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a b s t r a c t

In the usual approaches to fault diagnosis of discrete event systems it is assumed that not only all
sensors work properly but also all information reported by sensors always reaches the diagnoser. Any bad
sensor operation or communication failure between sensors and the diagnoser can be regarded as loss of
observations of events initially assumed as observable. In such situations, it may be possible that either
the diagnoser stands still or report some wrong information regarding the fault occurrence. In this paper
we assume that intermittent loss of observations may occur and we propose an automaton model based
on a new language operation (language dilation) that takes it into account. We refer to this problem as
robust diagnosability against intermittent loss of observations (or simply robust diagnosability, where the
context allows). We present a necessary and sufficient condition for robust diagnosability in terms of the
language generated by the original automaton and propose two tests for robust language diagnosability,
one that deploys diagnosers and another one that uses verifiers. We also extend the results to robust
codiagnosability against intermittent loss of observations.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In practice fault diagnosis of discrete event systems is usually
performed by a deterministic automaton called diagnoser, which
is designed based on amodel of the physical system assuming that
not only all sensorswork properly but also all information reported
by sensors always reaches the diagnoser correctly (Contant,
Lafortune, & Teneketzis, 2006; Debouk, Lafortune, & Teneketzis,
2000; Kumar & Takai, 2009; Lin, 1994; Qiu & Kumar, 2006;
Sampath, Sengupta, Lafortune, Sinnamohideen, & Teneketzis,
1995; Thorsley & Teneketzis, 2005; Tripakis, 2002; Wang, Yoo, &
Lafortune, 2007; Zad, Kwong, & Wonham, 2003). However, bad
sensor operation canmake sensors fail to report event occurrences.
In addition bad electrical linkage and possible atmospheric
interference in the communication channels may lead to loss of
communication between sensors and the diagnoser. In both cases,
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the diagnoser fails to observe some of the event occurrences.
When loss of observations of events occurs, the diagnoser may
get stuck at some state – either due to lack of observed events
or to the occurrence of events that are not in the active event
set of its current state – or even issue an incorrect diagnostic
decision (Carvalho, Basilio, & Moreira, 2010). This suggests that
some change has to be made on diagnosers to make them robust
to loss of observations.

The problem of robust diagnosis has been recently of great
interest (Athanasopoulou, Lingxi, & Hadjicostis, 2010; Basilio &
Lafortune, 2009; Carvalho et al., 2010; Lima, Basilio, Lafortune, &
Moreira, 2010; Takai, 2010). The notion of robust codiagnosability
was introduced by Basilio and Lafortune (2009) who formulated
and solved the robust codiagnosability problem, i.e., when entire
partial diagnosers may fail and cease to operate. In a different
context, Athanasopoulou et al. (2010) developed a probabilistic
methodology for failure diagnosis in finite state machines based
on a sequence of unreliable observations. Lima et al. (2010) have
considered the problem of robust diagnosability in the presence
of permanent sensor failures, and used the redundancy that may
exist in the set of diagnosis bases (Basilio, Lima, Lafortune, &
Moreira, 2012) to design a robust diagnoser that is able to cope
with permanent sensor failures of sets of events associated with
redundant event sets, and Carvalho et al. (2010), in a preliminary
version of this paper, have considered the problem of intermittent
sensor failures. In a different problem formulation, Takai (2010)
has proposed a test based on verifiers to ascertain whether or not
the language generated by a discrete event system modeled with
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a class of automata is diagnosable. In the context of supervisory
control of DES, sensor failures have been considered in Rohloff
(2005), where permanent sensor failure is assumed, i.e., if a sensor
fails it never recovers again.

In this paper we address the problem of fault diagnosis of
discrete event systems modeled as automata in the presence of
intermittent loss of observations. In practice, loss of observations
may be due to sensor malfunctioning or communication failure
between sensors and the diagnoser which can be caused by
bad electrical linkage, defective components, circuit heating,
measurement noise, data communication failure, etc. Sensor
failures not only change the dynamical evolution of the system
but also invalidate the model originally developed for language
diagnosability. Communication failures in the channel that links
the supervisor and the plant sensors may lead the supervisor to
takewrong decisions regarding the events to be enabled and so, the
dynamic behavior of the controlled plantmay be different from the
nominal, i.e., the one used to design the diagnoser. Therefore, we
will assume throughout this paper that all sensors subject to failure
and all communication failures between sensors and the diagnoser
do not interfere in both the supervisory control system and in the
continuous variable controller for the plant.

This paper is structured as follows. In Section 2 we present a
backgroundmaterial on discrete event systems that is necessary in
the sections that follows. In Section 3 we first present models for
sensor and communication channel failures and their implications
in the modeling of discrete event systems, and, in the sequel, we
present an automaton model for discrete event systems subject
to intermittent loss of observations. In Section 4 we present the
definition of robust diagnosability against intermittent loss of
observations. In Section 5, we initially present a necessary and
sufficient condition for robust diagnosability expressed in terms
of diagnosers, and introduce the so-called ‘‘robust diagnoser’’,
i.e., a diagnoser that is able to cope with intermittent loss of
observations; in the sequel, we propose two different ways
to build robust diagnosers: one starting from the automaton
model of the plant and another one starting from the diagnoser
originally developed for testing the language diagnosability of
the system. To complete Section 5, we extend the results to
robust codiagnosability against intermittent loss of observations.
In Section 6we consider the use of verifiers in the analysis of robust
diagnosability and codiagnosability against intermittent loss of
observations. Finally, in Section 7, we list the main contributions
of the paper and outline some possible future works.

2. Preliminaries

2.1. Definitions and notation

Let G = (X, Σ, f, Γ, x0) denote a deterministic finite state
automaton, where X is the finite set of states, Σ is the finite set
of events, f : X × Σ → X is the transition function, partially
defined in its domain, Γ : X → 2Σ is the active event set, and x0
is the initial state. Assume that Σ is partitioned as Σ = Σo∪̇Σuo,
where Σo and Σuo denote, respectively, the sets of observable
and unobservable events. Let L denote the language generated by
automaton G, i.e., L (G) = L, and L/s = {t ∈ Σ∗

: st ∈ L} the post-
language of L after a trace s ∈ L, where Σ∗ denotes the Kleene
closure of Σ , and L(G, x) the set of all traces that originate in state
x of G. Let s denote a trace of L. Then, throughout the text, (i) sf
denotes the last event of s; (ii) s denotes the prefix-closure of s, i.e.,
the set of all traces that are prefixes of s; (iii) ∥s∥ denotes the length
of s.

The language projection Po is defined in the usual manner
(Ramadge &Wonham, 1989), as Po : Σ∗

→ Σ∗
o with the following

properties: (i) Po(ϵ) = ϵ; (ii) Po(σ ) = σ if σ ∈ Σo; (iii) Po(σ ) = ϵ,
Fig. 1. Faulty label automaton Aℓ .

if σ ∈ Σuo; (iv) Po(sσ) = Po(s)Po(σ ), for s ∈ Σ∗ and σ ∈ Σ , where
ϵ denotes the empty trace. The inverse projection operator P−1

o is
defined as P−1

o (t) = {s ∈ Σ∗
: Po(s) = t}. Both the projection

and inverse projection operations can be extended to languages in
a straightforward way by applying Po(s) and P−1

o (s) to all s ∈ L.
Let G1 = (X1, Σ1, Γ1, f1, x0,1) and G2 = (X2, Σ2, Γ2, f2, x0,2).

The synchronous or parallel composition of G1 and G2, denoted by
G1∥G2, is defined asG1∥G2 = Ac(X1×X2, Σ1∪Σ2, f1∥2, (x0,1, x0,2)),
where f1∥2((x1, x2), σ ) = (f1(x1, σ ), f2(x2, σ )), if σ ∈ Γ1(x1) ∩

Γ2(x2), f1∥2((x1, x2), σ ) = (f1(x1, σ ), x2) if σ ∈ Γ1(x1) \ Σ2, f1∥2
((x1, x2), σ ) = (x1, f2(x2, σ )), if σ ∈ Γ2(x2) \ Σ1, and, undefined,
otherwise. In the definition of G1∥G2, Ac(·) denotes the accessible
part of the automaton, i.e., the operation that eliminates all states
that are not reachable from the initial state and their related
transitions. Finally, Obs(G, Σo) denotes the observer automaton of
G with respect to Σo, i.e., assuming Σo as the set of observable
events.2

2.2. Fault diagnosis of discrete event systems

Let Σf ⊆ Σuo denote the set of fault events, and assume, for
the sake of simplicity, that there is only one fault event, i.e., Σf =

{σf }. In addition, letΨ (Σf ) = {s ∈ L : sf ∈ Σf } denote the set of all
finite traces of L that end with the fault event σf . With some abuse
of notation, Σf ∈ s denotes that s ∩ Ψ (Σf ) ≠ ∅. We make the
following usual assumptions:

A1. L is live, i.e., Γ (xi) ≠ ∅ for all xi ∈ X;
A2. G has no cycle of unobservable events.

The language L is said to be diagnosable if the occurrence of
σf can be detected within a finite number of transitions after its
occurrence using only traces formed with events in Σo. Formally,
language diagnosability is defined as follows (Sampath et al., 1995).

Definition 1. A prefix-closed and live language L is diagnosable
with respect to projection Po and Σf = {σf } if the following holds
true:

(∃n ∈ N)(∀s ∈ Ψ (Σf ))(∀t ∈ L/s)(∥t∥ ≥ n ⇒ D),

where the diagnosability condition D is

(@ω ∈ L)[(Po(st) = Po(ω)) ∧ (Σf ∉ ω)]. (1)

One way to verify language diagnosability of DES is by means
of diagnosers (Sampath et al., 1995). Diagnosers are deterministic
automata whose event set is formed with the observable events
of G, and their states have labels Y and N attached to the states of
G to indicate whether event σf has occurred or not. Formally, the
diagnoser automaton Gd is defined as

Gd = (Xd, Σo, fd, Γd, x0,d) = Obs (G∥Aℓ, Σo), (2)

where Aℓ is the two state label automaton shown in Fig. 1.
A state xd ∈ Xd is called certain (or faulty), if ℓ = Y for all

(x, ℓ) ∈ xd, and normal (or non-faulty) if ℓ = N for all (x, ℓ) ∈ xd. If
there exist (x, ℓ), (y, ℓ̃) ∈ xd, x not necessarily distinct from y such
that ℓ = Y and ℓ̃ = N , then xd is called an uncertain state of Gd.
When the diagnoser is in a certain (normal) state, it is certain that

2 For a detailed definition of observer, the reader is referred to Cassandras and
Lafortune (2008, p. 102).
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a fault has (resp. has not) occurred. However, if the diagnoser is
in an uncertain state, it is not sure if the fault event has occurred
or not. If there is a cycle3 formed with uncertain states where
the diagnoser can remain forever, then it will never be able to
diagnose the fault occurrence; on the other hand if somehow it
always leaves this cycle of uncertain states, then this cycle is not
indeterminate. Therefore, it is important to distinguish between
cycles of uncertain states that are indeterminate (in the sense that
the diagnoser is not able to determine if the fault has occurred) and
those cycles of uncertain states that are not indeterminate. This
requires, besides the analysis of cycles formed with states of Gd,
the search for cycles in G, as shown in the following definition.

Definition 2 (Sampath et al., 1995, Indeterminate Cycles of Gd).A set
of uncertain states {xd1 , xd2 , . . . , xdp} ⊂ Xd forms an indeterminate
cycle if the following conditions hold true:

(IC.1) xd1 , xd2 , . . . , xdp form a cycle in Gd;
(IC.2) ∃(xkll , Y ), (x̃rll ,N) ∈ xdl , x

kl
l not necessarily distinct from x̃rll ,

l = 1, 2, . . . , p, kl = 1, 2, . . . ,ml, and rl = 1, 2, . . . , m̃l

in such a way that the sequence of states {xkll }, l = 1, 2,
. . . , p, kl = 1, 2, . . . ,ml and {x̃rll }, l = 1, 2, . . . , p, rl =

1, 2, . . . , m̃l form cycles in G;
(IC.3) there exist s = s1s2 · · · sp ∈ Σ∗ and s̃ = s̃1s̃2 · · · s̃p ∈ Σ∗

such that Po(s) = Po(s̃) ≠ ϵ, where sl = σl,1σl,2 · · · σl,ml−1,

f (xjl, σl,j) = xj+1
l , j = 1, 2, . . . ,ml − 1, f (xml

l , σl+1,0) = x1l+1,
and f (xmp

p , σ1,0) = x11, and similarly for s̃l.

Remark 1. For reasons that will become clear in the sequel,
indeterminate cycles defined according to Definition 2 will be
referred to as indeterminate observed cycle.

Using the definition of indeterminate observed cycles of Gd
together with Definition 1, a necessary and sufficient condition for
language diagnosability can be stated, as follows (Sampath et al.,
1995).

Theorem 1. Under Assumptions A1 and A2, language L generated by
automaton G is diagnosable with respect to projection Po and Σf =

{σf } if, and only if, its diagnoser Gd has no indeterminate observed
cycles. �

3. Modeling the observed behavior of an automaton in the
presence of intermittent loss of observations

3.1. A motivating example

Fig. 2(a) and (b) show the state transition diagrams of an
automaton G, for which Σ = {a, b, c, d, e, σf }, Σo = {a, b, c, d, e}
and Σf = {σf }, and the corresponding diagnoser Gd, respectively.
It is immediate to see, according to Theorem1, that, sinceGd has no
indeterminate cycles, the language generated by G is diagnosable
with respect to Po and Σf .

Assume, initially, that, for some n ∈ N, the trace s′Y = cσf abdn
has been generated and suppose that the occurrence of event
c has not been recorded somehow. Since event c has become
unobservable, the first event occurrence to be recognized byGd is a,
which takes the diagnoser state to {5N}.When the next events of s′Y
occur, the diagnoser moves to state {6N}, where it stays as long as
event d continues to occur, therefore displayingwrong information

3 A set of states {x1, x2, . . . , xn} ⊆ X forms a cycle in an automaton G if there
exists a trace s = σ1σ2 · · · σn ∈ L(G, x1) such that f (xl, σl) = xl+1, l = 1, . . . , n−1,
and f (xn, σn) = x1 .
Fig. 2. Automaton G (a) and its corresponding diagnoser Gd (b).

Fig. 3. Automata Gs and Gcc that model, respectively, intermittent sensor failure
(a), and intermittent communication failure (b).

regarding the occurrence of σf . Assume, now, that, for some n ∈ N,
trace s′′Y = cσf cen has been generated and assume also that event c
is subject to intermittent loss of observations. If the first occurrence
of event c is not recognized by the diagnoser, then Gd remains in
its initial state. If, in the sequel, the communication between the
system and the diagnoser is somehow restored before the second
occurrence of event c , then when c occurs for the second time,
the diagnoser moves to state {2N, 3Y }. Notice that since the next
event of s′′Y to occur is e, which is not in the active event set of
{2N, 3Y }, the diagnoser stands still in an uncertain state, and, once
again, provides wrong information regarding the fault occurrence.
This anomalous behavior suggests that the systemmodel should be
modified to take into account intermittent loss of observations due
to sensor malfunction or communication failure between sensors
and the diagnoser.

3.2. Modeling of sensor and communication channel intermittent
failures

We now present automaton models for sensors and commu-
nication channels taking into account possible sensor malfunction
and communication failure between the sensor and the diagnoser.

Fig. 3(a) shows automaton Gs that models sensor behavior
under intermittent malfunction, where au denotes the system
event whose occurrence must be recorded by the sensor, ar
denotes the event corresponding to the electrical signal generated
by the sensor that records the occurrence of au, and asf is an event
that models the failure of the sensor in recording au. We assume
that au is an unobservable event, and it is clear that asf models an
unobservable event. Fig. 3(b) shows automatonGcc thatmodels the
dynamic behavior of communication channels taking into account
possible communication failures, where ars is an observable event
that models the successful transmission of the electrical signal
generated by the sensor and arf is an unobservable event that
models the unsuccessful transmission of event ar to the diagnoser
through the communication channel. The self-loops in states S0 and
C0, in Fig. 3(a) and (b), respectively, were added to represent an
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Fig. 4. Part of a system plant G.

Fig. 5. Automaton Gp = G∥Gs∥Gcc .

Fig. 6. A simplified automaton model.

immediate sensor response to the occurrence of event au and an
immediate transmission to the diagnoser in the communication
channel of event ar . In both automata, Σ denotes the set of all
events of the system, including the events of Gs and Gcc . The overall
behavior of the system under intermittent loss of observations is
obtained by performing the parallel composition Gp = G∥Gs∥Gcc .

Consider part of an automaton G represented in Fig. 4, where
au is an unobservable event whose occurrence must be recorded
by the sensor. The corresponding automaton Gp = G∥Gs∥Gcc is
shown in Fig. 5. Notice that trace auarars means that the occurrence
of event au has been successfully reported to the diagnoser
whereas the other two traces, auasf and auararf , model sensor and
communication failures, respectively, since their last events are
asf and arf ; trace auasf models the sensor failure in recording the
occurrence of event au and trace auararf shows that event au was
at first recorded by the sensor but due to some communication
problem did not reach the diagnoser. As a consequence, we can
replace the transitions that connect states (x, S0, C0) and (y, S0, C0)
with two transitions, one labeled with an observable event a, that
corresponds to the execution of the normal trace auarars, and the
other one labeled with unobservable event a′, corresponding to
traces auararf and auasf , as depicted in Fig. 6.

3.3. The language dilation operation

The diagnosability problems resulting from the loss of obser-
vations of event c in the motivating example of Section 3.1 can
be explained with the help of the modeling of sensors and com-
munication channels subject to intermittent failure as follows. Let
us partition Σo as Σo = Σilo∪̇Σnilo, where Σilo is the subset of Σo
whose events are associated with intermittent loss of observations
and Σnilo is the set of events that are always observable. Assum-
ing, initially, that Σilo = ∅, then L = LG where LG = {ab}{d}∗ ∪

{cσf }({c}{e}∗∪{a}{b, d}∗). On the other hand,whenΣilo = {c}, and
defining Σ ′

ilo = {c ′
}, where c ′ is an unobservable event that mod-

els the loss of observations of event c due to sensor malfunction
or communication failure, the language that models the behavior
of G subject to intermittent loss of observations of c is no longer
L but Ldil = LG,dil, with LG,dil = {ab}{d}∗ ∪ {c, c ′

}{σf }({c, c ′
}{e}∗ ∪

{a}{b, d}∗). The state transition diagram of an automaton that gen-
erates Ldil is shown in Fig. 7.

From the preceding discussion, it is clear that language
diagnosability in the presence of intermittent loss of observations
Fig. 7. Automaton Gdil .

should not be stated in terms of the generated language L but in
terms of language Ldil. As a consequence, it is necessary to obtain
an automaton Gdil whose generated language not only accounts for
the normal behavior of G, i.e., when there is no loss of observations,
but also for the influence of intermittent loss of observations on L.
Such a language is obtained by dilating L, as follows.

Definition 3 (Dilation). Let Σ = Σilo∪̇Σnilo∪̇Σuo be a partition
of Σ , where Σilo is the set of observable events associated with
intermittent loss of observations and Σnilo denotes the set of
observable events not subject to intermittent loss of observations
and let Σ ′

ilo = {σ ′
: σ ∈ Σilo} and Σdil = Σ ∪ Σ ′

ilo. The dilation D
is the mapping

D : Σ∗
→ 2(Σdil)

∗

s → D(s),
(3)

where

D(ϵ) = {ϵ} ,

D(σ ) =


{σ } , if σ ∈ Σ \ Σilo,
σ , σ ′


, if σ ∈ Σilo,

D(sσ) = D(s)D(σ ), s ∈ Σ∗, σ ∈ Σ .

(4)

The dilation operation D can be extended from traces to languages
by applying it to all sequences in the language, that is,

D(L) =


s∈L

D(s). (5)

Example 1. In order to illustrate the dilation operation, let us
assume that Σ = {a, b, c, d, e, σf } and Σilo = {c} and consider
language LG = {ab}{d}∗ ∪{cσf }({c}{e}∗ ∪{a}{b, d}∗), whose prefix-
closure is the language generated by automaton G of Fig. 2(a).
Therefore Σdil = {a, b, c, c ′, d, e, σf }.

Let us, initially, illustrate the application of dilation to traces.
For s1 = abd then D(s1) = {abd} since a, b, d ∉ Σilo. For trace s2 =

cσf ce then, according to Definition 3, D(s2) = {c, c ′
}{σf }{c, c ′

}{e}
= {cσf ce, cσf c ′e, c ′σf ce, c ′σf c ′e}.

Let us now apply the dilation to LG. Then, it is not difficult
to check that D(LG) = LG,dil, whose prefix-closure is the language
generated by automaton Gdil of Fig. 7.

With the help of Definition 3, we can now formally define
automaton Gdil that models the behavior of G when subject to
intermittent loss of observations, as follows:

Gdil = (X, Σdil, fdil, Γdil, x0), (6)

where Γdil(x) = D[Γ (x)], and fdil is defined as follows: ∀σdil ∈

Γdil(x) : σdil ∈ D(σ ), fdil(x, σdil) = f (x, σ ), where σ ∈ Γ (x).
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(a) Automaton G1 . (b) Automaton G1,dil .

Fig. 8. Automata G1 and G1,dil of Example 2.
Remark 2. Notice that automaton Gdil is formed by adding to G
transitions in parallel with the transitions associated with the
events that are subject to intermittent loss of observations. The
added transitions will be labeled with unobservable events and
therefore the observable event set of Gdil remains Σo as in G. It
is also important to remark that Gdil is a deterministic automaton
with unobservable events as G.

The following result shows that Gdil models the behavior of G
when subject to intermittent loss of observations by establishing a
relationship between the languages generated by G and Gdil.

Theorem 2. Let Gdil be a deterministic automaton obtained from G
according to (6). Then, Ldil = L (Gdil) = D(L).

Proof. The proof is by induction.

• The base case is for traces of length 0. Note, by definition, that
ϵ ∈ Ldil, and, since ϵ ∈ L and D(ϵ) = {ϵ}, then ϵ ∈ D(L).

• The induction hypothesis is that ∀sN : ∥sN∥ ≤ N, sN ∈ Ldil, ⇔
sN ∈ D(L) ⇔ ∃s′N ∈ L, ∥s′N∥ ≤ N : sN ∈ D(s′N).

• Let sN+1 = sNσd.

(1) Assume first that sN+1 = sNσd ∈ Ldil. Therefore, σd ∈ Σdil and
so, σd ∈ D(σ ) for some σ ∈ Σ , which implies that either σd =

σ or σd = σ ′. According to the induction hypothesis, there ex-
ists s′N ∈ L such that sN ∈ D(s′N). As a consequence, there ex-
ist s′Nσ ∈ L such that sNσd ∈ D(s′Nσ) ⊆ D(L), which ultimately
implies that sN+1 ∈ D(L).

(2) Assume now that sN+1 = sNσd ∈ D(L). From the induction
hypothesis, there exists s′N ∈ L such that sN ∈ D(s′N) and since
σd ∈ Σdil then there exists σ ∈ Σ such that σd ∈ D(σ ).
Therefore,

D(s′Nσ) = D(s′N)D(σ ) ⊃ {sN}D(σ )

=


{sNσ }, σ ∉ Σilo
{sNσ , sNσ ′

}, σ ∈ Σilo,

which implies, by the construction of Gdil, that sN+1 = sNσd ∈

Ldil. �

4. Robust diagnosability of DES against intermittent loss of
observations

The definition of language diagnosability by Sampath et al.
(1995) is expressed in terms of the observed language generated
by G. However, as we saw in the previous section, although the
language generated by an automaton subject to intermittent loss
of observations remains unchanged, the observed language dilates.
This leads to the definition of language robust diagnosability, as
follows.
Definition 4 (Robust Diagnosability of DES Subject to Intermittent
Loss of Observations).A prefix-closed and live language L, generated
by an automaton G, is robustly diagnosable with respect to dilation
D, projection Pdil,o : Σ∗

dil → Σ∗
o and Σf = {σf } if the following

holds true:

(∃n ∈ N)(∀s ∈ Ψ (Σf ))(∀t ∈ L/s)(∥t∥ ≥ n ⇒ RD),

where the robust diagnosability condition RD is

(@ω ∈ L)[(Pdil,o(D(st)) = Pdil,o(D(ω))) ∧ (Σf ∉ ω)]. (7)

Remark 3. Note that if Σilo = ∅ then Ldil = L,D(st) = {st} and
Pdil,o reduces to Po. In this case, Definition 4 reduces to the usual
definition of language diagnosability introduced by Sampath et al.
(1995).

The following example illustrates the definition of robust
diagnosability.

Example 2. Consider automata G1 and G2 whose state transition
diagrams are depicted in Figs. 8(a) and 9(a), respectively, and
assume, for both automata, that Σo = {a, b, c}, Σilo = {b} and
Σf = {σf }. The objective here is to verify if the languages generated
byG1 andG2 (L1 and L2, respectively) are robustly diagnosablewith
respect to D, Po and Σf = {σf }.

Consider, initially, automaton G1. From Fig. 8(a), we see that the
faulty traces of L1 are s′Y = aσf cn, n ∈ N. Following the steps in the
robust diagnosability condition RD given in Eq. (7), we obtain:

D(s′Y ) = {aσf cn} ⇒ Pdil,o

D(s′Y )


= {acn}.

Let L1,dil denote the language generated by automaton G1,dil,
shown in Fig. 8(b). It is not difficult to see that, since

L1,dil = {aσf }{c}∗ ∪ {bc}{a}∗ ∪ {b′c}{a}∗,

then

P−1
dil,o


Pdil,o


D(s′Y )


∩ L1,dil = {aσf cn}.

Therefore, since P−1
dil,o


Pdil,o [D(sY )]


∩L1,dil has only the fault traces

s′Y , wemay conclude that L1 is robustly diagnosable with respect to
D, Po and Σf = {σf }.

Consider, now, automaton G2 depicted in Fig. 9(a). In this case,
the unique faulty traces of L2 are s′′Y = σf abcn, n ∈ N. Following the
robust diagnosability condition RD, we have

D(s′′Y ) = {σf abcn, σf ab′cn} ⇒ Pdil,o

D(s′′Y )


= {abcn, acn}.

From automaton G2,dil, shown in Fig. 9(b), we obtain

L2dil = {a}{c}∗ ∪ {σf ab}{c}∗ ∪ {σf ab′}{c}∗.

Therefore:

P−1
dil,o


Pdil,o


D(s′′Y )


∩ L2,dil = {σf abcn, σf ab′cn, acn}.
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(a) Automaton G2 . (b) Automaton G2,dil .

Fig. 9. Automata G2 and G1,dil of Example 2.
Since there is a normal trace in P−1
dil,o


Pdil,o


D(s′′Y )


∩ L2,dil, wemay

conclude that L2 is not robustly diagnosable with respect to D, Po
and Σf = {σf }. The lack of robust diagnosability of L2 with respect
toD, Po andΣf = {σf } canbe explained as follows: it is not possible
to assure if the normal traces acn occurred or the faulty traces
s′′Y = σf abcn have occurred and, somehow, the observable event
b has not been recorded by the diagnoser.

5. Verification of robust diagnosability using diagnosers

The robust diagnosability condition RD, given in Eq. (7), replaces
G, L and Po with Gdil, Ldil = D(L) and Pdil,o, respectively. Therefore,
the reader could argue that in order to verify robust diagnosability
with respect to D, Pdil,o and Σf it is enough to apply Theorem 1 to
Gdil.We shownow that this is not as straightforward as it appears to
be. This is so because Assumption A2 preventsG fromhaving cycles
of unobservable events. In order to illustrate this point, assume,
for example, that σ is the unique observable event of a cycle of
G that prevents G from having unobservable cycles. In addition,
assume that event σ is subject to intermittent loss of observations.
Therefore Gdil formed from G does not satisfy Assumption A2 since
there will be a cycle in Gdil of unobservable events when the
transition labeled with σ ′ is added in parallel to the one labeled
with σ . Therefore, in this case Theorem 1 cannot be used to verify
if Ldil is diagnosable with respect to Pdil,o. It is therefore necessary
to remove Assumption A2 and, as a consequence, to derive a new
necessary and sufficient condition for language diagnosability. In
order to do so, consider, initially, the following definition.

Definition 5 (Hidden Cycles and Indeterminate Hidden Cycles of
Gd). Let xd = {x1ℓ1, x2ℓ2, . . . , xnℓn} be a state of Gd. There exists
a hidden cycle in xd if for some {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n}, the
following conditions hold true:

(HC.1) xi1 , xi2 , . . . , xik form a cycle in G;
(HC.2) {σi1 , σi2 , . . . , σik} ⊆ Σuo, where σi1 , σi2 , . . . , σik are such

that f (xij , σij) = xij+1 , j = 1, 2, . . . , k − 1, and f (xik , σik) =

xi1 .

If xd is an uncertain state of Gd and besides conditions (HC.1) and
(HC.2), the following condition is also satisfied,

(HC.3) ℓij = Y , j = 1, 2, . . . , k,

then xd has an indeterminate hidden cycle.

The idea behind the definitions of hidden cycles and indeterminate
hidden cycles is as follows. Notice that Assumptions (HC.1) and
(HC.2) ensure that xi1 , xi2 , . . . , xik form a cycle of states connected
with unobservable events. Let us now consider a trace s = so
(σi1 , σi2 , . . . , σik)

n
∈ L (n ∈ N), and, without loss of generality,

assume that the last event of so is observable. Let us suppose,
initially, that σf ∉ s and that there is no faulty trace4 s′ such that
Po(s) = Po(s′). In this case there will exist in Gd a state xNd such
that {xi1N, xi2N, . . . , xikN} ⊆ xNd . Assume now that σf ∈ so and
fℓ(x0,ℓ, so) = xYℓ , where fℓ is the transition function of Gℓ = G∥Aℓ

and x0,ℓ and xYℓ are, respectively, the initial and a certain state
of Gℓ. In addition, assume that there is no normal traces s′′ such
that Po(s) = Po(s′′). Therefore, there will exist a certain state xYd
of Gd such that (xYℓ ∪ {xi1Y , xi2Y , . . . , xikY }) ⊆ xYd . On the other
hand, if there exists a normal trace s′′ (bounded length or not)
such that fℓ(x0,ℓ, so) = xNℓ , where xNℓ is a normal state of Gℓ, and
Po(s) = Po(s′′), then there will exist an uncertain state xYNd in Gd

such that (xYℓ ∪ {xi1Y , xi2Y , . . . , xikY } ∪ xNℓ ) ⊆ xYNd . Consequently,
in accordance with Definition 5, there exist hidden cycles in states
xNd and xYd of Gd and an indeterminate hidden cycle in xYNd . Notice
that in the verification of language diagnosability, state xYd (xNd )
ensures that the fault has (resp. has not) occurred, and so, the
existence of hidden cycles in normal or certain states ofGd does not
affect the language diagnosability. On the other hand, the existence
of indeterminate hidden cycles implies that the language is not
diagnosable since there exist two traces, a faulty one, s, and a
normal one, s′′, such that Po(s) = Po(s′′). This is why hidden cycles
formed with states of G that are labeled with Y in some uncertain
state of Gd are termed indeterminate hidden cycles.

Hidden cycles are represented in the state transition diagrams
of diagnosers by dashed self-loops: indeterminate hidden cycles
are labeled as ihc(.) and hidden cycles are labeled simply as hc(.),
with the unobservable events that connect the states in the hidden
cycles put inside the parentheses.

An immediate consequence of Definition 5 is that none of the
assumptions made in Sampath et al. (1995) are required. This is so
because of the following reasons.

(1) As we will show in the sequel, the language diagnosability
condition can be expressed in terms of indeterminate hidden
cycles, therefore allowing us to remove Assumption A2.

(2) With the definition of hidden and indeterminate hidden
cycles, we can also remove Assumption A1 as follows: if for
some state y of G, Γ (y) = ∅, then we replace G with a new
automaton G′

= (X, Σ ′, f ′, Γ ′, x0), where Σ ′
= Σ ∪ {σu}, σu

being an unobservable event, f ′(x, .) = f (x, .), for all x ≠ y
and f ′(y, σu) = y. Notice that the languages generated by G
and G′ have the same projection Po, which does not change the
diagnosability property of L. The consequence of this procedure
is that a hidden cycle labeled with event σu will be formed in
some state of Gd.

4 A trace s is said to be faulty (normal) if σf ∈ s (resp. σf ∉ s).
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Fig. 10. Diagnosers for automaton G of Fig. 2 assuming Σilo = {c} (a), Σuo = {a, σf } and Σilo = {b} (b), and Σuo = {a, σf } and Σilo = {b} (c).
Therefore, from this point onwards, Assumptions A1 and A2 are no
longer needed.

5.1. A robust diagnoser for DES subject to intermittent loss of
observations

We will now present a necessary and sufficient condition for
robust diagnosability of a DES subject to intermittent loss of
observations. Since Gdil models the behavior of G in the presence
of intermittent loss of observations, we will consider a diagnoser
associated with Gdil instead of the usual diagnoser Gd for G.

Let us consider the following diagnoser automaton:

Gdil,d = Obs (Gdil∥Aℓ, Σo), (8)

where Aℓ is the label automaton shown in Fig. 1. We may state the
following result.

Theorem 3. The language L is robustly diagnosable with respect to
D, Pdil,o andΣf if, and only if, the diagnoser Gdil,d has no indeterminate
(observed or hidden) cycles.

Proof (⇐). Assume that L is not robustly diagnosable with respect
toD, Pdil,o andΣf . Therefore, according to the robust diagnosability
definition, for some trace s ∈ Ψ (Σf ) and for all t ∈ Ldil/s, ∥t∥ ≥

n, n arbitrarily large, there exists a trace ω ∈ P−1
dil,o(Pdil,o(D(st))) ∩

Ldil such that Σf ∉ ω, where ω can have bounded or unbounded
length.

Since Pdil,o[D(ω)] = Pdil,o[D(st)] and Gdil,d is a deterministic
automaton, then there exists an uncertain state xdil,d ∈ Xdil,d such
that

xdil,d = fdil,d(x0dil,d , Pdil,o[D(st)]) = fdil,d(x0dil,d , Pdil,o[D(ω)]).

Let us consider, initially, ω of bounded length and assume
that |Xdil,d| = Nx. If we make n > Nx, then there will exist a cy-
cle of states whose events associated with the state transitions are
either observable or unobservable. If the events are observable,
Pdil,o[D(ω)] ≠ Pdil,o[D(st)], which contradicts the initial assump-
tion. On the other hand, if the events are unobservable, then there
exists an indeterminate hidden cycle in xdil,d ∈ Xdil,d.

Assume, now, that ω is unbounded and let, as in the previous
case, |Xdil,d| = Nx. If ∥st∥ > Nx, then therewill exist a cycle of states
whose events associated with the transitions between the states
of the cycle can either be observable or not. If at least one event
is observable, then the cycle formed is indeterminate, otherwise
there will be an indeterminate hidden cycle in the state reached
by the trace whose projection has, as the last event, an observable
event.

(⇒) Let us consider, initially, the existence of indeterminate
hidden cycles in Gdil,d. In order to do so, assume that there is an
indeterminate hidden cycle in a state xdil,d = {x1ℓ1, x2ℓ2, . . . ,
xnℓn} ∈ Xdil,d, where xi is a state of Gdil. Therefore, according to
Definition 5, there exists {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n} such that
xi1 , xi2 , . . . , xik form a cycle in Gdil, and ℓij = Y , j = 1, 2, . . . , k.
Then, it is not hard to see that there exists a trace ωp = stup ∈ Ldil
that satisfies the following conditions:

(1) Σf ∈ s and fdil,d(x0dil,d , Pdil,o(s)) = xdil,d;
(2) t ∈ (Σ ′

ilo ∪ Σuo)
∗ such that fdil,d(x0dil,d , Pdil,o(st)) = xdil,d;

(3) up ∈ (Σ ′

ilo ∪ Σuo)
∗, ∥up∥ = p, with p arbitrarily large, is such

that fdil,d(x0dil,d , Pdil,o(stup)) = xdil,d and fdil(xi1ℓi1 , uj) = xijℓij ,
where j = (p mod k) + 1.

In addition, since xdil,d is an uncertain state, there exists ω ∈ L
such that Σf ∉ ω and Pdil,o(ω) = Pdil,o(ωp), which violates the
diagnosability condition.

The proof that the diagnosability condition is also violatedwhen
Gdil,d has indeterminate observed cycles follows the same steps as
that presented in Sampath et al. (1995), with the difference that L
is replaced with Ldil; it will be, therefore, omitted here. �

With the removal of Assumptions A1 and A2, Theorem 1
(Sampath et al., 1995) becomes a special case of Theorem 3, as
follows.

Corollary 1. The language L generated by automaton G is diagnos-
able with respect to projection Po and Σf = {σf } if, and only if, its
diagnoser Gd has no indeterminate (observed or hidden) cycles. �

The following example illustrates the results presented in
Theorem 3.

Example 3. (a) Let us consider again automaton G of Fig. 2(a), and
assume that event c is subject to intermittent loss of observations,
i.e., Σilo = {c}. Automaton Gdil that models the behavior of Gwhen
subject to intermittent loss of observations is shown in Fig. 7, and
the corresponding diagnoserGdil,d is depicted in Fig. 10(a). It is clear
that Gdil,d has an indeterminate cycle formed with state {6N, 7Y },
and, therefore, L is not robustly diagnosable with respect toD, Pdil,o
and Σilo. It is not difficult to see that, if trace sY = cσf abdn, with
n arbitrarily large, occurs and, in addition, the occurrence of event
c is not recorded by the diagnoser, then Gdil,d gets stuck in state
{6N, 7Y }, being therefore uncertain about the fault occurrence.
Notice that the non-occurrence of c is equivalent to the occurrence
of the unobservable event c ′ in Gdil and thus s′Y = c ′σf abdn are
ambiguous traces of Ldil since there exists a normal trace s′N = abdn
such that Pdil,o(s′Y ) = Pdil,o(s′N).

(b) Assume now that for the same automaton G of Fig. 2(a), a
is an unobservable event and b is the event whose corresponding
sensor is subject to intermittent loss of observations, i.e., Σuo =

{a, σf } andΣilo = {b}. The diagnoser Gd for G is shown in Fig. 10(b),
from which it is clear that L is diagnosable with respect to Po and
Σf . The diagnoser Gdil,d that takes into account intermittent loss of
observations of event b is shown in Fig. 10(c). Notice that sinceGdil,d
has an indeterminate hidden cycle in state {2N, 3Y , 7Y }, we may
conclude that L is not robustly diagnosable with respect to D, Pdil,o
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andΣilo. As a consequence, if trace sY = cσf abn, n arbitrarily large,
occurs, and the occurrence of event b is been recorded by the
diagnoser, then Gdil,d gets stuck in state {2N, 3Y , 7Y }. It is worth
noting that since the permanent loss of observations of event b is
equivalent that b′ occurs indefinitely, then the occurrence of sY inG
is equivalent to the occurrence of s′Y = cσf ab′n in Gdil. Therefore s′Y
is an ambiguous trace since, for sN = c , Pdil,o(s′Y ) = Pdil,o(sN) = c.
An important point regarding this example is that, if at anytime the
observation of event b is performed again, then Gdil,d will move to
state {7Y }, indicating that the fault event σf has occurred; this is
consistent with what is expected for the behavior of a diagnoser
that is designed to cope with intermittent loss of observations.

It is important to remark that if the language generated by an
automaton G is robustly diagnosable with respect to D, Pdil,o and
Σf , then the diagnoser Gdil,d not only provides an off-line test for
robust diagnosability but can also be used at run-time to perform
diagnosis of a DES subject to intermittent loss of observations. For
this reason, Gdil,d will be referred to as ‘‘robust diagnoser against
intermittent loss of observations’’. This fact will be illustrated in
the following example.

Example 4. Consider again automaton G of Fig. 2(a), and assume
that Σo = {a, b, c, d, e} and that event a is subject to intermittent
loss of observations, i.e., Σilo = {a}. As it was concluded from
the diagnoser Gd depicted in Fig. 2(b), L is diagnosable with
respect to Po and Σf . Fig. 11 shows diagnoser Gdil,d, which has
no indeterminate (observed or hidden) cycles. Consequently, L is
robustly diagnosable with respect to D, Pdil,o and Σf .

Let us now consider the effect of intermittent loss of observa-
tions of event a in online fault detection. Assume that the faulty
trace sY = cσf abn (n arbitrarily large) has occurred. If we are us-
ing the non-robust diagnoser of Fig. 2(b), and if event a is not
observed by Gd, the diagnoser gets stuck in state {2N, 3Y } since
b ∉ Γd({2N, 3Y }), being, therefore, permanently uncertain about
the occurrence of the faulty event σf . When the robust diagnoser
Gdil,d of Fig. 11 is used, then, after the occurrence of event c,Gdil,d
moves to state {2N, 3Y , 7Y }. If either the sensor that records the
occurrence of event a fails or its occurrence is not successfully re-
ported to the diagnoser due to some failure in the communication
channel, the next event to be recognized by Gdil,d is b. When b oc-
curs, the robust diagnoser updates its state to {7Y }, being, there-
fore, sure of the fault occurrence. On the other hand, if there is no
loss of observations of event a, then a is the first event whose oc-
currence is recognized by Gdil,d after the occurrence of c; thus Gdil,d
moves to {7Y }, and stays there permanently since b is the next
event of trace sY to occur.

Notice that either occurring or not some intermittent loss of
observations of event a, the robust diagnoser not only diagnoses
the fault occurrence but also indicates the correct estimation of the
state where the original automaton might be after the occurrence
of each event of sY .

5.2. Construction of the robust diagnoser directly from diagnoser Gd

In the previous subsection, we built a diagnoser to test the
robust diagnosability of L by first constructing an augmented
automaton Gdil and, in the sequel, building a diagnoser for Gdil.
Since robust diagnosability of L with respect to D, Pdil,o and Σf
requires that L be already diagnosable with respect to Po and Σf ,
whose verification can be carried out with diagnosers, we may
wonder if it is also possible to obtain an equivalent diagnoser
directly from Gd by dilating the language generated by Gd, and then
obtaining the observer for the augmented diagnoser. This approach
is sketched in Fig. 12 (right branch) together with the approach
presented in the previous subsection (left branch).
Fig. 11. The robust diagnoser against intermittent loss of observations of
Example 4.

Fig. 12. Two ways to obtain diagnosers to test for robust diagnosability.

It is not difficult to see that both automata, Gdil,d and Ĝdil,d, in
Fig. 12 are deterministic, and thus, in order to prove that they
are equivalent, it is enough to prove that they generate the same
language. However, the states of diagnosers play an important
role in diagnosability analysis, and thus, it is also necessary to
establish some relationship between the states of Gdil,d and Ĝdil,d.
Since L (Gdil,d) = Pdil,o[D(L)] and L (Ĝdil,d) = P ′

oo{D[Po(L)]}, where
P ′
oo : Σ ′∗

o → Σ∗
o , with Σ ′

o = Σo ∪ Σ ′

ilo, we first need to prove that
Pdil,o[D(L)] = P ′

oo{D[Po(L)]}.

Lemma 1.

A. For any event σ ∈ Σ, P ′
oo[D[Po(σ )]] = Pdil,o[D(σ )].

B. For any language L, defined in Σ∗, P ′
oo[D[Po(L)]] = Pdil,o[D(L)].

Proof. The proof for A follows directly from the definitions of
dilation and projection, and will therefore be omitted.

The proof for B is by induction on the length of the traces in the
two languages.

• The base case is for traces of length 0. For s = ϵ, we have that,
by definition, P ′

oo[D[Po(ϵ)]] = ϵ and Pdil,o[D(ϵ)] = ϵ.
• The induction hypothesis is that for all traces sN ∈ L, ∥sN∥ ≤

N, P ′
oo[D[Po(sN)]] = Pdil,o[D(sN)].

• Consider, now, a trace sN+1 = sNσ ⊂ L, where σ ∈ Σ . Then

P ′

oo[D[Po(sN+1)]] = P ′

oo[D[Po(sNσ)]]

= P ′

oo[D[Po(sN)]]P ′

oo[D[Po(σ )]]

= Pdil,o[D(sN)]Pdil,o[D(σ )]

= Pdil,o[D(sNσ)] = Pdil,o[D(sN+1)]. � (9)

The next result shows that automata Gdil,d and Ĝdil,d are not only
language equivalent but also that their states are equal up to a
straightforward renaming.
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Theorem 4. Automata Gdil,d and Ĝdil,d are language equivalent, i.e.,
L (Gdil,d) = L (Ĝdil,d) and their states are equal up to the following
renaming:

x̂dil,d = {xd,1, xd,2, . . . , xd,q} ∈ X̂dil,d ⇔ xdil,d

=

q
i=1

xd,i ∈ Xdil,d, (10)

where xd,i ∈ Xd, xd,i = {xi1ℓi1, xi2ℓi2, . . . , xipiℓipi}, xij ∈ X, ℓij ∈

{Y ,N}, i = 1, 2, . . . , q, j = 1, 2, . . . , pi, and Xdil,d and X̂dil,d denote,
respectively, the state-space of Gdil,d and Ĝdil,d. In addition, any hidden
cycle in a state xdil,d is also a hidden cycle in x̂dil,d and vice versa.

Proof. Language equivalence of automata Gdil,d and Ĝdil,d follows
directly from Lemma 1.

Let us now prove relationship (10) between the states of Gdil,d

and Ĝdil,d. In order to do so, assume that x̂dil,d ∈ X̂dil,d is a state of
Ĝdil,d reached by a trace s′ ∈ L (Ĝdil,d). Then, for all xd,i ∈ x̂dil,d,
i ∈ {1, 2, . . . , q}, there exists a trace sd,i ∈ L (Gd) such that s′ ∈

P ′
oo[D(sd,i)] and fd(x0,d, sd,i) = xd,i. As a consequence, for all xijℓij ∈

xd,i, j = 1, 2, . . . , pi, there exists a trace sij ∈ L such that Po(sij) =

sd,i, f (x0, sij) = xij and ℓij = Y , if Σf ∈ sij, or ℓij = N , if Σf ∉ sij.
Since Gdil,d is a deterministic automaton and P ′

oo[D[Po(sij)]] =

Pdil,o[D(sij)], there exists xdil,d = fdil,d(x0,dil,d, s′) such that xijℓij ∈

xdil,d. Hence, xijℓij ∈ xd,i ∈ x̂dil,d, which implies that xdil,d =
q

i=1
xd,i ⊆ x̂dil,d.

Consider, now, a state xdil,d ∈ Xdil,d such that xdil,d = fdil,d(x0,dil,d,
s′) for some s′ ∈ L (Gdil,d). Then, there exists sij ∈ L such that s′ ∈

Pdil,o[D(sij)] and xij = f (x0, sij), with xijℓij ∈ xdil,d, where ℓij = Y ,
if Σf ∈ sij, or ℓij = N , if Σf ∉ sij. Therefore, there exists xd,i =

fd(x0,d, Po(sij)) such that xijℓij ∈ xd,i. In addition, since P ′
oo[D[Po(sij)]]

= s′ and Ĝdil,d is a deterministic automaton, then, according to
Basilio and Lafortune (2009), there exists x̂dil,d = f̂dil,d(x̂0,dil,d, s′)
such that xdi ∈ x̂dil,d which implies that x̂dil,d ⊆ ∪

q
i=1 xd,i.

Let us now deal with the hidden cycles of Gdil,d and Ĝdil,d. First,
assume that states xi1, xi2, . . . , xip, p ≤ pi form a cycle in G and
let f (xik, σk) = xi,k+1, k = 1, 2, . . . , p − 1 and f (xip, σp) = xi1,
where σj ∈ Σuo, j ∈ {1, 2, . . . , p}. It is clear that xi1, xi2, . . . , xip
is also a cycle of states of Gdil and thus ∃xdil,d ∈ Xdil,d such that
{xi1, xi2, . . . , xip} ⊆ xdil,d, which implies that xi1, xi2, . . . , xip define
a hidden cycle in xdil,d. In addition, from the construction of Gd, it
is not difficult to see that ∃xd,i ∈ Xd such that xd,i = {xi1ℓi1, xi2ℓi2,

. . . , xipiℓipi} has a hidden cycle. Since Ĝdil,d is obtained by merging
states of Gd connected with events in Σ ′

ilo then ∃x̂dil,d such that
xd,i ∈ x̂dil,d, thus states xi1, xi2, . . . , xip also define a hidden cycle
in x̂dil,d.

Assume now that xi1, xi2, . . . , xip′ , p′
≤ pi and xj1, xj2, . . . ,

xjp′′ , i ≠ j, p′′
≤ pj are states of G such that f (xik, σk) = xi,k+1,

k = 1, 2, . . . , p′
− 1 and f (xjk, σk) = xj,k+1, k = 1, 2, . . . , p′′

− 1
where σk ∈ Σuo, k ∈ {1, 2, . . . ,max(p′, p′′)}. It is not difficult to
see that xi1, xi2, . . . , xip′ and xj1, xj2, . . . , xjp′′ do not form cycles
in G and, from the diagnoser construction, there exist xd,i, xd,j ∈

Xd such that {xi1, xi2, . . . , xip′} ∈ xd,i and {xj1, xj2, . . . , xjp′′} ∈ xd,j.
Suppose there exist eventsσp′ , σp′′ ∈ Σ ′

ilo such that f (xip′ , σ ′
p) = xj1

and f (xjp′′ , σp′′) = xi1. Therefore xi1, xi2, . . . , xip′ , xj1, xj2, . . . , xjp′′

form a cycle in Gdil, which implies that there exists a state xdil,d ∈

Xdil,d such that xd,ij = {xi1ℓi1, xi2ℓi2, . . . , xip′ℓip′ , xj1ℓj1, xj2ℓj2, . . . ,
xjp′′ℓjp′′} ⊆ xdil,d. As a consequence, xi1, xi2, . . . , xip′ , xj1, xj2, . . . , xjp′′

defines a hidden cycle in xdil,d. The assumption that σp′ , σp′′ ∈ Σ ′

ilo

implies that xd,i, xd,j form a cycle inGd,dil, and since Ĝdil,d is obtained
by merging states of Gd connected with events in Σ ′

ilo, then there
exists x̂dil,d such that {xd,i, xd,j} ⊆ x̂dil,d which ultimately implies
that xi1, xi2, . . . , xip′ , xj1, xj2, . . . , xjp′′ also defines a hidden cycle in
x̂dil,d. �
5.3. Extension to robust codiagnosability

A decentralized architecture for fault diagnosis has been
proposed in Debouk et al. (2000), in which sensor readings are
no longer centralized, but distributed over different sites, each
site observing the system behavior based on its available sensing
capabilities, or equivalently, on the set of observable events
Σoi , i = 1, 2, . . . , n—assuming there are n independent sites.
Each site processes the information received (event occurrences),
and, in the decentralized architecture proposed in Debouk et al.
(2000), the local sites do not communicate with one another and
no explicit coordination among sites is necessary. They can only
communicate their diagnostics to a coordinator, which processes
this information according to a prescribed rule and takes a decision
on the fault occurrence. This is the situation corresponding to
Protocol 3 in Debouk et al. (2000) and is often referred to in recent
works (Qiu & Kumar, 2006; Wang et al., 2007) as codiagnosability.
Codiagnosability refers to the situation where it is required that
each fault be diagnosed by at least one local site, when all local
sites operate autonomously by processing their local observations.

The definition of codiagnosability presented in Debouk et al.
(2000) can be extended to robust codiagnosability of DES subject
to intermittent loss of observations with the help of projections
Pdil,oi : Σ∗

dil → Σ∗
oi , i = 1, . . . , n, as follows.

Definition 6 (Robust Codiagnosability Against Intermittent Loss of
Observations). A prefix-closed and live language L is NOT robustly
codiagnosable with respect to dilation D, projections Pdil,oi , i =

1, . . . , n, and Σf = {σf } if the following holds true

(∃(s, t) ∈ Ψ (Σf ) × L/s)(∥t∥ ≥ n, ∀n ∈ N ⇒ RC ),

where condition RC is given as
(∃ωi ∈ L, i = 1, 2, . . . , n)(Σf ∉ ωi)(ωk not necessarily distinct
from ωl, k ≠ l)[Poi(D(st)) = Poi(D(ωi)), i = 1, 2, . . . , n].

Comparing the definition of codiagnosability presented in
Debouk et al. (2000) and Definition 6, we note that in Definition 6,
st andωi are replacedwithD(st) andD(ωi), respectively. Therefore,
since Ldil = D(L) we may say that robust codiagnosability with
respect to dilation D, projections Pdil,oi , i = 1, . . . , n, and Σf =

{σf } is equivalent to codiagnosability of Gdil with respect to
projections Pdil,oi , i = 1, . . . , n, and Σf = {σf }. We may state the
following result.

Theorem 5. A language L is robustly codiagnosable with respect to
D, the set of projections Pdil,oi , i = 1, 2, . . . , n and Σf = {σf } if, and
only if,

Gdil,t = (∥n
i=1 Gdil,di)∥Gdil,d (11)

does not have any indeterminate (observed or hidden) cycles.
As in the construction of the diagnosers used to verify

robust diagnosability with respect to loss of observations, the
construction of the test automaton Gdil,t can be carried in twoways
as shown in Fig. 13. The path on the left is the one generated
according to Eq. (11) whereas the path on the right uses the results
of Theorem 4. The proof of the equivalence between Gdil,t and Ĝdil,t
is similar to that of Theorem 4 and will be therefore omitted.

5.4. Computational complexity analysis

The computational complexity to build Gdil,d is O(2|Xdil| ×|Σdil|),
where Xdil and Σdil denote, respectively, the state and event sets
of Gdil. Since Gdil and G have the number of states (they actually
have the same states) and |Σdil| < 2|Σ |, then the computational
complexity to build Gdil,d is, in the worst case, O(2|X |

× |Σ |).
According to Eq. (11), Gdil, t = (∥n

i=1 Gdil,di)∥Gdil,d, which implies
that, in the worst case, the number of states of Gdil, t is |Xdil,t | =

(2|X |)n+1
= 2(n+1)|X |, and so, the computational complexity to build

Gdil,t is O(2n|X |
× |Σ |) in the worst case.
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Fig. 13. Two ways to obtain test automata for verification of robust codiagnosabil-
ity.

6. Verification of robust diagnosability using verifiers

Another way to verify language diagnosability is by using
verifiers (Moreira, Jesus, & Basilio, 2010, 2011; Qiu & Kumar, 2006;
Shengbing, Zhongdong, Chandra, & Kumar, 2001; Wang et al.,
2007; Yoo & Lafortune, 2002). The main advantage of verifiers
over diagnosers is that they require polynomial time in the state-
space of the automaton. On the other hand, unlike diagnosers,
verifiers are not suitable for online diagnosis. The verifier proposed
in Moreira et al. (2011) has lower computational complexity than
the methods proposed in Qiu and Kumar (2006), Shengbing et al.
(2001), Wang et al. (2007), Yoo and Lafortune (2002), and, in
addition, is deterministic. For these reasons it will be used here in
the study of robust diagnosability in the presence of intermittent
loss of observations.

The construction of the verifier automaton proposed byMoreira
et al. (2011) (and also the above mentioned ones) does not require
computation of observers (see Eq. (8)). Therefore, robust verifiers
cannot, in general, be obtained directly from the verifier for G by a
procedure similar to that presented in Section 5.2. For this reason,
verification of robust diagnosability (and also codiagnosability)
should be carried out according to Definition 4 by constructing the
verified for Gdil (instead of G) and replacing the renaming function
required in Step 3 of Algorithm 1 of Moreira et al. (2011) with the
following one:

Ri(σ ) =


σ , if σ ∈ Σoi ∪ Σf
σRi , if σ ∈ Σuoi \ Σf ,

(12)

where i = 1 for robust diagnosability, and to ascertain the robust
diagnosability (codiagnosability) of Lwith respect to D, Pdil,o (resp.
Pdil,oi according to Theorem 1 of Moreira et al. (2011)).

As a consequence, the computational complexity to check
robust diagnosability (codiagnosability) is the same as that to
construct Moreira’s verifier, i.e., O(|X |

2
× |Σ |) and (resp. O(n ×

|X |
n+1

×|Σ |)), therefore requiring polynomial time in the number
of states and events of G.

7. Conclusions and future works

We have addressed in this paper the problem of fault diagnosis
of discrete event systems modeled by automata subject to
intermittent loss of observations. We have introduced a new
language operation (dilation) which allowed us to derive an
automaton model that accounts for both, normal behavior (with
no intermittent loss of observations) and subject to intermittent
loss of observations. We have also presented a definition of
robust diagnosability against intermittent loss of observations and
derived a necessary and sufficient condition. In order to derive such
a necessary and sufficient condition, we removed Assumptions A1
and A2 of Sampath et al. (1995), which precludes the existence
of cycles of states connected with unobservable events. As a
consequence, the diagnosability condition presented in Sampath
et al. (1995) has been changed, and become a particular case of the
robust diagnosability condition derived here.

The verification of robust diagnosability against intermittent
loss of observations only makes sense if the language is already
diagnosable when there are no failures of the sensors and the
corresponding communication channels. To take advantage of that,
we presented two ways of computing the robust diagnoser: in the
first way, we obtain a robust diagnoser from the plant model that
takes into account intermittent loss of observations; in the second
way, we modify the diagnoser automaton in the same way as we
modify the plant in order to take into account intermittent loss
of observations and, in the sequel, we obtain the observer of the
resulting automaton with respect to the set of observable events.
We proved that both ways lead to the same diagnoser, apart from
some straightforward state renaming. It is important to remark
that when robust diagnosability is assured, robust diagnosers can
also be used in run-time to perform online fault diagnosis.

In dealing with sensor malfunction, we have assumed that
possible defective sensors are neither part of the supervisory
control system nor, in a lower level, part of the continuous variable
controller for the plant. If, on the other hand, all sensors work
properly but there is some failure in the communication channel
that connects the sensor and the diagnoser, and, furthermore, this
communication channel is not shared with the supervisor, then
any intermittent loss of observations only affect the diagnoser.
From the theoretical point of view, there is no difference in
assuming either only communication failure or both sensor and
communication failures, because it can be easily checked, by
following the same reasoning as that of Section 3.2, that both
assumptions lead to the same model. The real concern must be
with the range of discrete event systems to which the theory
introduced here can be applied, i.e., those whose controlled
behavior has not been affected by loss of observations. In this
regard, an extension of the theory introduced here is in the design
of sensor and communication failure tolerant control, generalizing
the problem formulated by Rohloff (2005) to intermittent loss of
observations. Notice that in the problem formulated by Rohloff
(2005), it is assumed that sensors may fail even after the first
occurrence of the event it records but once the failure occurs,
the sensor never recovers, as opposed to our assumption of
intermittent loss of observations which allows the sensor to
recover.
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