now the product �1×̇�2×̇�3×̇�4. Then

�1×̇�2×̇�3×̇�4 = 2�1
1 ×̇2�2

1 ×̇2�3
1 ×̇2�4

1 = {{a,b}, {b ,c}, {a,b ,c}},
since 2�1

1 = {{a}, {b}}, 2�2
1 = {{b}, {c}}, 2�3

1 = {{b}}, and 2�4
1 = {{a}, {c}}.

2.2 Fault diagnosis of discrete event systems

Roughly speaking, the language generated by an automaton is diagnosable with
respect to a set of observable events and a failure set � f ⊆ �uo if the occurrence of
any failure in � f can be detected, within a finite delay, using only traces of observable
events. The set of failure events � f is usually partitioned into different subsets � fi ,
i = 1,2, . . . ,m, not necessarily singleton sets, so that each set � fi accounts for specific
fault types; the reader is referred to Sampath et al. (1995, 1996) and Lafortune et al.

Author's personal copy

254 Discrete Event Dyn Syst (2012) 22:249–292

(2001) for more insight into this subject. Let � f = {� f1 ,� f2 , . . . ,� fm} denote this
partition. Then, every time we say that a failure of type Fi has occurred, it is to be
understood that some event from the set � fi has occurred.

In the study of fault diagnosis of DES, the following assumptions are usually made:

A1. The language generated by G is live, i.e., �(xi) 	= ∅ for all xi ∈ X;
A2. Automaton G has no cyclic paths formed with unobservable events only.
A3. There is only one failure event, i.e., � f = {σ f }.

Assumptions A1 and A3 are made for the sake of simplicity. Assumption A2 will
be removed later with the introduction of the so-called hidden cycles.

Formally, diagnosability is defined as follows (Sampath et al. 1995).

Definition 3 A prefix-closed and live language L, generated by an automaton G, is
diagnosable with respect to projection Po and � f = {σ f } if the following holds true:

(∃n ∈ �)(∀s ∈ �(� f))(∀t ∈ L/s)(‖t‖ ≥ n ⇒ D),

where the diagnosability condition D is

(∀ω ∈ P−1
o (Po(st)) ∩ L)(� f ∈ ω),

with ‖.‖ denoting the length of a trace.

It is clear from Definition 3 that all traces of L that contain the faulty trace event
σ f must not have the same projection as any normal trace of L. This leads to the
definition of ambiguous trace, as follows.

Definition 4 (Ambiguous trace) A faulty trace s ∈ L is an ambiguous trace with
respect to projection P′

o and σ f if there exists a trace ω ∈ L such that � f /∈ ω and
P′

o(s) = P′
o(ω).

It is important to remark that whereas the faulty trace s must have unbounded
length, the length of the normal trace ω that makes s an ambiguous trace can be
bounded.

One way to perform diagnosability verification is by using a deterministic automa-
ton called diagnoser. The diagnoser of G, here denoted as Gd, has as events, the
observable events of G and its states have labels Y and N attached to the states of G
to indicate whether event σ f has occurred or not. Formally, the diagnoser automaton
Gd is defined as

Gd = (Xd,�o, fd,�d,x0d), (7)

and it can be computed in two steps: (i) perform the parallel composition G‖A	,
where A	 is the two state label automaton shown in Fig. 1, and ‖ denotes parallel
composition; (ii) compute Obs(G‖A	,�o), the observer of G‖A	 with respect to �o,

Fig. 1 Fault label
automaton A	

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 255

i.e., assuming �o as the set of observable events (Cassandras and Lafortune 2008).
It is important to remark that the automaton obtained after the parallel composition
performed in (i) generates the same language as G and also that its states are of the
form (x,Y) or (x,N), depending on whether or not σ f is in the traces that take x0 to
x; therefore Xd ⊆ 2X×{N,Y}.

When a diagnoser reaches a state whose labels are all Y, then it is certain that
a fault has occurred, and if it is in a state whose labels are all N, it is certain that
the system is in a normal path, i.e., there is no fault occurrence. It is also possible
for a diagnoser to be in a state that has both Y and N labels; in this case the
diagnoser is uncertain about the fault occurrence. It is easy to see that, since Gd =
Obs(G‖A	,�o), then, once the diagnoser becomes certain about fault occurrence,
it is not possible for it to become uncertain again; although it may be possible for
a diagnoser to change from a non-faulty state to either an uncertain or certain (or
faulty) state. This discussion leads to the following definitions for the diagnoser
states, as far as the presence of labels Y and N are concerned (Sampath et al. 1995).

Definition 5 A state xd ∈ Xd is said to be certain (or faulty), if 	 = Y for all (x,) ∈
xd, and normal (or non-faulty) if 	 = N for all (x,) ∈ xd. If there exist (x,),(y,	̃) ∈
xd, x not necessarily distinct from y such that 	 = Y and 	̃ = N, then xd is an uncertain
state of Gd.

Definition 6 A set of uncertain states xd1 ,xd2 , . . . ,xdn ∈ Xd forms an indeterminate
cycle if the following conditions hold true:

(1) xd1 ,xd2 , . . . ,xdn form a cycle in Gd, i.e., there exists σl ∈ �o, l = 1,2, . . . ,n, such
that fd(xdl ,σl) = xdl+1 , l = 1,2, . . . ,n − 1, and fd(xdn ,σn) = xd1 ;

(2) ∃(xkl
l ,	

kl
l), (x̃rl

l ,	̃
rl
l) ∈ xdl , xkl

l not necessarily distinct from x̃rl
l , l = 1,2, . . . ,n, kl =

1,2, . . . ,ml , and rl = 1,2, . . . ,m̃l such that

(a) 	
kl
l = Y, 	̃

rl
l = N, for all l, k and r;

(b) The sequences of states {xkl
l }, l = 1,2, . . . ,n, kl = 1,2, . . . ,ml and {x̃rl

l }, l =
1,2, . . . ,n, rl = 1,2, . . . ,m̃l can be rearranged to form cycles in G, such that
the corresponding traces s and s̃, formed with the events that define the
evolution of the cycles, have as projection σ1σ2 . . . σn, where σ1, σ2, and σn

are defined in (1).

Using Definitions 3 and 6, the following necessary and sufficient condition for
language diagnosability can be stated.

Theorem 1 (Sampath et al. 1995) A language L generated by an automaton G is
diagnosable with respect to projection Po and � f = {σ f } if, and only if, its diagnoser
Gd has no indeterminate cycles.

Remark 1 The diagnosability of the language generated by G is, according to
Definition 3, based solely on a single set of observable events, or equivalently, on
the projection Po : �∗ → �∗

o . This means that, in practice, the decision on whether
a fault has occurred or not is taken by one central diagnoser. For this reason, this
problem is usually referred in the literature to as the centralized diagnosis problem
and Gd is referred to as a central diagnoser.

Author's personal copy

256 Discrete Event Dyn Syst (2012) 22:249–292

3 Diagnosability under partial observation

Definition 3 of language diagnosability takes into account not only the language
generated by an automaton but also the set of observable events and the failure
partition. The dependence of language diagnosability on the set of observable events
suggests that it may be possible that the language generated by an automaton be
also diagnosable with respect to another projection P′

o : �∗ → �′
o
∗, where �′

o ⊂ �o

and � f . This problem is referred to as centralized diagnosability under partial
observation. In order to address this problem, we make another assumption.

A4. L is diagnosable with respect to projection Po : �∗ → �∗
o and � f (centralized

diagnosable).

Let G′
d = (X ′

d,�
′
o, f ′

d,�
′
d,x

′
0d

) denote a diagnoser for L assuming partial observa-
tion, i.e., G′

d is capable of observing only events in a set �′
o ⊂ �o. Such a diagnoser

will be referred throughout the text to as a central diagnoser with partial observation
or simply partial diagnoser. The result that follows shows that if Gd has been
computed, then it is not necessary to compute G′

d from G but directly from Gd.

Theorem 2 The partial diagnoser G′
d and Ĝ′

d = Obs(Gd,�
′
o) = (X̂ ′

d,�
′
o, f̂ ′

d,�̂
′
d,x̂

′
0d

)

(the observer of Gd with respect to projection Poo′ : �∗
o → �′

o
∗) are equal up to the

following renaming of states:

x̂′
d = {xd1 ,xd2 , . . . ,xdn} ∈ X̂ ′

d, xdi ∈ Xd ⇔ x′
d = ∪n

i=1xdi ∈ X ′
d. (8)

Proof Let � = �o ∪ �uo, and consider the non-empty set �′
o ⊂ �o. Define:

(i) G	 = G‖A	 = (X	,�, f	,�	,x0	
);

(ii) Gd = Obs(G	,�o) = (Xd,�o, fd,�d,x0d);
(iii) G′

d = Obs(G	,�
′
o) = (X ′

d,�
′
o, f ′

d,�
′
d,x

′
0d

).

We need to prove that Ĝ′
d and G′

d are isomorphic.
Since Poo′ [Po(s)] = P′

o(s),∀s ∈ L, we may conclude that L(Ĝ′
d) = L(G′

d). There-
fore, we only need to prove the state equivalence of Eq. 8. In order to do so, let us
consider any s′ ∈ L(Ĝ′

d) = L(G′
d). For that s′ there exist two corresponding states

x̂′
d = f̂ ′

d(x̂′
0d

,s′) and x′
d = f ′

d(x′
0d

,s′).
Let us consider, initially, state x̂′

d. Then, for each xdi ∈ x̂′
d, i ∈ {1,2, . . . ,n}, there

exists a trace sdi ∈ L(Gd) such that Poo′(sdi) = s′ and fd(x0d ,sdi) = xdi . Analogously,
for each x	 ∈ xdi , there exists a trace s ∈ L(G) such that Po(s) = sdi and f	(x0	

,s) =
x	. Therefore, since G′

d is a deterministic automaton and Poo′ [Po(s)] = P′
o(s), there

exists a state x′
d = f ′

d(x′
0d

,s′) such that x	 ∈ x′
d. This implies that, for all x	 ∈ xdi ∈ x̂′

d,
x	 ∈ x′

d, and, thus, ∪n
i=1xdi ⊆ x′

d.
Let us now consider state x′

d. Then, there exist a trace s ∈ L(G) such that
s′ = P′

o(s), and a state x	 = f	(x0	
,s) such that x	 ∈ x′

d. Since Ĝ′
d is a deterministic au-

tomaton and Poo′ [Po(s)] = s′, there exist states xdi = f ′
d(x′

0d
,Po(s)) and x̂′ = f̂ ′

d(x̂′
0d

,s′)
such that x	 ∈ xdi ∈ x̂. Therefore, x′

d ⊆ ∪n
i=1xdi . �

According to Theorem 2, the partial diagnoser G′
d that observes the events in a

subset �′
o of the set of observable events �o can be built from the full observation

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 257

diagnoser Gd simply by merging the states of Gd that are connected by the events
in �o \ �′

o into a single state formed by the union of the sets of the states merged.
As a consequence, even though, due to Assumption A2, the languages generated by
centralized diagnosers with full observation are always live, the language generated
by a partial diagnoser is not necessarily live. This happens whenever the events of a
cyclic path in Gd become unobservable in the partial diagnoser; it is not difficult to
see that when this happens, this cycle reduces to a single state in G′

d.
When unobservable events occur after the system reaches a state that has been

obtained by merging states that form cycles, then, although there is no change of
states in the partial diagnoser following the occurrence of unobservable events, the
actual states of the automaton changes cyclically. In this case, it is said that such a
partial diagnoser has a hidden cycle, whose formal definition is as follows.

Definition 7 (Hidden cycles and indeterminate hidden cycles) Let x′
d ∈ X ′

d be ob-
tained by merging states xd1 ,xd2 , . . . ,xdn ∈ Xd. Then there exists a hidden cycle in
x′

d in G′
d if, for some {i1,i2, . . . ,ik} ⊂ {1,2, . . . ,n}, xdi1

,xdi2
, . . . ,xdik

form a cycle in Gd.
Moreover, if x′

d is uncertain and all states xdi1
,xdi2

, . . . ,xdik
are certain, then the hidden

cycle is indeterminate. �

Remark 2

(a) The introduction of hidden cycles allows us to remove Assumption A2 from
this point onwards.

(b) Due to Assumption A4, L is diagnosable with respect to Po and � f which
implies that Gd has no indeterminate cycles; the only cycles that may appear
in Gd are formed with certain, normal or uncertain states that do not form
indeterminate cycles. Therefore, states xdik

, k = 1,2, . . . ,n, that form a hidden
cycle in x′

d, must all be certain, normal or uncertain.
(c) Hidden cycles will be represented in the state transition diagrams of partial

diagnosers by dashed self-loops: indeterminate hidden cycles will be labeled
as ihc and all other hidden cycles will be labeled simply as hc, since, as it will
be seen in the sequel, they do not interfere in the diagnosability under partial
observation.

(d) From this point onwards, in order to differentiate between indeterminate cycles
that are not hidden and those that can be observed in a diagnoser, the latter will
be referred to as indeterminate observed cycles.

The following Theorem provides a necessary and sufficient condition for diagnos-
ability under partial observation.

Theorem 3 Assuming that a language L is diagnosable with respect to projection Po

and � f , then L will be also diagnosable with respect to projection P′
o, �′

o ⊂ �o, and
� f = {σ f } if, and only if, G′

d has no indeterminate cycles (observed or hidden).

Proof A necessary and sufficient condition for diagnosability when G′
d has no hidden

cycles can be established by following the same strategy as in the proof of Theorem 1.
Let us now consider the case when G′

d has indeterminate hidden cycles.
Let xdY N be an uncertain state of Gd and define x̂′

d = UR(xdY N ,�o \ �′
o). Form x′

d
by renaming x̂′

d according to Eq. 8. Then, there always exists an uncertain state x′
dY N

Author's personal copy

258 Discrete Event Dyn Syst (2012) 22:249–292

of G′
d such that x′

dY N
⊆ x′

d. Now, assume that, for l = 1, . . . ,n, states xdY,l ∈ x′
dY N

form
an indeterminate hidden cycle in x′

dY N
. It is not hard to see that there exists a trace

wk = stuk ∈ L that satisfies the following conditions

(1) s ∈ �(� f) and fd(x0d ,Po(s)) = xdY N ;
(2) t ∈ (�o \ �′

o)
∗ is such that fd(x0d ,Po(st)) = xdY,1 ;

(3) uk ∈ (�o \ �′
o)

∗, ‖uk‖ = k, with k arbitrarily large, is such that fd(xdY,1 ,uk) =
xdY,(k mod n)+1 .

Consequently, � f ∈ wk, f ′
d(x0d ,P′

o(stuk)) = f ′
d(x0d ,P′

o(s)) = x′
dY N

, and P′
o(s) =

P′
o(wk). Finally, since xdY N is an uncertain state, there exists w ∈ L such that � f /∈ w

and P′
o(w) = P′

o(wk), which violates the diagnosability condition.
For the reverse direction, it is clear from the proof of Theorem 1, given in Sampath

et al. (1995), that if G′
d has no indeterminate (observed or hidden) cycles then the

language is diagnosable. This is so because when L is not diagnosable, the two traces
that cause the violation of diagnosability will lead to indeterminate cycles in G′

d that
are either observed or hidden. �

Example 1 Consider automaton G depicted in Fig. 2, where � = {a,b,c,d,σ,σ f },
�o = {a,b,c,d}, �uo = {σ,σ f } and � f = {σ f } is the failure event set. The diagnoser Gd

Fig. 2 Automaton G for Example 1

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 259

(a) (b) (c)

Fig. 3 Diagnoser Gd (a) and partial diagnosers G′
d (b) and G′′

d (c) for the following sets of observable
events: �′

o = {c,d} and �′′
o = {a,c,d}

for G is shown in Fig. 3a. Since Gd has no indeterminate cycles, it can be concluded
that L is diagnosable with respect to Po and � f .

Consider now the problem of checking whether L is also diagnosable with respect
to projection P′

o and � f , where �′
o = {c,d} ⊂ �o. The partial diagnoser G′

d, assuming
�′

o as the set of observable events, is shown in Fig. 3b. Note that since G′
d has an

indeterminate hidden cycle in state {3N,4N,6Y}, L is not diagnosable with respect
to P′

o and � f . The reason for the non-diagnosability of L with respect to P′
o is the

existence of a faulty trace s = aσ f can, n ∈ �, that has the same projection over P′
o

as the normal trace s′ = ac, i.e., P′
o(s) = P′

o(s
′) = c; therefore s is an ambiguous trace

(s is actually the unique ambiguous trace in this example). Note that since event
a ∈ s but a /∈ �′

o, then, by adding event a to the set of observable events �′
o, and

forming a new set of observable events �′′
o = {a,c,d}, we may expect that L becomes

diagnosable with respect to P′′
o : �∗ → �′′

o
∗ and � f . This is actually true, as seen in

Fig. 3b, since G′′
d has no indeterminate cycles (observed or hidden).

4 Diagnosis bases for diagnosability

4.1 Elementary diagnosing event sets

The results presented in Theorem 3 lead directly to the following questions. Do
there exist different subsets of the set of observable events for which the language
generated by an automaton is diagnosable? What is the minimum cardinality subset

Author's personal copy

260 Discrete Event Dyn Syst (2012) 22:249–292

of the set of observable events capable of diagnosing the language generated by an
automaton? The answer to these questions starts with the following definitions.

Definition 8 (Diagnosis basis) A set �′
o ⊂ �o is a diagnosis basis for L if L is

diagnosable with respect to projection P′
o and � f = {σ f }.

Definition 9 (Minimal diagnosis basis) A set �′
o ⊂ �o is a minimal diagnosis basis

for L if �′
o is a diagnosis basis but, for any non-empty proper subset �′′

o of �′
o, L is

not diagnosable with respect to projection P′′
o and � f = {σ f }.

According to Definitions 8 and 9, the main difference between diagnosis and
minimal diagnosis bases is with respect to the nature of the events. The events in
a minimal diagnosis basis are all essential, in the sense that the language generated is
no longer diagnosable when any event is removed from the basis. On the other hand,
a non-minimal diagnosis basis has redundant events, in the sense that, not all events
in the basis set are necessary to diagnose the fault occurrence.

Using Definitions 8 and 9, the problem of finding all sets �′
o ⊂ �o for which L

is diagnosable with respect to P′
o can also be stated as follows: given an automaton

G = (X,�, f,�,x0), where � = �o ∪ �uo, and assuming that �o is a diagnosis basis,
find all sets �′

o ∈ 2�o \ {�o,∅} that are also diagnosis bases.
One possible way to solve this problem is by using a brute force method, which

consists of forming set P(�o) = 2�o \ {∅,�o} and to test for each set �′
o ∈ P(�o)

if L is diagnosable with respect to �′
o and � f . In order to find minimal diagnosis

bases in a brute force manner, one would start by examining subsets of observable
events of cardinality one, then move on to subsets of cardinality two, as so forth. We
propose, instead, to exploit the structure of the system, as captured in its diagnoser, in
order to more efficiently search for minimal diagnosis basis candidates over P(�o).
Specifically, our idea for choosing initial candidates for minimal diagnosis bases
is as follows. Since L is, by assumption, diagnosable with respect to Po and � f ,
the diagnoser Gd has no indeterminate cycles, which implies that there must exist
at least one subtrace of events that takes uncertain states of Gd to some cycle of
certain states. Therefore, at least one event of each one of these subtraces must
be observable in order for the language to be diagnosable; otherwise there would
exist an indeterminate hidden cycle in the uncertain state making the language non-
diagnosable. This idea is formally developed below.

Let xdY N ,xdY ,xdN ∈ Xd denote, respectively, uncertain, certain and normal states
of Gd. Due to Assumption A4, it is always possible to define the following subset
of Xd:

XY
Y N = {xdY N ∈ Xd : (∃(xdY ,σ) ∈ Xd × �o)[fd(xdY N ,σ) = xdY]}. (9)

Note that since L is, by assumption, live, for each state of XY
Y N , it is always

possible to form at least one path PY = (xdY N ,σ0,xdY,1 ,σ1, . . . ,σn−1,xdY,n) satisfy-
ing the following conditions: (i) xdY,n = xdY,i for some i ∈ {1,2, . . . ,n − 1}, that is,
(xdY,i ,σi,xdY,i+1 , . . . ,σn−1, xdY,n) form a cyclic path; (ii) (xdY,i ,σi,xdY,i+1 , . . . ,σn−1,xdY,n)

is the only cyclic path in PY . As a consequence, the set XY
Y N will be referred here to

as a faulty path origin state set (FPOSS) and path PY as a faulty path. The elements
of XY

Y N are called faulty path origin states (or simply origin states, where there is no
danger of misunderstanding).

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 261

Definition 10 (Faulty path event, faulty path event set)

A. An event σ ∈ �o is a faulty path event if it belongs to any faulty path defined
for any state of XY

Y N .
B. A faulty path event set (FPES), denoted as �fpes, is a set formed with all events

of a faulty path.

The definition of faulty path event sets allows us to derive a necessary condition
for a set �′

o ⊂ �o to be a diagnosis basis, as follows.

Proposition 1 Let Nfpes denote the number of faulty path event sets of Gd. Then a
necessary condition for �′

o ⊂ �o to be a diagnosis basis for L and � f = {σ f } is that

�′
o ∩ �fpes,i 	= ∅, i = 1,2, . . . ,Nfpes. (10)

Proof Let �′
o be a diagnosis basis and assume that for some k ∈ {1,2, . . . ,Nfpes},

�fpes,k ∩ �′
o = ∅. Therefore, for some xdY N ∈ XY

Y N , there exists a faulty path
Pk

Y = (xdY N , σ k
0 , xk

dY,1
, σ k

1 , . . . , σ k
n−1, xk

dY,n
), satisfying xk

dY, j
= xk

dY,n
for some j ∈

{1,2, . . . ,n − 1}. It is immediate to see that xk
dY, j

,xk
dY, j+1

, . . . ,xk
dY,n

form an indeterminate
hidden cycle in a state x′

dY N
∈ X ′

d that contains UR(xdY N ,�o \ �′
o). According to

Theorem 3, this implies that L is not diagnosable with respect to projection P′
o and

� f = {σ f }, which contradicts the assumption that �′
o is a diagnosis basis. �

Remark 3 Note that the condition imposed by Proposition 1 is only necessary. As
will be clarified in the examples to be presented later, it may be possible that
condition 10 be satisfied, but �′

o is not a diagnosis basis. The necessary and sufficient
condition for �′

o to be a diagnosis basis is that given in Theorem 3.

It is clear that in order for a fault occurrence to be diagnosed, at least one event
in each faulty path must be observable. This leads to the definition of elementary
diagnosing event sets (EDES).

Definition 11 (Elementary diagnosing event sets) Let �fpes,i, i = 1, . . . ,Nfpes denote
the faulty path event sets of Gd. The set of all elementary diagnosing event sets of
Gd is defined as follows:

�edes = �fpes,1×̇�fpes,2×̇ . . . ×̇�fpes,Nfpes , (11)

where the union product above is performed according to Definition 2.

Algorithm 1 provides a systematic way to find all elementary diagnosing event sets
of Gd.

In step 1 of Algorithm 1, all faulty path origin states of Gd are identified and the
set X N

Y N is computed. The trees formed in steps 2 to 4 arrive at a leaf whenever it
reaches any first revisited state; therefore defining a faulty path since it initiates at
a faulty path origin state of Gd and has a unique cyclic path. Therefore, all FPESs
can be obtained directly from the edges of the branches of the trees. In step 5 all
EDESs are formed by applying the union product to guarantee that each set has at
least one event of each FPESs. However, since theses sets are to be used in the search

Author's personal copy

262 Discrete Event Dyn Syst (2012) 22:249–292

Algorithm 1 (Algorithm for finding all EDESs of Gd)

Step 1 Build the centralized diagnoser Gd and find the FPOSS (XY
Y N) of Gd. Let

|XY
Y N| = NY N .

Step 2 For each origin state xdY N,i ∈ XY
Y N , i = 1,2, . . . ,NY N form a rooted tree1 with

root xdY N,i , as follows:

(i) Let �Y
d (xdY N,i) = {σ ∈ �d(xdY N,i) : fd(xdY N,i ,σ) = xdY } and assume that

|�Y
d (xdY N,i)| = nY N,i. Create nY N,i proper descendants of xdY N,i and label

them as xdY , where xdY = fd(xdY N,i ,σ), σ ∈ �Y
d (xY N,i). Label the edge

(xdY N,i ,xdY) as σ ;
(ii) A node labeled as xdY , defined in the tree, will be a leaf if state xdY has

already labeled any proper ancestor of xdY . Otherwise, let |�d(xdY)| =
nY . Create nY proper descendants of xdY and label them as xdY,new , where
xdY,new = fd(xdY ,σ), σ ∈ �d(xdY). Label the edge (xdY ,xdY,new) as σ .

Step 3 For each tree Ti, i = 1,2, . . . ,NY N , identify its leaves x	
dY,i

, 	 = 1, . . . ,	Ti ,
where 	Ti is the number of leaves in tree Ti. Form paths P	

Y,i, 	 = 1, . . . ,	Ti ,
starting at xdY N,i and ending at x	

dY,i
, 	 = 1, . . . ,	Ti (these paths are actually

the faulty paths starting at xdY N,i).
Step 4 Form FPESs �	

fpes,i, i = 1, . . . ,NY N , 	 = 1, . . . ,	Ti with each path P	
Y,i ob-

tained in the previous step.
Step 5 With the FPESs obtained in step 4, form the set of elementary diagnosing

event sets according to Eq. 11.
Step 6 Remove from �edes, all event sets �′ ∈ �edes for which there exists another

set �′′ ∈ �edes such that �′ ⊇ �′′.

of minimal diagnosis bases, those EDESs that are supersets of another EDES must
be removed from the set. This is done in step 6.

Remark 4 (Computational complexity of Algorithm 1)
The computational complexity of Algorithm 1 will be discussed later in the paper

(see Remarks 5 and 10).

The following example illustrates the computation of all elementary diagnosing
event sets of a given centralized diagnoser.

Example 2 Consider automaton G depicted in Fig. 4a and assume that �o =
{a,b ,c,d,e} and � f = {σ f }. It is clear that the centralized diagnoser Gd, shown in
Fig. 4b, has no indeterminate cycles and therefore L is diagnosable with respect to
Po and � f .

1Strictly speaking, the graph to be built in Algorithm 1 is not a rooted tree since distinct nodes may
have the same label. The main reason for labeling two distinct nodes with the same label is due to the
fact that we are unfolding a directed graph (diagnoser), which has cycles and, in some cases, there is
more than one path from an origin state to a certain state.

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 263

(a) (b)

Fig. 4 Automaton and corresponding diagnoser for illustration of elementary diagnosing event sets

According to Algorithm 1, to find the elementary diagnosing event sets for
L, the first step is to identify the origin states of Gd. It is clear from Fig. 4b
that XY

Y N = {xdY N,1 , xdY N,2 , xdY N,3}, where xdY N,1 = {1N,2Y}, xdY N,2 = {3Y,5N} and
xdY N,3 = {4Y,5N}. The next step of Algorithm 1 is to build a tree for each of the
origin states above, which are shown in Fig. 5. Based on the trees of Fig. 5, it is
possible, as required in step 3 of Algorithm 1, to identify their leaves, and in the
sequel to form the paths from the root to the leaves. In particular, the tree of
Fig. 5c has six leaves, which allow us to obtain the following faulty paths: P1

Y,3 =
({4Y,5N},c,{3Y},b ,{4Y},c,{3Y}), P2

Y,3 = ({4Y,5N},c,{3Y},b ,{4Y},d,{4Y}), P3
Y,3 =

({4Y,5N},c,{3Y},a,{6Y},b ,{3Y}), P4
Y,3 = ({4Y,5N},d,{4Y},d,{4Y}), P5

Y,3 = ({4Y,

5N},d,{4Y},c,{3Y},b ,{4Y}), and P6
Y,3 = ({4Y,5N},d,{4Y},c,{3Y},a,{6Y},b ,{3Y}).

Proceeding in the same way, six other paths can be obtained from the trees of Fig.
5a and b. Therefore, it is straightforward to see that the FPESs of Gd are given by:
�1

fpes,1 = {d,e}, �2
fpes,1 = {b ,c,e}, �3

fpes,1 = {a,b ,c,e}, �1
fpes,2 = {a,b}, �2

fpes,2 = {a,b ,c},
�3

fpes,2 = {a,b ,d}, �1
fpes,3 = {b ,c}, �2

fpes,3 = {b ,c,d}, �3
fpes,3 = {a,b ,c}, �4

fpes,3 = {d},
�5

fpes,3 = {b ,c,d}, and �6
fpes,3 = {a,b ,c,d}. Proceeding in accordance with step 5 of

Algorithm 1, the following set of EDESs is obtained:

�edes = {{a,b ,d}, {a,b ,c,d}, {b ,d}, {b ,c,d}, {a,b ,d,e}, {a,b ,c,d,e}, {b ,d,e},
{b ,c,d,e}, {a,c,d}, {a,c,d,e}}. (12)

Since we are interested in the smallest cardinality sets, the set above can be reduced,
in accordance with step 6, to:

�edes = {{b ,d}, {a,c,d}}. (13)

Author's personal copy

264 Discrete Event Dyn Syst (2012) 22:249–292

Fig. 5 Rooted trees with roots
labeled as xdY N,1 = {1N,2Y}
(a), xdY N,2 = {3Y,5N} (b), and
xdY N,3 = {4Y,5N} (c)

(a) (b)

(c)

4.2 A new diagnosability condition

According to Proposition 1, the elementary diagnosing event sets that have the
smallest cardinality are the sets with the minimum number of events necessary to
diagnose the occurrence of σ f . It is also clear that the complete assessment of the
diagnosability of L with respect to P′

o and � f = {σ f }, where �′
o ∈ �edes, requires the

construction of a partial diagnoser G′
d. According to Theorem 3, L is also diagnosable

with respect to P′
o and � f = {σ f } if, and only if, the partial diagnoser G′

d has no
indeterminate cycles (observed or hidden). If for some �′

o, L is diagnosable then
�′

o is a minimal diagnosis basis. However, when L is not diagnosable with respect
to P′

o and � f = {σ f }, it is necessary to add new events to �′
o. Since we are looking

for minimal diagnosis bases, the insertion of events must be done carefully in order
to avoid adding redundant events. Section 5 will describe our approach for selecting
the new events to be included. For that matter, in the remainder of this section, we
introduce an automaton whose structure will be exploited so as to identify the events
in �o \ �′

o that should be added to �o to construct a minimal diagnosis basis.
Let us define automaton G′

test as follows:

G′
test = G′

d‖Gd = (Xt,�o, ft,�t,xt0). (14)

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 265

Note that the state xt of G′
test has the following structure:

xt = (x′
d,xd),

where x′
d ∈ X ′

d and xd ∈ Xd.

Definition 12 A state xt of G′
test is certain if x′

d and xd are both certain and uncertain
if xd is certain but x′

d is uncertain.

Definition 13 A cycle of uncertain states in G′
test is said to be indeterminate if the

states of G′
d that appears in the first components of the states in the cycle also form

an indeterminate cycle (observed or hidden) in G′
d.

Let Ld, L′
d and L′

test denote, respectively, the languages generated by Gd, G′
d and

G′
test. From the definition of G′

test given in Eq. 14, it is clear that

L′
test = P−1

oo′(L′
d) ∩ Ld = Ld,

where P−1
oo′ is with respect to �o and not with �. It is well known that a necessary and

sufficient condition for a language L not to be diagnosable with respect to projection
P′

o and � f is the existence of ambiguous traces tY with respect to P′
o and � f . The

following results show that G′
test can be used not only as a diagnosability test but also

to find all ambiguous traces tY with respect to P′
o and � f .

Theorem 4 Assume that L is diagnosable with respect to projection Po and � f = {σ f }.
Then, L will be diagnosable with respect to the projection P′

o, �′
o ⊂ �o, and � f = {σ f }

if, and only if, G′
test has no indeterminate cycles, where G′

test is def ined according to
Eq. 14.

Proof

(⇒) Assume that G′
test has an indeterminate cycle and consider a trace st ∈ L

that satisfies the following conditions: (i) s ∈ �(� f); (ii) ‖t‖ > nt, where nt

can be arbitrarily large; (iii) Po(st) cycles in an indeterminate cyclic path of
G′

test. Let s′t′ = P′
o(st). Then, due to the structure of G′

test, s′t′ either cycles
over an indeterminate cycle of G′

d or stops in an uncertain state of G′
d (when

the indeterminate cycle of G′
test is associated with a hidden cycle in G′

d).
This implies that ∃w ∈ P′−1

o [P′
o(st)] ∩ L such that � f /∈ w, which violates the

diagnosability Definition 5, or equivalently, that L is not diagnosable with
respect to P′

o and � f = {σ f }.
(⇐) Assume that G′

test has no indeterminate cycle and consider a trace s ∈ �(� f).
Since L is diagnosable with respect to Po and � f , then for all long enough
traces t in L/s i.e., ‖t‖ > nt, where nt can be arbitrarily large, Po(st) takes G′

test
to a state xt = (x′

d,xd) with xd certain; the corresponding component x′
d of xt

may be either certain or uncertain. However, since G′
test has no indeterminate

cycle, then t can be increased further so as to make x′
d also certain. This implies

that ∃s′t′ = P′
o(st) that leads to a certain state of G′

d. Since s ∈ L is arbitrary,
then L is also diagnosable with respect to P′

o and � f = {σ f }. �

Author's personal copy

266 Discrete Event Dyn Syst (2012) 22:249–292

Since L is diagnosable with respect to Po and � f = {σ f }, the following result can
be derived directly from Theorem 4.

Corollary 1 Under the same assumptions as those of Theorem 4, an arbitrarily
long trace s′

test ∈ L′
test that loops in an indeterminate cycle of G′

test is such that
P′−1

o {P′
o[P−1

o (s′
test) ∩ L]} ∩ L has both faulty and non-faulty traces. �

The implication of Corollary 1 is that even though s′
test is not, in general, a trace

of L, since it is defined over �∗
o , it bears a close relationship with the ambiguous

traces of L with respect to P′
o and � f . In order to explain this fact, let Ld denote the

language generated by Gd. According to Theorem 2, P′
o(L) = Poo′(Ld), and since L

is diagnosable with respect to Po and � f , then the diagnosability analysis of L with
respect to P′

o and � f can be carried out by using Ld and Poo′(Ld) in place of L and
P′

o(L). In addition, the non-diagnosability of L with respect to P′
o and � f is due to

the existence of indeterminate cycles (hidden inclusive) in G′
d. A connection between

these cycles of G′
d and their inverse projections in G′

test will be pursued in the sequel.

5 Searching for minimal diagnosis bases for diagnosability

Since the condition given by Proposition 1 is only necessary, it is very likely that a
set �′

o ∈ �edes is not a diagnosis basis. Therefore, in order to obtain new minimal
diagnosis basis candidates for L, it is necessary to add events to �′

o, i.e., to find a set
�ies ⊆ �o \ �′

o and form a new set �′′
o = �′

o ∪ �ies.
An immediate way to find event sets whose union with �′

o are minimal diagnosis
bases is to carry out an exhaustive search over the set 2�o\�′

o \ {∅,�o \ �′
o}. However,

this approach does not exploit the structural knowledge captured in G′
test, which

provides for the identification of ambiguous traces of L with respect to Po
′. Instead,

we form a new event set �′′
o = �′

o ∪ {σ }, where σ is either an event belonging to a
trace sY ∈ Ld (sY = Po(tY)), where tY is an ambiguous trace of L with respect to
projection P′

o, or an event belonging to a trace sN ∈ Ld (sN = Po(tN)), where tN is a
normal trace of L, that satisfy Poo′(sN) = Poo′(sY); the latter will be the case when
the chosen event either appears only in sN or in certain positions of sY and sN that
make P′′

o(sY) 	= P′′
o(sN).

According to Theorems 3 and 4, the non-diagnosability of L with respect to P′
o and

� f implies that both G′
d and G′

test have one or more indeterminate cycles (the former
may also have hidden cycles). Let us consider, initially, the indeterminate observed
cycles of G′

d. It is not difficult to see that, in this case, there exist two arbitrarily
long traces tY ,tN ∈ L such that � f ∈ tY but � f /∈ tN whose corresponding projections
sY = Po(tY) and sN = Po(tN) (sY ,sN ∈ Ld) satisfy the following conditions:

OC1. fd(x0d ,sY) = xdY and fd(x0d ,sN) = xdN , where xdY (xdN) is a certain (respec-
tively, normal or uncertain) state of Gd that belongs to a cycle of certain (re-
spectively, normal or uncertain states only), where, in the case of uncertain
states, they do not form indeterminate cycles in Gd;

OC2. Poo′(sY) = Poo′(sN) = s′
Y N , where s′

Y N is such that f ′
d(x′

0d
,s′

Y N) = x′
dY N

, with
x′

dY N
belonging to an indeterminate cycle of G′

d.

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 267

Therefore, to each indeterminate observed cycle in G′
d, we may associate at least two

cycles in G′
test, as follows: (i) a cycle formed with the states whose first components

are the states x′
dY N

of G′
d that are reached through s′

Y N and whose second components
are the certain states xdY of Gd that are reached through sY ; (ii) another cycle that is
formed with states whose first components are the same states x′

dY N
of the first cycle,

and whose second components are either normal states or uncertain states of Gd that
are not part of an indeterminate cycle that are reached through sN .

Consider now the existence of indeterminate hidden cycles in G′
d. In this case,

there always exist two traces tY ,tN ∈ L, where � f ∈ tY but � f /∈ tN , whose cor-
responding projections sY = Po(tY) and sN = Po(tN) (sY ,sN ∈ Ld) satisfying the
following conditions:

HC1. sY arbitrarily long and sN with bounded length;
HC2. s′ = Poo′(sY) = Poo′(sN) is also bounded.

This is so because for a hidden cycle to be indeterminate, it must be formed with
certain states that form a cycle in Gd, therefore guaranteeing the existence of a
trace sY arbitrarily long. In addition, since indeterminate hidden cycles are formed in
uncertain states, then it is always possible to find a bounded trace sN that takes Gd

from its initial state to either a normal or an uncertain state.
We may, therefore, conclude that, whether G′

d has an indeterminate observed
cycle or an indeterminate hidden cycle, a necessary condition for L to be diagnosable
with respect to P′′

o and � f , where �′′
o = �′

o ∪ �ies (�ies ⊆ �o \ �′
o) is that �ies

possesses events of either sY or sN that makes Poo′′(sY) 	= Poo′′(sN).

5.1 Prime paths, covering prime path and cover for a path with embedded cycles

Although the idea of adding to �′
o events belonging to �o \ �′

o that appear either
in sY or sN , where sY and sN satisfy either conditions OC1. and OC2. or conditions
HC1. and HC2., seems to be simple, this is usually a very difficult task since cycles
are likely to have embedded cycles; for instance if states xt1 ,xt2 ,xt3 ,xt2 form a cycle,
then it is possible to define several cycles of states with the states of this cycle (e.g.
(xt1 ,xt2 ,xt3 ,xt2), (xt1 ,xt2) and (xt1 ,xt2 ,xt3 ,xt2 ,xt3 ,xt2)). As a consequence, there may exist
several traces sY and sN , even when there exists a unique trace connecting the initial
state of G′

test to the first state of the cycle. Therefore, the use of ambiguous traces to
obtain events for �ies requires that all traces that cycle in indeterminate cycles of G′

test
be found. An immediate approach to this problem is to use the algorithm proposed in
Johnson (1975), which finds all elementary circuits of directed graphs, to compute all
elementary cyclic paths of the indeterminate cycles of G′

test. However, this approach
would only be suitable for a special class of automata since Johnson’s algorithm
assumes that the directed graph does not have self-loops and multiple edges between
the same vertices. Therefore, a different approach will be proposed here.

Let

Pc
l = (xl,σl,xl+1,σl+1, . . . ,σn−1,xn,σn,xl) (15)

denote a path of an automaton G that has one or more embedded cyclic paths,
namely that xi is not necessarily different from x j, i 	= j, i, j ∈ {l,l + 1, . . . ,n} and
define a path

P0 = (x0,σ0,x1,σ1, . . . ,xl−1,σl−1,Pc
l), (16)

Author's personal copy

268 Discrete Event Dyn Syst (2012) 22:249–292

where x0 is the initial state of G. We start with the following definition.

Definition 14 (Prime path) Path P0 defined according to Eqs. 16 and 15 is a prime
path if xi 	= x j for all i 	= j and i, j ∈ {0,1,2, . . . ,n}.

The computation of all prime paths of an automaton G can be carried out through
the construction of a rooted tree T with root x0, similar to that obtained in accordance
with Algorithm 1, as proposed in Algorithm 2.

Algorithm 2 (Algorithm for obtaining all prime paths of an automaton)
Step 1 Label the root of T as x0.
Step 2 Let |�(x0)| = n0 and x = f (x0,σ), σ ∈ �(x0). Create n0 proper descendants

of x0 and label them as x and the corresponding edge (x0,x) as σ .
Step 3 A node labeled as x, defined in the tree, will be a leaf if state x has

already labeled any proper ancestor of x. Otherwise, let |�(x)| = n and
xnew = f (x,σ), σ ∈ �(x). Create n proper descendants of x and label them
as xnew and the corresponding edge (x,xnew) as σ . Repeat this step until all
states xnew give rise only to leaves.

Step 4 Identify all leaves xl of T and form all possible paths that start at the root
and end at xl .

Notice that any branch of the tree formed according to Algorithm 2 defines a path
that starts at the initial state of the automaton and has a unique cyclic path, being
therefore a prime path. Since all possible paths that can be followed from the initial
state are considered, the algorithm returns all prime paths of G.

Remark 5 (Computational complexity of Algorithm 2)
Let E and N denote, respectively, the cardinality of the event set and the state

space of automaton G whose prime paths we want to obtain using the tree described
in Algorithm 2. Notice that all prime paths start at the initial state of G and so
E0 nodes are formed. Since there are E events in G and G is by assumption
deterministic, at most E1 nodes (states) can be obtained after the initial state. After
that at most E nodes can be obtained for each node in the previous step, resulting
in at most E2 nodes. Since there exist N states, the maximum length of any prime
path is N, which implies that the maximum number of nodes in the tree is

∑N
k=0 Ek.

Therefore, the worst case complexity of finding all prime paths by building a tree
as described in Algorithm 2 is of the order of EN . This compares favorably with
the upper bound on the number of elementary cycles in a complete directed graph
given in Johnson (1975), which can be verified to be of the order of NN−1. This is
so because we are dealing with a deterministic automaton as opposed to a complete
directed graph. In our case, E is likely to be much smaller than N; in fact, in discrete
event modeling by parallel composition, E grows linearly in the number of system
components while N grows exponentially in the number of system components. It
is worth noting that the complexity of Algorithm 1 is essentially the same as that of
Algorithm 2 since it is based on a similar tree construction where the initial state is
replaced with the origin states and each branch stops at revisited states. In the sequel,
Algorithm 2 will be employed in different contexts, where the automaton of interest
will either be G′

d or G′
test; note that in both of these cases, E is upper bounded by |�o|.

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 269

When P0 has more than one embedded cycles, it is no longer a prime path. It is
therefore necessary to split P0 in an appropriate way so as to obtain prime paths
that keep all information regarding the events that appear in all transitions of all
embedded cycles. This leads to the definitions of covering prime paths and cover for
a path with embedded cycles.

Definition 15 (Covering prime paths) Let P0 be a path with embedded cycles as
defined in Eqs. 16 and 15. A covering prime path of P0 is a prime path obtained
from P0 by deleting some cycles in P0.

Definition 16 (Cover for a path with embedded cycles) Let C(P0) = {P0,1,

P0,2, . . . ,P0,η} denote a set formed with η covering prime paths of P0. Then C(P0)

will be a cover for P0 if and only if any transition defined in P0 appears in at least
one prime path of C(P0).

The definition of cover for a path with embedded cycles above generalizes that of
cycle cover usually adopted in graph theory. An efficient algorithm for finding cycle
covers has been proposed by Itai et al. (1981).

Remark 6 It is not difficult to see from Definitions 14, 15 and 16 that any prime path
is a covering prime path and, as a consequence, a cover of itself.

Let us now apply the definitions introduced above to G′
test. Under the assumption

that �′
o ⊂ �o is not a diagnosis basis, then G′

test always has indeterminate cycles, i.e.,
cycles of states whose first components are uncertain states of G′

d and the second
components are certain states of Gd. This leads us to the following definition.

Definition 17 (Y-prime paths of G′
test) A Y-prime path of G′

test is a prime path whose
states of the unique cyclic path form an indeterminate cycle in G′

test.

The following result may be stated.

Proposition 2 A path P0 with embedded cyclic paths of G′
test has no embedded

indeterminate cyclic paths if and only if it has no covering Y-prime paths.

Proof

(⇒) Let P0 be a path with embedded cycles and assume that P0 has no embedded
indeterminate cyclic paths. Then, by slightly modifying Algorithm 2, it is not
difficult to show that all prime paths that appear in this path can be obtained.
Since, by assumption, none of the cyclic states correspond to an indeterminate
cycle, all resulting prime paths have no indeterminate cycles and, thus, no
Y-prime path is obtained.

(⇐) Assume that P0 has no covering Y-prime path but P0 has embedded inde-
terminate cycles. Due to diagnoser construction, once Gd reaches a certain
state, it is not possible for it to go back to a normal or an uncertain state, and
therefore, when P0 reaches a state belonging to an embedded indeterminate
cyclic path it must cycle only over uncertain states of G′

test. Since all transitions
must appear in all paths of any cover for P0, then it is always possible to

Author's personal copy

270 Discrete Event Dyn Syst (2012) 22:249–292

obtain a covering Y-prime path in some cover C(P0), which contradicts the
assumption that P0 has no covering Y-prime path.

We may conclude, therefore, that, according to Proposition 2, the existence of
indeterminate cycles in G′

test can be avoided if we guarantee that there is no prime
path whose unique cyclic path is indeterminate. This is an important result since
it replaces the search for paths with embedded indeterminate cyclic paths with the
search for all prime paths whose unique cyclic path is indeterminate.

5.2 Dealing with indeterminate observed cycles

Let us consider initially the paths with embedded cycles of G′
test formed with states

whose first components form indeterminate observed cycles in G′
d. As stated earlier,

since L is diagnosable with respect to Po and � f , the presence of indeterminate
observed cycles in G′

d is determined by the existence of, at least, two arbitrarily
long traces sY ,sN ∈ Ld satisfying conditions OC1. and OC2. In order to avoid that an
indeterminate observed cycle of G′

d continues to exist in G′′
d, where �′′

o = �′
o ∪ �ies,

�ies ⊆ �o \ �′
o, it is necessary and sufficient that G′′

test = G′′
d‖Gd does not have any

indeterminate cycle. Since, according to Proposition 2, any embedded cyclic path of
G′

test has no embedded indeterminate cyclic paths if and only if it has no covering
Y-prime paths, we must seek necessary conditions to prevent all Y-prime paths of
G′

test from being Y-prime paths of G′′
test.

Let us define the following sets:

SY = {s : s is a trace associated with a Y-prime path of G′
test}, (17)

SN = {s : s is a trace associated with a prime path of G′
test whose first

components of the states of the unique cyclic path are uncertain states of an

indeterminate cycle (observed or hidden) of G′
d and the second components

are either normal states of Gd or uncertain states of Gd that are not states of

an indeterminate cycle in G′
d}. (18)

We state the following result.

Theorem 5 Let us assume that L is not diagnosable with respect to P′
o and � f and

that G′
d has indeterminate observed cycles only. In addition, let s′ denote a trace of

L′
d formed with the events of a prime path whose unique cycle is indeterminate and

observed. Then, it is always possible to f ind a pair of traces (sY ,sN) ∈ SY × SN such
that s′ ∈ Poo′(sY) and s′ ∈ Poo′(sN).

Proof Let s′ be a trace of L′
d formed with the events of a prime path of G′

d whose
unique cycle is indeterminate and observed and assume that it is not possible to find
a pair of traces (sY ,sN) ∈ SY × SN that satisfy s′ ∈ Poo′(sY) and s′ ∈ Poo′(sN). In order
for such a pair not to exist, one of the following conditions must hold true:

(i) ∀sN ∈ L′
test : s′ ∈ Poo′(sN), �sY ∈ L′

test : s′ ∈ Poo′(sY);
(ii) ∀sY ∈ L′

test : s′ ∈ Poo′(sY), �sN ∈ L′
test : s′ ∈ Poo′(sN).

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 271

Let us suppose, initially, that condition (i) above holds true. It is not hard to see
that since G′

test = G′
d‖Gd and L′

test = Ld, a state in a path of G′
test will be revisited

through s only if both a state of G′
d is revisited through Poo′(s) and a state of

Gd is revisited through s. As a consequence, for any trace sY ∈ SY there must
correspond a path with embedded cycles in Gd formed with certain states and a trace
s′

Y = Poo′(sY) formed with the events of a path with embedded indeterminate cycles
in G′

d. Therefore, since, by assumption, there is no sY ∈ L′
test such that s′ ∈ Poo′(sY),

and only paths with embedded cycles formed with normal states of Gd whose events
form a trace sN such that s′ ∈ Poo′(sN) can be found in G′

test, it is not possible to
have s′ associated with a prime path of G′

d whose unique cycle is indeterminate,
which contradicts the assumption that L is not diagnosable with respect to P′

o and
� f . Similar argument can be used to prove that when condition (ii) holds true, there
is also a contradiction. �

Remark 7 Note that if s′ is associated with a cycle of uncertain states that do not form
an indeterminate cycle, then there will not exist sY such that s′ ∈ Poo′(sY), but only
sN such that s′ ∈ Poo′(sN). The reason for that is the assumption that L is diagnosable
with respect to Po and � f .

Theorem 5 above establishes that for any trace s′ formed with events of a prime
path of G′

d whose unique cycle is indeterminate and observed, it is always possible
to find, at least, a pair of traces (sY ,sN) ∈ SY × SN such that s′ ∈ Poo′(sY) and s′ ∈
Poo′(sN). It is worth remarking that the reverse is not necessarily true, i.e., we may
not state that for any trace sY ∈ SY , it is possible to find a trace s′ formed with events
of a prime path of G′

d such that, for a trace v ∈ sY , s′ = Poo′(v). The same conclusion
can be drawn for traces sN ∈ SN . In spite of that, the following result can be
stated.

Proposition 3 For any trace s ∈ SY ∪ SN, there exists a trace u ∈ s such that Poo′(u) =
s′, where s′ is a trace formed with the events of a prime path of G′

d (formed from a non-
hidden cycle) whose unique embedded cycle satisf ies one of the following conditions:
(i) it is indeterminate; (ii) it is formed with normal states; (iii) it is formed with uncertain
states that do not create an indeterminate cycle.

Proof For a state to be revisited in a path of G′
test, a state of a path of G′

d has to be
revisited through the events of the corresponding path of G′

test that belong to �′
o. This

implies that the projection of a prime path of G′
test is not necessarily a prime path of

G′
d, but it is always a path with embedded cycles. Nevertheless, any trace s ∈ SY ∪ SN

has a prefix u such that Poo′(u) = s′, where s′ is a trace formed with events of a prime
path of G′

d, which not necessarily contains an indeterminate cycle. This is so because
a diagnoser may cycle over normal states or uncertain states that do not form an
indeterminate cycle before it starts to cycle over uncertain states of an indeterminate
cycle. Notice that s′ cannot be a trace associated with a prime path formed from a
cycle of certain states since it is never possible for a diagnoser to go from certain to
uncertain states. �

The main implication of Theorem 5 and Proposition 3 is that in order to find an
innovate event set for �′

o that deals with indeterminate observed cycles in G′
d, it is

Author's personal copy

272 Discrete Event Dyn Syst (2012) 22:249–292

first necessary to find traces sY ∈ SY and sN ∈ SN for which there exist a trace s′
formed with the events of a prime path of G′

d whose unique cycle is indeterminate
and observed and satisfies s′ ∈ Poo′(sY) and s′ ∈ Poo′(sN). Let x�

t,Y = (x′�
d ,x�

d) denote
the unique revisited state of a Y-prime path of G′

test and write sY as sY = uYvY ,
where uY and vY , are such that x�

t,Y = ft(x0t ,uY) and ft(x�
t,Y ,vY) = x�

t,Y . Therefore,
in order for the Y-prime path formed with the events of sY be associated with an
indeterminate observed cycle of G′

d, at least one event of vY must belong to �′
o. The

same condition applies to traces sN ∈ SN .
The following result shows how to use the events of sY and sN that belong to

�o \ �′
o to form innovative event sets for �′

o.

Proposition 4 Assume that language L is not diagnosable with respect to P′
o and � f

and let �′′
o = �′

o ∪ �ies, �ies ⊆ �o \ �′
o and let G′′

d denote the partial diagnoser for L
assuming �′′

o as the observable event set. In addition, let (sY ,sN) ∈ SY × SN satisfying
Poo′(sY) = Poo′(sN), and consider a trace s′ associated with a prime path of G′

d whose
unique cycle is indeterminate (but not hidden) and s′ ∈ Poo′(sY) and s′ ∈ Poo′(sN).
A necessary condition for s′ not to be a trace associated with a prime path of G′′

d,
whose unique cycle is indeterminate, is that �ies ∩ [(�sY ∪ �sN) \ �′

o] 	= ∅, where �sY

and �sN denote, respectively, the sets formed with the events of traces sY and sN,
respectively.

Proof Let �ies = {σ ∈ �o : σ /∈ (�sY ∪ �sN) \ �′
o} and assume that all traces s′′ =

Poo′′ [P−1
oo′(s′) ∩ Ld] are associated with paths of G′′

d whose embedded cycles are
not indeterminate. However, P−1

oo′(s′) ∩ Ld ⊇ {sY ,sN}, then Poo′′(sY) = Poo′′(sN) = s′,
which contradicts the assumption that s′′ is not associated with a path of G′′

d with
embedded indeterminate cycles. �

Remark 8 It is worth remarking that the condition given in Proposition 4 is only
necessary, since if a common event of sY and sN is included in �ies, it may still be
possible that Poo′′(sY) = Poo′′(sN) = s′′, which implies that s′′ may also be associated
with a path with embedded indeterminate cycles.

According to Proposition 4, a necessary condition for a pair of traces (sY ,sN) ∈
SY × SN that satisfy Poo′(sY) = Poo′(sN) = s′, not to lead to paths with embedded
indeterminate cycles in G′′

d, is that, at least, one event of sY or one event of sN be in
�ies. Therefore, this requirement must be satisfied for all pairs of traces (sY ,sN) in
G′

test that lead to some trace s′ associated with a prime path whose unique cycle is
indeterminate and observed. Based on this fact, we propose Algorithm 3 that returns
a set �o

ies whose elements are sets formed with events of �o \ �′
o that must be added

to �′
o in order to create new candidates for minimal diagnosis bases. A requirement

to perform the algorithm is that all prime paths of G′
d and G′

test have already been
calculated.

Steps 1 and 2 of Algorithm 3 identifies all prime paths of G′
d and G′

test whose
unique cycle is indeterminate and observed. Step 3 forms sets whose traces have as
projections the traces belonging to S′

d, therefore, identifying the pairs that satisfy the
conditions of Theorem 5. In steps 4 and 5, innovative event sets are formed so as to
satisfy the conditions imposed by Proposition 4 for each pair of traces sY and sN such
that Poo′′(sY) = Poo′′(sN) = s′ for each s′ ∈ S′

d. Step 6 considers the construction of

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 273

Algorithm 3 (Computation of the innovative event sets associated with indetermi-
nate observed cycles of G′

d)

Step 1 Form set

S′
d = {s′ ∈ �′

o
∗ : s′ is a trace associated with a prime path of G′

d

formed from an indeterminate observed cycle}.
If S′

d = ∅ then �o
ies = {∅} and stop. Otherwise, go to Step 2.

Step 2 Form sets SY and SN according to Eqs. 17 and 18, respectively. For all prime
paths associated with the traces in SY and SN , identify the unique revisited
states x�

t,Y and x�
t,N , respectively, and the corresponding traces sY = uYvY

and sN = uNvN such that x�
t,Y = ft(x0t ,uY) and ft(x�

t,Y ,vY) = x�
t,Y and x�

t,N =
ft(x0t ,uN) and ft(x�

t,N,vN) = x�
t,N . Form the following sets:

So
Y = {sY = uYvY ∈ SY : vY has at least one event in �′

o},
So

N = {sN = uNvN ∈ SN : vN has at least one event in �′
o}.

Step 3 Let S′
d = {s′

1,s
′
2, . . . ,s

′
p}, where p = |S′

d|. For each s′
i ∈ S′

d, i = 1, . . . ,p, form
the following sets:

So
Y,i = {sY ∈ So

Y : s′
i ∈ Poo′(sY)},

So
N,i = {sN ∈ So

N : s′
i ∈ Poo′(sN)}.

Step 4 For each trace sk
Yi ∈ So

Y,i form a set �k
Y,i with the events of sk

Yi that belong to
�o \ �′

o. For each trace sl
Ni ∈ So

N,i form a set �l
N,i with the events of sl

Ni that
belong to �o \ �′

o.
Step 5 Let lYi = |So

Y,i| and lNi = |So
N,i|. For i = 1, . . . ,p, compute:

�o
ies,Yi =

⎧⎪⎨
⎪⎩

{∅}, if lYi = 1 and �Y,i = ∅
2�Y,i

1 , if lYi = 1 and �Y,i 	= ∅
�1

Y,i×̇�2
Y,i×̇ . . . ×̇�

lYi
Y,i, if lYi > 1,

�o
ies,Ni =

⎧⎪⎨
⎪⎩

{∅}, if lNi = 1 and �N,i = ∅
2�N,i

1 , if lNi = 1 and �N,i 	= ∅
�1

N,i×̇�2
N,i×̇ . . . ×̇�

lNi
N,i, if lNi > 1,

�o
ies,i = �o

ies,Yi ∪ �o
ies,Ni.

Step 6 Compute �o
ies = �o

ies,1×̇�o
ies,2×̇ . . . ×̇�o

ies,p.
Step 7 Remove from �o

ies, all event sets �′ ∈ �o
ies for which there exists another set

�′′ ∈ �o
ies such that �′ ⊇ �′′.

innovative event sets for each pair or traces obtained in step 3 and form a set whose
elements have at least one element of each set computed in step 5. Finally, step 7
removes all supersets of innovative event sets that appear in �o

ies, since only minimal
diagnosis bases are being sought.

The example below illustrates the application of Algorithm 3.

Author's personal copy

274 Discrete Event Dyn Syst (2012) 22:249–292

Example 3 Consider automaton G whose state transition diagram is shown in Fig. 6
and let �o = {a,b ,c,d}, �uo = {σ, σ f } and � f = {σ f } be, respectively, the observable,
the unobservable and fault event sets for G. The language L generated by G is clearly
diagnosable with respect to Po : E∗ → �∗

o and � f , since the diagnoser Gd, shown in
Fig. 7, has no indeterminate cycles.

Let us assume that we are interested in finding all minimal diagnosis bases for L.
In order to achieve this goal, the first step is to find the set of elementary diagnosing
event sets. Using Algorithm 1, the following set is obtained:

�edes = {{a,c}}.
Therefore set �′

o = {a,c} is the unique set to be considered. Figure 8 shows the
corresponding partial diagnoser G′

d, which possesses both indeterminate observed
and indeterminate hidden cycles. Therefore, L is not diagnosable with respect to P′

o
and � f , which means that �′

o = {a,c} is not a minimal diagnosis basis.
Let us address, now, the problem of obtaining a new set �′′

o = �′
o ∪ �ies of least

possible cardinality with the view to removing the indeterminate observed cycles that
exists in G′

d. Following Algorithm 3, the first step is to form the tree of Fig. 9 and, in
the sequel, the set S′

d, whose elements are the traces formed with the events of prime
paths of G′

d associated with indeterminate observed cycles. This is done by searching
on the tree shown in Fig. 9 for the leaves labeled with uncertain states of G′

d that
form indeterminate observed cycles. It is clear from Fig. 9 that the leaves labeled as
Y N1 and Y N2, corresponding, respectively, to states {9N,10Y,11Y} and {9N,10Y}
of G′

d, are the only ones whose unique cycles of their prime paths are indeterminate
and observed. Therefore, set S′

d will be given as:

S′
d = {s′

1,s
′
2} = {accc,ccc}.

Since S′
d has two elements, we can move to Step 2 of Algorithm 3. In order to

obtain the sets So
Y and So

N it is necessary to build a tree for G′
test, form sets SY and SN ,

Fig. 6 Automaton G for the
illustration of Algorithms 3
and 4

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 275

Fig. 7 Centralized diagnoser Gd for automaton G of Fig. 6

and identify all traces of SY and SN associated with indeterminate observed cycles
of G′

d. Using the tree of Fig. 11—which was built for automaton G′
test depicted in

Fig. 10—we find the following traces of SY associated with indeterminate observed
cycles: sY,1 = adccc, sY,2 = bdaccc, and sY,3 = bdccc. Therefore,

So
Y = {adccc,bdaccc,bdccc}.

The traces of SN associated with indeterminate cycles of G′
d are also obtained using

the tree of Fig. 11, being given as: sN,1 = accc and sN,2 = bccc. Therefore, set So
N is

given as:

So
N = {bccc,accc}.

Fig. 8 Partial diagnoser G′
d for automaton G of Fig. 6 assuming �′

o = {a,c}

Author's personal copy

276 Discrete Event Dyn Syst (2012) 22:249–292

Fig. 9 Tree for G′
d

Following, now, Step 3 of Algorithm 3, the following sets are formed:

So
Y,1 = {adccc,bdaccc}, So

Y,2 = {bdccc}, So
N,1 = {accc}, and So

N,2 = {bccc}.
Notice that, in this particular example, the projections of the traces in So

Y,1, So
Y,2, So

N,1,
and So

N,2 are equal to traces s′
1 and s′

2 of S′
d.

Having formed sets So
Y,1, So

Y,2, So
N,1, and So

N,2, the next step is to obtain the set of
events of traces si

Y ∈ SY,i and si
N ∈ SN,i that are not in �′

o. The following sets are then
formed:

�1
Y,1 = {d}, �2

Y,1 = {b ,d}, �1
Y,2 = {b ,d}, �1

N,1 = ∅ and �1
N,2 = {b}.

Fig. 10 Automaton G′
test = G′

d‖Gd.

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 277

Fig. 11 Tree for G′
test

Proceeding now according to Step 6, we obtain:

�o
ies,Y1 = �1

Y,1×̇�2
Y,1 = {{b ,d},{d}}, �ies,Y2 = {{b},{d}},

�o
ies,N1 = {∅}, �ies,N2 = {{b}},
�o

ies,1 = �o
ies,Y1 ∪ �o

ies,N1 = {{b ,d},{d}}
�o

ies,2 = �o
ies,Y2 ∪ �o

ies,N2 = {{b},{d}}.
Therefore, the innovative event sets for the indeterminate observed cycles of G′

d are
given as:

�o
ies = �ies,1×̇�ies,2 = {{b ,d},{d}}.

Finally, since {d} ⊂ {b ,d}, then {b ,d} must be removed from �o
ies. Therefore,

�o
ies = {{d}}.

5.3 Dealing with indeterminate hidden cycles of G′
d

According to conditions HC1. and HC2., the existence of indeterminate hidden
cycles in G′

d implies that there exist at least one arbitrarily long trace sY ∈ Ld

associated with a path with embedded cycles formed with certain states of Gd,
and one trace of bounded length sN ∈ Ld, that takes Gd from its initial state to
either a normal or an uncertain state, satisfying Poo′(sY) = Poo′(sN) = s′, where s′
is a bounded length trace. In addition, notice that, since L′

test = Ld, the cycles that
are hidden in G′

d have corresponding cycles in G′
test whose states all have the same

first component, namely, the state of G′
d that contains the hidden cycle. Moreover,

the events that label the transitions between these states all belong to �o \ �′
o. This

Author's personal copy

278 Discrete Event Dyn Syst (2012) 22:249–292

suggests that it is possible to establish a connection between Y-prime paths of G′
test

and paths of G′
d with embedded indeterminate hidden cycles.

Let us define the following sets:

S′
t = {s : s is a trace associated with a prime path of G′

test}, (19)

SYY = {s ∈ S′
t : (there exists a leaf labeled as (x′

d, xd), where x′
d and

xd are both certain)[ft(xt0 ,s) = (x′
d,xd)]}, (20)

SNN = {s ∈ S′
t : (there exists a leaf labeled as (x′

d, xd), where x′
d and

xd are both normal)[ft(xt0 ,s) = (x′
d,xd)]}. (21)

Notice that SYY (respectively SNN) is formed with prime paths whose unique cyclic
path is formed with states whose components are both certain (respectively both
normal).

Theorem 6 Let x�
t = (x′�

d ,x�
d) be the unique revisited state of a Y-prime path of G′

test,
and let sY denote the trace formed with the events of this Y-prime path. In addition,
assume that sY = uv, where v ∈ (�o \ �′

o)
+, x�

t = ft(x0t ,u), and ft(x�
t ,v) = x�

t . Then
s′ = Poo′(sY) is a trace formed with events of a path with embedded indeterminate
hidden cycles of G′

d in state x′�
d = f ′

d(x′
0d

,s′). In addition, let

Sh
Y(s′) = {sY ∈ Sh

Y : Poo′(sY) = s′}, (22)

where

Sh
Y = {sY ∈ SY : (sY = uv ∈ �∗

o)(v ∈ (�o \ �′
o)

+)}, (23)

and def ine the following set:

Sh
N(s′) = SYN

Y (s′) ∪ SYN
YY ∪ SN ∪ SNN, (24)

where SN and SNN are def ined in Eqs. 18 and 21, respectively,

SYN
YY = SYN

YY,1 \ SYN
YY,2, (25)

where

SYN
YY,1 =

{
s ∈ SYY : (∃xd uncertain)[ft(xt0 ,s) = (x′

d,xd)]
}

, (26)

SYN
YY,2 = {

s ∈ SYN
YY,1 : (∃smax ∈ SYN

YY,1

) [(s ∈ smax) ∧ (s 	= smax)
}
, (27)

with SYY def ined in Eq. 20, and

SYN
Y (s′) = SYN

Y,1(s
′) \ SYN

Y,2(s
′), (28)

where

SYN
Y,1(s

′) =
{

s ∈ SY(s′) : (∃xd uncertain)[ft(xt0 ,s) = (x′
d,xd)]

}
, (29)

SYN
Y,2(s

′) = {
s ∈ SYN

Y,1(s
′) : (∃smax ∈ SYN

Y,1(s
′)
) [(s ∈ smax) ∧ (s 	= smax)

}
, (30)

with

SY(s′) = Sh
Y \ Sh

Y(s′). (31)

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 279

Then, there exists at least one trace sP ∈ Sh
N(s′) that has a pref ix sN (sN ∈ sP) such

that Poo′(sN) = s′ and fd(x0d ,sP) = x#
d, where x#

d is either a normal state of Gd or an
uncertain state of Gd that is not a state of an indeterminate cycle.

Proof Let us consider the first part of the theorem. Since G′
d = Obs(Gd,�

′
o) (up

to state renaming) and G′
test = G′

d‖Gd, it is not hard to check that for all state
xt = (x′

d,xd) ∈ Xt, then xd ⊆ x′
d. In addition, since by assumption v ∈ (�o \ �′

o)
+ and

satisfies ft(x�
t ,v) = x�

t , then the first components of all states reached after u are all
equal to x′

d = f ′
d(x′

0d
,s′). Moreover, since L′

test = Ld and the second components of
the states of the Y-prime path reached after u are all subsets of x′

d, we may conclude
that x′

d possesses an indeterminate hidden cycle, which proves the first part of the
lemma.

Consider, now, the second part of the theorem. Let x′�
d be an uncertain state of G′

d
that contains an indeterminate hidden cycle, and assume that there does not exist any
trace sP ∈ Sh

N(s′) that has a prefix sN satisfying Poo′(sN) = s′. Notice that set Sh
N(s′)

is formed with the longest prefixes of each trace of SYY and SY \ {sY} that lead to
uncertain states of Gd not belonging to an indeterminate cycle and with the traces
of SN and SNN which, by definition, lead to normal states of Gd. It is known that
in order for a state x′

d ∈ X ′
d to have an indeterminate hidden cycle, there must exist

traces s̃Y ,s̃N ∈ L′
test, where s̃Y is formed with the events of a path with embedded

cycles of certain states of Gd, and s̃N with bounded length, such that x̃d = fd(x0d ,s̃N)

is either a normal or an uncertain state of Gd, and Poo′(s̃N) = Poo′(s̃Y) = s̃′, for some
trace s̃′ ∈ L′

d. Since L′
test = Ld, and by assumption, there exists no trace sP that takes

Gd from the initial state to either a normal or an uncertain state, we may conclude
that x′�

d = f ′
d(x′

0d
,s′) is a certain state of G′

d, which contradicts the fact that x′�
d is an

uncertain state. �

Let us now address the problem of finding an innovative event set �ies in such a
way that the hidden cycles that appear in G′

d will not appear in G′′
d. As in the case of

indeterminate observed cycles, the idea here is to include events of �o \ �′
o with the

view to making Poo′′(sY) 	= Poo′′(sN) for all sY ,sN ∈ Ld that satisfy conditions HC1.
and HC2.

Proposition 5 Assume that L is not diagnosable with respect to P′
o and � f and let

�′′
o = �′

o ∪ �ies, �ies ⊆ �o \ �′
o. Let (sY ,sN) be a pair of traces in L′

test where sY is
a trace associated with a Y-prime path of G′

test that corresponds to a path with an
embedded indeterminate hidden cycle in G′

d, and sN is a pref ix of a trace sP ∈ Sh
N(s′),

where s′ = Poo′(sY), whose last event sN f ∈ �′
o. A necessary condition for the path with

embedded indeterminate hidden cycle associated with s′ not to be a path of G′′
d with

embedded indeterminate hidden cycles, is that �ies ∩ [(�sY ∪ �sN) \ �′
o] 	= ∅, where

�sY and �sN denote, respectively, the sets formed with the events of traces sY and sN.

Proof Let �ies = {σ ∈ �o : σ /∈ (�sY ∪ �sN) \ �′
o}, and assume that all traces s′′ =

Poo′′ [P−1
oo′(s′) ∩ Ld] are associated with paths of G′′

d that possess no indeterminate hid-
den cycles. However, since P−1

oo′(s′) ∩ Ld ⊇ {sY ,sN,sP}, then Poo′′(sY) = Poo′′(sN) =
Poo′′(sP) = s′, which contradicts the assumption that s′′ is not associated with a path
of G′′

d with embedded indeterminate hidden cycles. �

Author's personal copy

280 Discrete Event Dyn Syst (2012) 22:249–292

Remark 9

(a) The reader could argue that instead of restricting the events of �ies to (�sY ∪
�sN) \ �′

o, we could select events from (�sY ∪ �sP) \ �′
o to form �ies. Notice

that, if, for instance, �ies = {σ }, where σ ∈ �sP but σ /∈ �sN and σ /∈ �sY ,
then, although Poo′′(sP) 	= s′, we still would have Poo′′(sY) = Poo′′(sN) = s′ since
P−1

oo′(s′) ∩ Ld ⊇ {sY ,sN,sP}, which again would lead to an indeterminate hidden
cycle in G′′

d.
(b) Although the condition imposed by Proposition 5 is only necessary, it may

become sufficient if additional assumptions are made. For example, let �ies =
{σ }, where σ ∈ sN and σ /∈ sY , and write ŝN = sNŵ = tσwŵ. It is not difficult
to see that: (i) Poo′(sY) = Poo′(sN) = Poo′(t)Poo′(w); (ii) Poo′′(sY) = Poo′(sY) =
Poo′(t)Poo′(w) and; (iii) Poo′′(sN) = Poo′′(t)σ Poo′′(w). As a consequence, even
in the case when σ /∈ t or σ /∈ w, Poo′′(sY) 	= Poo′′(sN) and Poo′′(sY) 	= Poo′′(ŝN).
In addition, since σ /∈ sY and Poo′′(t) 	= ε, it is not possible to find a prefix of sN

with the same projection over �′′
o

∗ as sY , which implies that Poo′′ [P−1
oo′(s′) ∩ Ld]

does not lead to any indeterminate cycles (observed or hidden).

According to Proposition 5, for a pair of traces (sY ,sP), where sY is a trace
formed with the events of a Y-prime path of G′

test associated with a path with an
embedded indeterminate hidden cycle in G′

d, and sP ∈ Sh
N(s′) and has a prefix sN

whose last event sN f ∈ �′
o and satisfy Poo′(sY) = Poo′(sN) = s′, not to lead to paths

with embedded indeterminate hidden cycles in G′′
d, it is necessary to include in �ies,

either at least one event of sY or at least one event of sN that belongs to �o \ �′
o.

Furthermore, this requirement must be satisfied for all pairs of traces (sY ,sN) in G′
test

that satisfy the above conditions. Algorithm 4 uses these facts in order to build a
set of innovative event sets with the view to avoiding indeterminate hidden cycles in
G′′

d. As for Algorithm 3, it will be assumed that all prime paths of G′
d and G′

test have
already been calculated.

Steps 1 to 5 of Algorithm 4 are derived directly from Theorem 6 and are intended
to find all events that belong to �o \ �′

o in order to prevent s′
i from being a

trace associated with an indeterminate hidden cycle when the observable event set
becomes �′′

o = �′
o ∪ �ies, �ies ⊆ (�o \ �′

o). Step 6 considers, as in Algorithm 3, the
construction of innovative event sets for each pair of traces obtained in steps 3 and 4
and form a set whose elements have at least one event of each set computed in step
6. Finally, step 7 removes all supersets of innovative event sets that appear in �h

ies,
since only minimal diagnosis bases are being sought.

Algorithm 4 will be illustrated by means of the following example.

Example 4 Let us consider again automaton G whose state transition diagram is
depicted in Fig. 6. We make here the same assumptions regarding the observable,
unobservable and fault event sets of G, i.e., �o = {a,b ,c,d}, �uo = {σ,σ f } and � f =
{σ f }, respectively. As shown in Example 3, �′

o = {a,c} is not a minimal diagnosis
basis for L, which imposes the need to find innovative event sets to remove the
indeterminate (observed and hidden) cycles that exist in G′

d. The indeterminate
observed cycles were considered in Example 3. We will now consider the hidden
cycles of G′

d.
According to Algorithm 4, the first step is to form set Sh

Y whose elements are
the traces formed with the events of a Y-prime path of G′

test associated with the

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 281

Algorithm 4 (Computation of the innovative event sets associated with indetermi-
nate hidden cycles of G′

d)

Step 1 Identify for each Y-prime path of G′
test, the unique revisited states x�

t,Y
and the corresponding trace sY = uYvY such that x�

t,Y = ft(x0t ,uY) and
ft(x�

t,Y ,vY) = x�
t,Y , and form the following sets:

Sh
Y = {sY = uYvY ∈ ��

o : vY ∈ (�o \ �′
o)

+},
and compute Poo′(Sh

Y). Define p = |Poo′(Sh
Y)| (p ≤ |Poo′(Sh

Y)|), and write
Poo′(Sh

Y) as

Poo′(Sh
Y) = {s′

1,s
′
2, . . . ,s

′
p}.

Step 2 Form sets SN , SNN according to Eqs. 18 and 21, respectively, and set SYN
YY

according to Eqs. 20, 25, 26 and 27.
Step 3 For each s′

i ∈ Poo′(Sh
Y), i = 1, . . . ,p, form set Sh

Y,i = {sY ∈ Sh
Y : Poo′(sY) =

s′
i}.

Step 4 For each s′
i ∈ Poo′(Sh

Y), i = 1, . . . ,p, form set Sh
N,i as follows:

• Form set Sh
N(s′

i) according to Eqs. 24, 28, 29, and 30, with s′ replaced
with s′

i, and where in Eq. 29, SY(s′
i) = Sh

Y \ Sh
Y,i.• Form set

Sh
N,i = {sN ∈ Sh

N(s′
i) : (∃sN f ∈ �′

o)[Poo′(sN) = s′
i]}, (32)

where sN f denotes the last event of sN .

Step 5 Form sets �k
Y,i and �l

N,i as follows:

• For each sk
Y,i ∈ Sh

Y,i form a set �k
Y,i with the events of sk

Y,i that belong to
�o \ �′

o.
• For each sl

N,i ∈ Sh
N,i form a set �l

N,i with the events of sl
N,i that belong to

�o \ �′
o.

Step 6 Let lYi = |Sh
Y,i| and lNi = |Sh

N,i|. For i = 1, . . . ,p, compute:

�h
ies,Yi =

⎧⎪⎨
⎪⎩

{∅}, if lYi = 1 and �Y,i = ∅
2�Y,i

1 , if lYi = 1 and �Y,i 	= ∅
�1

Y,i×̇�2
Y,i×̇ . . . ×̇�

lYi
Y,i, if lYi > 1,

�h
ies,Ni =

⎧⎪⎨
⎪⎩

{∅}, if lNi = 1 and �N,i = ∅
2�N,i

1 , if lNi = 1 and �N,i 	= ∅
�1

N,i×̇�2
N,i×̇ . . . ×̇�

lNi
N,i, if lNi > 1,

�h
ies,i = �h

ies,Yi ∪ �h
ies,Ni.

Step 7 Compute �h
ies = �h

ies,1×̇�h
ies,2×̇ . . . ×̇�h

ies,p.
Step 8 Remove from �h

ies, all sets �′ ∈ �h
ies for which there exists another set �′′ ∈

�h
ies such that �′ ⊇ �′′.

Author's personal copy

282 Discrete Event Dyn Syst (2012) 22:249–292

paths with embedded indeterminate hidden cycles of G′
d. Using the tree of Fig. 11,

we find the following traces: sY,1 = adccb, sY,2 = adcb, sY,3 = bdcb and sY,4 = bdccb.
Therefore,

Sh
Y = {adccb,adcb,bdcb,bdccb}.

According to step 1, it is still necessary to obtain the set formed with the projections
over �′

o
∗ of the traces of Sh

Y , which is given by:

Poo′(Sh
Y) = {s′

1,s
′
2,s

′
3,s

′
4} = {acc,ac,c,cc}.

The next step of Algorithm 4 (step 2) requires that sets SN and SNN be constructed
according to Eqs. 18 and 21, respectively and set SYN

YY according to Eqs. 20, 25 26
and 27. Using the tree of Fig. 11 and the test automaton G′

test of Fig. 10, we obtain:

SN = {adbb, accc, bccc, bdbb},
SNN = ∅,

SYY = {adac, acaa, bcaa}.
Set SYN

YY is then formed by taking the longest prefix of each trace of SYY that takes
the initial state of Gd to an uncertain state. Using G′

test automaton of Fig. 10, it is not
hard to check that

SYN
YY = {ad,ac,bc}.

We can now move to steps 3 and 4 of Algorithm 4 and form sets Sh
Y,i and Sh

N,i

associated with each s′
i ∈ Poo′(Sh

Y), i = 1,2,3,4. Set Sh
Y,i, can be easily obtained, being

given as:

Sh
Y,1 = {adccb}, Sh

Y,2 = {adcb}, Sh
Y,3 = {bdcb}, Sh

Y,4 = {bdccb}.

Let us now consider the construction of sets Sh
N,i, i = 1,2,3,4. Consider, initially, s′

1 =
acc. Since

SY(s′
1) = {adcb,bdcb,bdccb},

SYN
Y (s′

1) = {ad,bd},
Sh

N(s′
1) = {ad,bd,ac,bc,adbb,accc,bccc,bdbb},

then Sh
N,1 = {acc}. Proceeding in the same manner as above, we obtain Sh

N(s′
2) =

Sh
N(s′

3) = Sh
N(s′

4) = Sh
N(s′

1) and thus Sh
N,2 = {ac}, Sh

N,3 = {bc} and Sh
N,4 = {bcc}. Notice

that Sh
N,i is formed with the traces of set Sh

N(s′
i) that have as prefixes traces sN,i whose

last events belong to �′
o and satisfy Poo′(sN,i) = s′

i.
Continuing with Algorithm 4, the following sets must be formed in step 5:

�1
Y,1 = {b,d}, �1

Y,2 = {b,d}, �1
Y,3 = {b,d}, E1

Y,4 = {b,d},
�1

N,1 = ∅, �1
N,2 = ∅, �1

N,3 = {b}, �1
N,4 = {b},

whose events belong to the traces of Sh
Y,i and Sh

N,i that are not in �′
o.

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 283

Proceeding according to step 6, we form the following sets:

�h
ies,Y1 = �h

ies,Y2 = �h
ies,Y3 = �h

ies,Y4 = {{b},{d}},
�h

ies,N1 = �h
ies,N2 = ∅, �h

ies,N3 = �h
ies,N4 = {{b}}.

Still in step 6, the sets obtained above are used to form the following sets:

�h
ies,1 = �h

ies,Y1 ∪ �h
ies,N1 = {{b},{d}},

�h
ies,2 = �h

ies,Y2 ∪ �h
ies,N2 = {{b},{d}},

�h
ies,3 = �h

ies,Y3 ∪ �h
ies,N3 = {{b},{d}},

�h
ies,4 = �h

ies,Y4 ∪ �h
ies,N4 = {{b},{d}}.

Therefore, the innovative event set to deal with the indeterminate hidden cycles of
G′

d is, according to step 7, given as:

�h
ies = �h

ies,1×̇�h
ies,2×̇�h

ies,3×̇�h
ies,4 = {{b},{d},{b ,d}}.

Notice that since {b ,d} ⊃ {b} — {b ,d} it is also a superset of {d} — it must be removed
from �h

ies, which, therefore, reduces to:

�h
ies = {{b},{d}}.

5.4 The search algorithm

In this section, we put together Algorithms 1, 3 and 4 to form Algorithm 5 to carry
out the search for minimal diagnosis bases. We assume that for a given G, L is
diagnosable with respect to Po : � → �∗

o and σ f , where �o is the set of all possible
observable events of G. The reader is referred to Table 2 in the Appendix for the
notation used in the algorithm.

Remark 10 (Computational complexity of Algorithm 5)
In order to compute all EDESs in the first step of Algorithm 5, we need to

build automaton Gd which has |Xd| states and |Xd| · |�o| transitions; |Xd| is upper
bounded2 by 2|X|. If we partition the state space of Gd as Xd = XY

Y N∪̇XY ∪̇X ′
d,

where X ′
d accounts for the remaining states, then, using the results of Remark 5,

the computational complexity of finding all prime paths starting at all states of XY
Y N

using Algorithm 1 is |XY
Y N| · |�o||XY | in the worst case. The next computationally

intensive step of Algorithm 5 is step 3. At each iteration of that step, it is initially
necessary to verify the diagnosability of L with respect to �′

o and � f . This could

2We point out that practical applications with real systems have yielded diagnosers whose state
spaces are of the same order as those of the systems; see e.g. Sampath (2001), Sengupta (2001) and
Sinnamohideen (2001). In these applications, the worst-case exponential upper bound is far from
being attained due to the underlying system structure.

Author's personal copy

284 Discrete Event Dyn Syst (2012) 22:249–292

Algorithm 5
Step 1 Use Algorithm 1, compute �edes;
Step 2 Set �mdbc = �edes and �mdb = ∅;
Step 3 Pick one of the elements of �mdbc with the least cardinality and denote it as

�′
o, update �mdbc ← �mdbc \ {�′

o}, and compute G′
d;

– If G′
d does not have any indeterminate cycles

• Set �mdb ← �mdb ∪ {�′
o};

[The algorithm can be stopped here if so desired]
• If �mdbc = ∅ then stop. Otherwise, go back to the beginning of step 3.

– Otherwise
• Use Algorithm 2 to compute all prime paths of G′

test and G′
d• Use Algorithm 3 to compute �o

ies;

• Use Algorithm 4 to compute �h
ies;

• Compute �ies = �o
ies×̇�h

ies;

• Remove from �ies, all event sets �′ for which there exists another set
�′′ ∈ �ies such that �′ ⊇ �′′.
• Set �mdbc ← �mdbc ∪ ({�′

o}×̇�ies
)
;

• Remove from �mdbc, all event sets �′ for which there exists a set �′′ ∈
�mdbc such that �′ ⊇ �′′ or there exists a set �′′′ ∈ �mdb such that �′ ⊇
�′′′.
• If �mdbc = {�o} then set �mdb = {�o} and stop. Otherwise, go back to
the beginning of step 3.

be done in polynomial complexity in the state space of G using verifiers (Moreira
et al. 2011); however, since G′

d can be built in linear time in the size of Gd, then
diagnosability can be verified in polynomial complexity in the size of G′

d using the
indeterminate cycle condition. After that step, we need to compute all prime paths
of the currently considered G′

d and G′
test using Algorithm 2. Since G′

d has at most
|Xd| states and |Xd| · |�′

o| transitions and G′
test = G′

d‖Gd has at most |Xd|2 states
and |Xd|2 · |�o| transitions, the worst-case computational complexity of computing
all prime paths of G′

d and G′
test is |�′

o||Xd| and |�o||Xd|2 , respectively (using again the
results of Remark 5). The subsequent calculations in step 3, including the application
of Algorithms 3 and 4, involve manipulations of sets of innovative events built from
the prime paths of G′

d and G′
test; these calculations have worst-case complexity of

2|�ies|, which is below that of the preceding calculation. After the stopping condition,
step 3 can be further iterated if the goal is to compute more than one (or all) minimal
diagnosis bases. The total number of iterations of step 3, for computing all diagnosis
bases, is upper bounded by 2|�o\�edes,min| where �edes,min is the set with minimum
cardinality among the elements of �edes.

We now illustrate the search algorithm above by means of two examples.

Example 5 Let us consider the state transition diagram of automaton G depicted in
Fig. 6. As shown in Example 3, L is diagnosable with respect to Po : �∗ → �∗

o and

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 285

� f , where �o = {a,b ,c,d} and � f = {σ f }. Therefore, Algorithm 5 can be applied to
search for all minimal diagnosis bases of L.

The first step of Algorithm 5 is the computation of the set of elementary diagnos-
ing event sets �edes. This set has already been obtained in Example 3, being given
as �edes = {{a,c}}. Therefore, according to step 2 of Algorithm 5, �mdbc = {{a,c}}. As
we can see, there is a unique minimal diagnosis basis candidate, and thus �′

o = {a,c}.
As shown in Example 3, L is not diagnosable with respect to P′

o : �∗ → �′
o
∗ and � f .

As a consequence, it is necessary to compute the innovative event set �ies in order to
enlarge �′

o. This problem has already been addressed in Examples 3 and 4, leading
to �o

ies = {{d}} and �h
ies = {{b},{d}}. Therefore,

�ies = �o
ies×̇�h

ies = {{b ,d}, {d}}.

Since {d} ⊂ {b ,d}, then {b ,d} must be removed from �ies, and thus the next minimal
diagnosis basis candidate set is given by:

�mdbc = �mdbc ∪ ({�′
o}×̇�ies

) = ∅ ∪ {{a,c,d}} = {{a,c,d}}.

We should now run step 3 again with �′
o = {a,c,d}. It can be checked that the

corresponding partial diagnoser G′
d has no indeterminate cycles. We may, therefore,

conclude that L is diagnosable with respect to P′
o and � f , which implies that

�mdb = {�′
o} = {{a,c,d}}.

Since �mdbc = ∅, the algorithm must stop, and thus {a,c,d} is the unique minimal
diagnosis basis for L.

Example 6 Let us consider the problem of computing all minimal diagnosis bases for
the language L generated by automaton G whose state transition diagram is depicted
in Fig. 12a. The set of events of G is � = {a,b ,c,d,e,g,σ,σ f }, and its sets of observable,
unobservable and fault events are, respectively, �o = {a,b ,c,d,e,g} and �uo = {σ,σ f }
and � f = {σ f }. The corresponding diagnoser is shown in Fig. 12b, where it is clear
that Gd has no indeterminate cycles. Thus, we may conclude that L is diagnosable
with respect to Po and � f . We can therefore use Algorithm 5 to find all minimal
diagnosis bases for L.

According to Algorithm 5, the first step is to find all elementary diagnosing event
sets of Gd. Following Algorithm 1, we obtain �edes = {{b ,d},{d,e}}. Moving to step 2
of Algorithm 5, we must set �mdbc = �edes and �mdb = ∅.

In order to continue with the algorithm, we must choose, among the sets in
�mdbc, the one with the smallest cardinality. However all sets in �mdbc have the
same cardinality, and thus any set can be chosen arbitrarily. Choosing �′

o = {b ,d}
then, according to step 3, the set of minimal diagnosis basis candidates becomes
�mdbc = {{d,e}}. The partial diagnoser G′

d for �′
o = {b ,d} is depicted in Fig. 13, and

since it has one indeterminate hidden cycle, L is not diagnosable with respect to Po
′.

Author's personal copy

286 Discrete Event Dyn Syst (2012) 22:249–292

(a) (b)

Fig. 12 Automaton G and the corresponding centralized diagnoser for Example 6

In general, Algorithms 3 and 4 must be used to compute �o
ies and �h

ies, respectively.
However, since G′

d has indeterminate hidden cycles only, there is no need to
go through all the steps of Algorithm 3, i.e., �o

ies = {∅}. Moving to Algorithm 4,
we need to build automaton G′

test depicted in Fig. 14, and, based on G′
test, we

construct the tree of Fig. 15. Following the first step of Algorithm 4, we can see
that Sh

Y = {cbe} and Poo′(Sh
Y) = {b}. Therefore s′

1 = b is the unique sequence of
L′

d to be considered, which implies that Sh
Y(s′

1) = {cbe} and Sh
N(s′

1) = {c,gb,dbd}
since SYN

Y (s′
1) = ∅, SYN

YY = {c,gb}, SN = ∅ and SNN = {dbd}. Therefore, Sh
Y,1 = {cbe}

and Sh
N,1 = {gb} and so �ies = �o

ies×̇�h
ies = {{c},{e},{g}}. At the end of step 3, we

obtain �mdbc = {{d,e},{b,c,d},{b,d,g}}, and since �mdbc 	= {�o}, we must go back to
the beginning of step 3.

In the second run of step 3, we choose �′
o = {d,e} since it is the smallest car-

dinality set in �mdbc, and thus �mdbc = {{b,c,d},{b,d,g}}. The computation of G′
d

Fig. 13 Partial diagnoser G′
d

assuming �′
o = {b ,d} for

Example 6

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 287

Fig. 14 Test automaton G′
test assuming �′

o = {b ,d} for Example 6

(not depicted in the paper) shows that �′
o is not a minimal diagnosis basis for L,

since G′
d has an indeterminate observed cycle. Therefore �h

ies = {∅} and following
the steps of Algorithm 3, we obtain �o

ies = {{b},{a,g},{c,g}}. It is not difficult to

Fig. 15 Tree corresponding to
test automaton G′

test assuming
�′

o = {b ,d} for Example 6

Author's personal copy

288 Discrete Event Dyn Syst (2012) 22:249–292

check that �ies = �o
ies. At the end of the second run of step 3, we have �mdbc =

{{b ,d,e},{b ,c,d},{b ,d,g},{a,d,e,g},{c,d,e,g}}.
Running step 3 five more times to teste each element of �mdbc, we can see that, all

elements of �mdbc are diagnosis basis. Therefore,

�mdb = {{b ,d,e},{b ,c,d},{b ,d,g},{a,d,e,g},{c,d,e,g}}

is the set of all minimal diagnosis bases for L.

6 Conclusion

We have investigated the construction of minimal diagnosis bases by exploiting
structural properties of diagnoser automata. This approach is different from prior
work, which primarily focused on enumerative search methods over the power set
of the set of potentially observable events. By constructing what we termed partial
diagnosers and test diagnosers, and examining where violations of diagnosability
occur in their transition structures, we have discovered rules for guiding the update of
the set of observable events and used them to develop algorithmic procedures that
search for diagnosis bases and identify their minimal elements. In some sense, this
approach is reminiscent of the strategy of counter-example guided search often used
in combinatorial optimization. Our overall procedure is embodied into Algorithm 5,
which takes as input the given automaton and outputs all (if so desired) minimal
diagnosis bases and their corresponding diagnosers. We are currently investigating
the adaptation of the techniques in this paper to verifier automata of the type recently
introduced in Moreira et al. (2011), in place of diagnoser automata.

Acknowledgements We would like to thank the anonymous reviewers for their comments and
suggestions which helped improve the presentation and readability of the paper. The research work
of João Carlos Basilio has been supported by the Brazilian Research Council (CNPq), grants 200820/
2006-0 and 307939/2007-3. The research of Stéphane Lafortune has been supported in part by NSF
grants ECCS-0624821 and CNS-0930081.

Appendix

We present here two tables: Table 1 lists all the acronyms and Table 2 presents the
main notation used in the paper.

Table 1 List of acronyms Acronym Name

EDES Elementary diagnosing even set
FPES Faulty path event set
FPOSS Faulty path origin state set

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 289

Table 2 Notation

Notation Meaning

Po : �∗ → �∗
o Natural projection from �∗ to �∗

o
P′

o : �∗ → �′∗
o Natural projection from �∗ to �′∗

o
P′′

o : �∗ → �′′∗
o Natural projection from �∗ to �′′∗

o
Poo′ : �∗

o → �′∗
o Natural projection from �∗

o to �′∗
o

Poo′′ : �∗
o → �′′∗

o Natural projection from �∗
o to �′′∗

o
�edes Set of elementary diagnosing event sets
�mdb Minimal diagnosis basis set
�mdbc Minimal diagnosis basis candidate set
�o

ies Set of innovative event sets associated with the
indeterminate observed cycles in G′

d
�h

ies Set of innovative event sets associated with the
indeterminate hidden cycles in G′

d
G′

test = G′
d ‖ Gd Test automaton to verify language diagnosability of G′

d
L, Ld, L′

d, L′
test Languages generated by automata G, Gd, G′

d, and G′
test, respectively

XY
Y N Set of all uncertain states of Gd from which there exists a transition

that takes to a certain state
XY XN Sets of all certain and normal states of Gd, respectively
S′

t Set of the traces associated with all prime paths of G′
test

SYY Set of all traces s ∈ S′
t such that there exists a leaf labeled as

(x′
d, xd) where x′

d and xd are both normal and ft(xt0 , s) = (x′
d, xd)

SNN Set of all traces s ∈ S′
t such that there exists a leaf labeled as

(x′
d, xd) where x′

d and xd are both normal and ft(xt0 , s) = (x′
d, xd)

SY Set formed with all Y-prime paths of G′
test

SN Set of all traces associated with prime paths of G′
test whose first

components of the states of the unique cyclic path are uncertain
states of an indeterminate cycle (observed or hidden) of G′

d and
the second components are either normal states of Gd that are not
states of an indeterminate cycle in G′

d

References

Basilio JC, Lafortune S (2009) Robust codiagnosability of discrete event systems. In: Proceedings of
the American control conference, pp 2202–2209

Boel RK, van Schuppen JH (2002) Decentralized failure diagnosis with costly communication be-
tween diagnosers. In: Proceedings of the 6th international workshop on discrete event systems,
pp 175–181

Cabasino MP, Giua A, Seatzu C (2010) Fault detection for discrete event systems using petri nets
with unobservable transitions. Automatica 46(9):1531–1539

Cassandras CG, Lafortune S (2008) Introduction to discrete event systems, 2nd edn. Springer, Boston
Cassez F, Tripakis S (2008) Fault diagnosis with static and dynamic observers. Fundam Inform

88(4):497–540
Dallal E, Lafortune S (2010) On most permissive observers in dynamic sensor optimization problems

for discrete event systems. In: Proceedings of the 48th annual allerton conference on communi-
cation, control, and computing, pp 318–324

Debouk R, Lafortune S, Teneketzis D (2002) On an optimization problem in sensor selection.
Discrete Event Dynamic Systems: Theory and Applications 12(4):417–445

Fabre E, Benveniste A, Haar S, Jard C (2005) Distributed monitoring of concurrent and asynchro-
nous systems. Discrete Event Dyn Syst: Theory Appl 15(1):33–84

Garcia HE, Yoo TS (2005) Model-based detection of routing events in discrete flow networks.
Automatica 41(4):583–594

Author's personal copy

290 Discrete Event Dyn Syst (2012) 22:249–292

Genc S (2008) Formal methods for intrusion detection of windows nt attacks. In: 3rd annual sympo-
sium on information assurance (ASIA ’08) & 11th annual NYS cyber security conference, vol 1,
pp 71–79

Haar S (2010) What topology tells us about diagnosability in partial order semantics. In: Proceedings
of the 10th international workshop on discrete event systems, pp 221–226

Itai A, Lipton RJ, Papadimitriou CH, Rodeh M (1981) Covering graphs by simple circuits. SIAM J
Comput 10(4):746–750

Jéron T, Marchand H, Genc S, Lafortune S (2008) Predictability of sequence patterns in discrete
event systems. In: Proceedings of the 17th IFAC world congress, pp 537–543

Jiang S, Huang Z, Chandra V, Kumar R (2001) A polynomial algorithm for testing diagnosability of
discrete-event systems. IEEE Trans Automat Contr 46(8):1318–1321

Jiang S, Kumar R, Garcia H (2003) Optimal sensor selection for discrete-event systems with partial
observation. IEEE Trans Automat Contr 48(3):369–381

Jiang SB, Kumar R (2004) Failure diagnosis of discrete-event systems with linear-time temporal logic
specifications. IEEE Trans Automat Contr 49(6):934–945

Johnson DB (1975) Finding all the elementary circuits of a directed graph. SIAM J Comput 4(1):
77–84

Kumar R, Takai S (2009) Inference-based ambiguity management in decentralized decision-making:
decentralized diagnosis of discrete-event systems. IEEE Trans Autom Sci Eng 6(3):479–491

Lafortune S, Teneketzis D, Sampath M, Sengupta R, Sinnamohideen K (2001) Failure diagnosis of
dynamic systems: an approach based on discrete event systems. In: Proceedings of the American
control conference, vol 3, pp 2058–2071

Lin F (1994) Diagnosability of discrete-event systems and its applications. Discrete Event Dyn Syst:
Theory Appl 4(2):197–212

Lunze J, Schroder J (2004) Sensor and actuator fault diagnosis of systems with discrete inputs and
outputs. IEEE Trans Syst Man Cybern, Part B, Cybern 34(2):1096–1107

Moreira MV, Jesus TC, Basilio JC (2011) Polynomial time verification of decentralized diagnosabil-
ity of discrete event systems. IEEE Trans Automat Contr 56(7):1679–1684

Pandalai DN, Holloway LE (2000) Template languages for fault monitoring of timed discrete event
processes. IEEE Trans Automat Contr 45(5):868–882

Pencolé Y, Cordier MO (2005) A formal framework for the decentralized diagnosis of large scale
discrete event systems and its applications to telecommunication networks. Artif Intell 164
(1–2):121–170

Ramadge PJ, Wonham WM (1989) The control of discrete-event systems. Proc IEEE 77(1):
81–98

Sampath M (2001) A hybrid approach to failure diagnosis of industrial systems. In: Proceedings of
the American control conference, vol 3, pp 2077–2082

Sampath M, Sengupta R, Lafortune S, Sinnamohideen K, Teneketzis D (1995) Diagnosability of
discrete-event systems. IEEE Trans Automat Contr 40(9):1555–1575

Sampath M, Sengupta R, Lafortune S, Sinnamohideen K, Teneketzis D (1996) Failure diagnosis
using discrete event models. IEEE Trans Control Syst Technol 4(2):105–124

Sengupta R (2001) A discrete event approach for vehicle failure diagnostics. In: Proceedings of the
American control conference, vol 3, pp 2083–2086

Sinnamohideen K (2001) Discrete-event diagnostics of heating, ventilation, and air-
conditioning systems. In: Proceedings of the American control conference, vol 3, pp 2072–
2076

Thorsley D, Teneketzis D (2005) Diagnosability of stochastic discrete-event systems. IEEE Trans
Automat Contr 50(4):476–492

Thorsley D, Teneketzis D (2007) Active acquisition of information for diagnosis and supervisory
control of discrete event systems. Discrete Event Dyn Syst: Theory Appl 17(4):531–583

Tripakis S (2002) Fault diagnosis for timed automata. In: Formal techniques in real time and fault
tolerant systems (FTRTFT). Lecture notes in computer sciences, vol 2469, pp 205–222. Springer-
Verlag, New York

Wang W, Lafortune S, Girard AR, Lin F (2010) Optimal sensor activation for diagnosing discrete
event systems. Automatica 46(7):1165–1175

Wang Y, Yoo TS, Lafortune S (2007) Diagnosis of discrete event systems using decentralized
architectures. Discrete Event Dyn Syst: Theory Appl 17(2):233–263

Author's personal copy

Discrete Event Dyn Syst (2012) 22:249–292 291

Yoo TS, Lafortune S (2002) NP-completeness of sensor selection problems arising in partially
observed discrete-event systems. IEEE Trans Automat Contr 47(9):1495–1499

Yoo TS, Lafortune S (2002) Polynomial-time verification of diagnosability of partially observed
discrete-event systems. IEEE Trans Automat Contr 47(9):1491–1495

João Carlos Basilio was born on March 15, 1962 in Juiz de Fora, Brazil. He received the Electrical
Engineering degree in 1986 from the Federal University of Juiz de Fora, Juiz de Fora, Brazil, the
M.Sc. degree in Control from the Military Institute of Engineering, Rio de Janeiro, Brazil, in 1989,
and the Ph.D. degree in Control from Oxford University, Oxford, U.K., in 1995. He began his
career in 1990 as an Assistant Lecturer at the Department of Electrical Engineering of the Federal
University of Rio de Janeiro, Rio de Janeiro, Brazil, and, since 2007, has been a Senior Associate
Professor in Control at the same department. He served as the Academic Chair for the graduation
course in Control and Automation from January, 2005, to December, 2006, and as the Chair for
the Electrical Engineering Post-graduation Program from January, 2008, to February, 2009. From
September, 2007, to December, 2008, he spent a sabbatical leave at the University of Michigan, Ann
Arbor. His is currently interested in discrete-event systems and in the development of control and
automation laboratories and new teaching techniques. Dr. Basilio is the recipient of the Correia Lima
Medal.

Saulo Telles Souza Lima was born in Rio de Janeiro, Brazil, in 1985. He received the Electrical
Engineering degree and the M.Sc. degree in Control from the Federal University of Rio de Janeiro, in

Author's personal copy

292 Discrete Event Dyn Syst (2012) 22:249–292

2009 and 2010, respectively. Since 2010, he has been working at the Brazilian Oil Company Petrobras
in the development of undersea electrical systems for oil processing and boosting in deep and ultra
deep water depth.

Stéphane Lafortune received the B. Eng. degree from Ecole Polytechnique de Montréal in 1980,
the M. Eng. degree from McGill University in 1982, and the Ph.D. degree from the University of
California at Berkeley in 1986, all in electrical engineering. Since September 1986, he has been
with the University of Michigan, Ann Arbor, where he is a Professor of Electrical Engineering
and Computer Science. Dr. Lafortune is a Fellow of the IEEE (1999). He received the Presidential
Young Investigator Award from the National Science Foundation in 1990 and the George S. Axelby
Outstanding Paper Award from the Control Systems Society of the IEEE in 1994 (for a paper
co-authored with S. L. Chung and F. Lin) and in 2001 (for a paper co-authored with G. Barrett).
Dr. Lafortune’s research interests are in discrete event systems and include multiple problem
domains: modeling, diagnosis, control, optimization, and applications to computer systems. He is
the lead developer of the software package UMDES and co-developer of DESUMA with L. Ricker.
He co-authored, with C. Cassandras, the textbook Introduction to Discrete Event Systems—Second
Edition (Springer, 2008). Dr. Lafortune is a member of the editorial boards of the Journal of Discrete
Event Dynamic Systems: Theory and Applications and of the International Journal of Control.

Marcos Vicente Moreira was born on May, 11, 1976 in Rio de Janeiro, Brazil. He received the
Electrical Engineer degree, the M.Sc. degree and the D. Sc. degree in Control from the Federal
University of Rio de Janeiro, Rio de Janeiro, Brazil, in 2000, 2002 and 2006, respectively. Since
2007, he has been an Associate Professor at the Department of Electrical Engineering at the Federal
University of Rio de Janeiro. His main interests are multivariable control, robust control, discrete-
event systems and the development of control laboratory techniques.

Author's personal copy

	Computation of minimal event bases that ensure diagnosability
	Abstract
	Introduction
	Theoretical background
	Definitions and notation
	Fault diagnosis of discrete event systems

	Diagnosability under partial observation
	Diagnosis bases for diagnosability
	Elementary diagnosing event sets
	A new diagnosability condition

	Searching for minimal diagnosis bases for diagnosability
	Prime paths, covering prime path and cover for a path with embedded cycles
	Dealing with indeterminate observed cycles
	Dealing with indeterminate hidden cycles of Gd'
	The search algorithm

	Conclusion
	Appendix
	References

